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Abstract – We study the localization of vibrational modes of frictionless granular media. We
introduce a new method, motivated by earlier work on non-Hermitian quantum problems, which
works well both in the localized regime where the localization length ξ is much less than the
linear size L and in the regime ξ �L when modes are extended throughout our finite system. Our
very lowest frequency modes show “quasi-localized” resonances away from the jamming point;
the spatial extent of these regions increases as the jamming point is approached, as expected
theoretically. Throughout the remaining frequency range, our data show no signature of the
nearness of the jamming point and collapse well when properly rescaled with the system size.
Using Random Matrix Theory, we derive the scaling relation ξ ∼Ld/2 for the regime ξ≫L in d
dimensions.

Copyright c© EPLA, 2008

Introduction. – Over the past years, many questions
concerning the behavior of disordered systems have been
put in a new perspective by addressing them from the
point of view of the more general jamming scenario [1].
Especially for granular systems it has turned out to be
very fruitful to study the changes in the properties and
the response of granular packings as one approaches the
jamming point from the jammed side, where the packing
gets close to an isostatic solid. An isostatic packing is
indeed essentially a marginal solid which has just enough
contacts to maintain a stable packing. From simple
counting arguments, one finds that the average coordi-
nation number Z of a d-dimensional isostatic packing of
frictionless spheres equals Ziso = 2d [2]. Upon approaching
this marginal solid, many static and dynamic properties
exhibit anomalous behavior, associated with the fact
that the excess number of average bonds, ∆Z ≡Z −Ziso,
goes to zero [3–6]. In fact, ∆Z itself scales anomalously,
namely as the square root of the difference in density
from the one at jamming [3]. Likewise, the ratio G/K of
the shear modulus G over the compression modulus K
is found to scale as ∆Z, and the density of states of the
vibrational modes becomes flat at low frequencies above
some crossover frequency ω∗ ∼∆Z, due to the emergence
of many low-frequency modes. Much of this behavior was
explained by Wyart et al. [4–6] in terms of the existence
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of an important cross-over length scale ℓ∗ ∼ 1/∆Z, the
length up to which the response is close to that of an
isostatic packing. This scale ℓ∗ diverges as the jamming
point is approached, but is difficult to probe directly.
Nevertheless, the length ℓ∗ has recently been uncovered
as the important cross-over length to continuum behavior
in the static response [7,8]. Although most of these results
pertain explicitly to packings of frictionless spheres, there
are several indications [9,10] that many of these observa-
tions and ideas can be generalized to frictional packings.
It has been noted in several studies that both the
response to a local or global deformation [7,11] and the
behavior of the vibrational eigenmodes [4,6] of a packing
become much more disordered as one approaches the
jamming point: as the snapshots of two vibrational modes
in fig. 1 illustrate, far above the jamming point the
eigenmodes have a structure reminiscent of what one gets
in a continuum theory of an elastic medium, but close
to the jamming point one is immediately struck by the
appearance of many disordered “swirls”. The arguments
put forward by Wyart et al. [4–6] indicate that the excess
low frequency modes cannot be localized on scales � ℓ∗

since they are the vestiges of the global floppy modes
that emerge at the isostatic point. Hence, if there are any
low-frequency modes away from jamming and if indeed
their localization length is � ℓ∗, we should see this as the
jamming point is approached. The aim of this paper is to
investigate whether this is indeed the case.
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Fig. 1: Snapshots of two low-frequency eigenmodes in our
packings. The arrows indicate the direction and magnitude
of the displacements of the individual particles. (a) At low
pressure p= 10−6, close to the jamming point, the mode is very
disordered, whereas at high pressure (b) p= 3 · 10−2, the mode
is more reminiscent of an elastic shear wave. Similar features
are seen in the response to a local or global deformation [4,7,11].

Localization was discovered fifty years ago by Ander-
son [12], who in his study non-interacting electrons in a
random potential found that disorder can induce electron
localization. Unlike the extended (delocalized) Bloch
waves, in a localized state the weight of the electron wave
function is concentrated near some point in space; the
amplitude falls off as e−r/ξ with distance r from the center.
This defines the localization length ξ(E) which depends
on the electron energy E. The possibility that disorder can
localize the eigenmodes of systems governed by wave equa-
tions is quite general and extends to many systems, not
only sound modes [13–15] but also gravity waves [15], light
propagation [15] and diffusion on random lattices [14,15].
We will focus on the localization behavior of vibrational
modes of 2d frictionless packings. In two dimensions
there is no localization-delocalization transition: in the
presence of disorder the states are generally localized in
the thermodynamic limit for cases like the one presented
here [13].
The dynamic response of granular packings is affected

by three types of disorder —bond disorder, mass disorder
and topological packing disorder. Any of these is sufficient
to cause localization, but in practice all three play a role
for realistic models of granular packings: bond disorder
is present for all force laws except one-sided harmonic
springs, polydisperse particles will have varying masses,
and topological disorder is naturally present except for
especially prepared regular piles, like a regular stack of
marbles. Of course, in computer models these effects can
be separated easily; we will not attempt to disentangle
these three contributions here, but do use this freedom
later to our advantage in testing our scaling predictions.
The crucial dilemma in extracting the localization

length of the vibrational modes of granular packings is
that the effective disorder is so weak that one needs
prohibitively large systems to reach the true localization
regime ξ≪L for most modes. Here L is the linear system
size. At the same time, existing methods which are based
on spatial averages (like the direct expression based on
the second moment of the eigenmode or the (Inverse)
Participation Ratio method [16]) do not give much insight

Fig. 2: Scatter plot of the angularly averaged ξ’s of all the 2000
modes of our granular packing of 1000 particles as a function
of the frequency ω at pressure p= 4 · 10−6 studied with the
method explained in the text. Note the large scatter and the
fact that the ξ values are of order of the linear system size
L= 45 or larger throughout most of the frequency range.

into the structure of the modes when ξ approaches
the system size L, i.e., for modes which are extended
throughout the finite system. As fig. 2 illustrates, this
is the relevant regime throughout most of the frequency
range, as only the modes with the highest frequency ω are
truly localized. The method we introduce in this paper,
which is motivated by earlier work on non-Hermitian
quantum problems [17], is based on studying the response
to an asymmetric perturbation. It not only gives the
proper localization length ξ of each localized mode, but at
the same time assigns a well-defined and precise direction-
dependent value ξ(φ) to each mode, that spans through
our finite system —see fig. 3. We stress that although
we will follow common practice in referring to ξ as the
localization length even for ξ �L, one should keep in mind
that many modes extend throughout our finite periodic
system, as both figs. 2 and 3 illustrate. As we shall show,
this method does allow us to study the scaling with system
size and disorder, and opens up the possibility to bring
Random Matrix Theory (RMT) [16,18] to bear on this
class of problems.
While all methods essentially yield the same localization

length in the localization regime ξ≪L, the extension of
the concept of a localization length to the regime ξ �L
depends on the method used and it is not a priori clear
what ξ in this regime pertains to. For our method, one can
however extract useful information about the large system
limit from studying the regime ξ �L. In conventional
methods, one finds ξ ≈L if the system size is too small.
With our method we find a disorder-dependence too,
which can be used to extract quantitative estimates of
the intrinsic localization length. As we will discuss in a
forthcoming paper, this is simplest in one dimension where
we predict and find a scaling ξ ≃AL1/2 in the regime
ξ �L. Since we expect a crossover to the localization
regime when the intrinsic localization length obeys ξint ≃
L, this to estimate the infinite size localization length from
the small system data simply as ξint ≃A

2. Preliminary
analysis [19] indicates that this simple estimate works well
in 1d, but we focus here on the behavior as a function of
the distance from the jamming point in 2d.
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Fig. 3: Polar plot of the localization length ξ(φ) in one of our
granular packings at p= 4 · 10−4 at low in (a), high in (b), and
intermediate frequency in (c). The angular variation of ξ(φ) is
comparable to the angularly averaged value itself.

Our main results can be summarized as follows i) The
average localization length ξ̄(ω) of granular packings is
largely independent of the pressure, and hence of the
distance from the jamming point. ii) However, away
from the jamming point there are a few “quasi-localized”
low-frequency modes which disappear when approaching
jamming. This behavior is qualitatively in accord with
theoretical expectations for the change in behavior near
the jamming point. iii) In accord with what is expected
on the basis of RMT, modes with ξ �L are effectively
noninteracting and the distribution of their level spacing
is Poissonian, while modes with ξ �L show level repulsion:
the level spacing follows the so-called Wigner surmise of
RMT. iv) In the regime ξ �L, ξ̄(ω) scales as Ld/2 and
is inversely proportional to the disorder strength, in d
dimensions. v) Due to level repulsion the distribution P (ξ)
falls off for large ξ as 1/ξ3.

Method. – We use 2d packings of 1000 frictionless
particles which are prepared using molecular dynamics
simulations —see [7,9,10] for the description of our algo-
rithm that gently prepares packing at a target pressure
and other details. The particles interact with the 3d

Hertzian force law, fij ⋍ δ
3/2
ij , where δij is the overlap

between particles i and j. The unit of length is the aver-
age particle diameter. Unless noted otherwise, we here
present results for our most extensive studies with 20%
polydispersity in the radii, but runs with different amount
of polydispersity give similar results. The masses mi of
the grains are taken proportional to R3i , corresponding
to packing of spheres in 2d. The confining pressure, with
which we tune the distance from the jamming point,
is in the range p∈ (10−6, 3 · 10−2) in the units of the
Young modulus of the particles. We employ periodic
boundary conditions in both directions. Our use of the
3d Hertzian force law implies that the vibrational bonds

kij = dfij/dδij ∼ δ
1/2
ij ∼ p

1/3 are disordered (they vary

from bond to bond) and get weaker at smaller pressures.
The natural frequency scale therefore goes down with
pressure as p1/6. As in [9], when reporting our data we
will therefore always rescale all frequencies ω with a
factor p−1/6, as to be able to compare data at different p.
The vibrational modes and their density of states

(DOS) are obtained in the standard way, by expanding
the energy about the equilibrium positions of the grains
up to quadratic terms. Just as in solid-state physics,

the dynamical matrix, whose elements are the second
derivatives of the energy with respect to the positions
of the grains, determines the linear equations of motion
of the vibrational modes. The dynamical matrix of a
granular packing is a sparse symmetric matrix, because
each particle only interacts with a few others.
Our method to extract the localization length is moti-
vated by the work of Hatano and Nelson [17] on the
delocalization transition in non-Hermitian transfer matrix
problems arising in the statistical mechanics of vortex
lines in superconductors. Consider first the case of a one-
dimensional chain of masses connected by springs with
spring constants kij (j = i± 1) and periodic boundary
conditions. We introduce an asymmetric bias term into
the equations of motion so that the eigenvalue equation of
a mode uie

−iωt becomes

miω
2ui =

∑

j=i±1

kij
(

ehx̂·�xijuj −ui
)

. (1)

Here xi are the rest positions of the particles and �xij
is a vector pointing from particle i to particle j. For
h= 0 this is simply the dynamical equation for vibrations.
The trick now is that we can extract the localization
length ξk of each mode k by following whether or not
its eigenvalue ω2k changes when we turn on h in small
steps. Indeed, as long as h< 1/ξk the eigenvalue ω

2
k will

not change at all. To see this, note that in this case we can
perform a “gauge transformation” to a field ũi = uie

hxi

which obeys the original equation with h= 0 and which
falls off exponentially on both sides so that, in a large
enough system, it obeys the periodic boundary conditions.
This implies that for h< 1/ξk, the eigenvalue ω

2
k does not

change. However, once h> ξk, the function ũ obtained
with this transformation does not fall off exponentially
to both sides. Thus, it cannot obey the periodic boundary
condition with the same eigenvalue as it had for h< 1/ξk:
its eigenvalue has to change! In practice, when we increase
h the eigenvalue ω2k starts to change rapidly and collide
with a neighboring eigenvalue when h≈ 1/ξ; beyond that,
when h� 1/ξk the eigenvalue ω

2
k moves into the complex

plane [17]. Hence we can simply obtain the localization
length ξk of each mode k from the value hk at which the
eigenvalue moves into the complex plane upon increasing
h: ξk = 1/hk. Note that in this method we do not need to
calculate the eigenfunctions explicitly —we only need to
track the eigenvalues!
It is straightforward to extend this method to higher
dimensions: as above, we simply multiply the off-diagonal
elements of our dynamical matrix with an exponential

e�rij ·
�h, where �rij is the vector pointing from the center

of particle i to its neighbor j. Our probe field �h is now
a vector, so by changing the angle that �h makes with
the x-axis, we can extract the angular anisotropy of the
localization length ξ(φ) of each mode.

Results. – We first discuss some properties of the
localization length of individual modes before turning to
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Fig. 4: (a) Histogram of the ratio of squared amplitudes
of the fourth (quadrupole) and second (dipole) harmonic at
p= 4 · 10−4. Most modes have predominantly dipole symmetry.
(b) Average angular anisotropy ∆ξ/ξ̄ as a function of frequency
for various pressures.

their scaling as a function of frequency, system size and
distance from the jamming point.
Anisotropy — Figure 3 shows the angular dependence

ξ(φ) of three typical modes. One clearly sees that ξ(φ)
is a π-periodic function and that the angular variation of
ξ(φ) is significant. While few modes, like the second one
in fig. 3, have a quadrupolar structure, the anisotropy is
predominantly dipolar, as the histogram in fig. 4(a) shows.
We will denote from here on the angularly averaged
value of the localization length of an individual mode by
ξ. Figure 4(b) shows that the root mean square average
angular variation ∆ξ of ξ(φ) is almost half ξ, and that it
is slightly larger at higher frequencies. There is no strong
dependence of the anisotropy on the pressure, i.e., on the
distance from the jamming point.
Spread — The angularly averaged values ξ(ω) also show
a large spread, as fig. 2 illustrates for a small value of
the pressure. One also sees from this figure that most
modes have a value of ξ �L, which means that they are
extended within the systems we can analyze —only our
largest frequency modes are truly localized [20–22].
DOS — We now turn to a more systematic analysis

of our data as a function of pressure and system size. In
fig. 5(a) we show that the density of states (DOS) of our
packings behaves as found before [3–6,9] for such packings:
As the the jamming point is approached by lowering the
pressure, the density of low-frequency modes increases
dramatically, which, as mentioned before, is due to the
nearness of the isostatic point.
Average localization length ξ̄(ω) — For each dataset of
the individual angularly averaged values of ξ, as in fig. 2,
we determine the frequency binned average values ξ̄(ω)
(each based on about 100 to 200 modes). The behavior of
ξ̄/L as a function of (scaled) frequency is show in fig. 5(b)
for six different values of the pressure. In these average
values, there is no strong variation with pressure, i.e. with
distance to jamming.
We already noted in fig. 2 that most of our eigenmodes
have ξ �L, i.e. are extended in our finite system. This is
also clear from fig. 5(b): at all but the largest frequencies
we have, ξ̄ �L. There are indeed roughly three regimes
present in fig. 5(b). From high frequencies towards low
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Fig. 5: (a) DOS of our packings for 6 different pressures
confirming the main features of earlier studies [3–6,9] close to
jamming. (b) Our frequency binned and angularly averaged
values ξ̄(ω)/L are all very similar. (c,d) Level spacing statistics
for the modes that have ξ̄ �L in (c) and for the modes with
ξ̄ �L. The lower frequency modes are essentially all extended
and do show level repulsion in accord with the predictions
from RMT [16,18], while the high-frequency modes are truly
localized and their level spacing is close to Poissonian. The
gray lines indicate the frequency ranges used to obtain the
level statistics in (c) and (d).

frequencies, we first have a range of high-frequency local-
ized modes, for which ξ̄ < L. These modes are always
present at any pressure and are the high-frequency modes
in which only a few (light) particles oscillate more or less
in anti-phase as in an optical mode (such type of modes
generally arise immediately when disorder is introduced
into an ordered system). For intermediate-range frequen-
cies there is a plateau in ξ̄. Finally for the lowest frequen-
cies (in the frequency range where actually the excess
modes appear in the DOS in fig. 5(a) at low pressures),
there is an indication of an upswing in ξ̄ for small ω. We
find this upswing at low frequencies in all our data, also on
percolation lattices [19], where it is even more pronounced.

Quasi-localized low-frequency modes at high pressure —
From the above data for the bin-averaged ξ̄, it would
appear at first sight that we see no signature of the
nearness of the jamming point. This, however, is not
true: in fig. 5 we show data obtained by averaging
over 100–200 modes. However, this averaging washes
out systematic trends visible for the lowest frequency
eigenmodes discovered by Vitelli, Xu et al. [20–22]. When
plotted on a logarithmic scale, as in fig. 6, we see a
systematic trend for ξ of the low-frequency modes to
decrease with increasing pressure. As the inset of fig. 6(a)
illustrates, these are “quasi-localized” modes in which
a reasonably well-defined “localized” group of particles
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Fig. 6: Scatter plot for the localization lengths ξ (determined
to a precision of order unity) on a logarithmic frequency scale
at p= 3 · 10−2 in (a) and p= 10−6 in (b) at system size L= 45.
Note that at the large pressure the lowest-frequency modes
are localized; at small pressures this is not the case. The inset
illustrates the two lowest-frequency modes, for which ξ/L≈ 0.3
in (a) and ξ/L≈ 2 in (b).

performs what looks like a resonant oscillation that is
weakly coupled to the extended elastic field. For our
limited range of L, we find ξ/L≃ 0.3 and a reduced
anisotropy of ∆ξ/ξ ≈ 0.2 for these modes.
As we discussed in the introduction, for packings closer
to the jamming point (at lower pressures) the isostaticity
length ℓ∗ increases as 1/∆Z, where ∆Z is the excess
contact number. Up to this scale ℓ∗, we do not expect
localized modes at low frequencies, since up to this scale
the response mirrors that of the global floppy modes that
emerge near the isostatic point. Indeed, within the system
sizes we can study there are no low-frequency “quasi-
localized” modes at all at low pressures, as fig. 6(b)
illustrates for p= 10−6, even though the response is in
many ways more disordered due to the nearness of the
jamming point!
While our data are qualitatively in accord with
the above scenario, we have unfortunately too few
low-frequency “quasi-localized” modes to confirm quanti-
tatively that as we tune the packings closer to jamming the
extent of the resonant region increases with ℓ∗ ∼ 1/∆Z.
Level spacing statistics — Based on the results of

RMT [16,18], one expects the following: the frequencies
ωi of the localized modes should be independently
distributed, so that their spacing ∆ωi = ωi+1−ωi obeys a
Poisson distribution, while the modes which extend
throughout the system should interact and repel each
other, with a level spacing distribution which is given by
the Wigner surmise, PW (s) = πs/2 exp(−πs

2/4), where
s=∆ω/∆ω. Figures 5(c,d) confirm that this expectation
is fully born out by our data at all pressures. Note that
the distribution in fig. 5(c) deviates somewhat from the
Wigner surmise at the two highest pressures —this is due
to the “quasi-localized” low-frequency modes discussed
above.
Scaling with system size L — One would of course

expect ξ̄ for the modes which extend through our system
size to scale with L. As we will sketch below, we have used
RMT [16,18] to derive for our method the scaling behavior
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Fig. 7: (a) Finite size scaling for p= 4 · 10−6 and linear system
size L ranging from 15 to 45, confirming that the extended
states, where ξ̄ �L, scale with L, while the high-frequency
modes are, within the statistical error, L-independent. (b) Scal-
ing collapse of ξ̄ according to (2) for hexagonal lattices with
identical springs but varying masses mi ∝R

3
i , as for spheres.

The distribution of radii Ri is taken to be flat, and W is taken
to be the width of the distribution in percent.

ξ ∼Ld/2. More generally we propose

ξ̄ ∼Ld/2/W, (2)

whereW is a measure of the effective disorder. Figure 7(a)
shows that the ξ̄ ∼L-scaling is well obeyed for our
two-dimensional packings for the extended modes in
the range ω� 3 (as noted before the quasi-localized
modes obey ξ̄ ≃ 0.3L), while the high-frequency localized
modes for ω� 3.4 have ξ̄’s which are indeed essentially
L-independent.
For our gently prepared granular packings the strength

of the disorder cannot easily be varied. In order to test our
scaling prediction (2), we have prepared ordered hexagonal
lattices with all spring constants the same but varying
masses. As fig. 7(b) shows, we obtain very good data
collapse with (2) at all but the highest frequencies. Note
also that for small amount of disorder, we have ξ̄≫L.
Results for one-dimensional chains are fully consistent
with the predicted L1/2 scaling [19].

Implications from Random Matrix Theory. – Let
us finally summarize what RMT brings to bear on the
study of the localization length. We refer for a more
extensive discussion to [19].
1) In RMT it is well known that for analyzing the
level statistics, like in figs. 5(c,d), it is important to use
the proper variable. The procedure to obtain the proper
variable is the so-called “unfolding of the spectrum” [16].
For our case, the unfolding ensures that in each small
interval, the mean level spacing is the same as in the
original spectrum. The proper variables are then indeed
the frequencies ω, not the eigenvalues ω2 of the dynamical
matrix.
2) The scaling (2) of the modes with ξ �L can be

understood as follows. When we turn on h, energy levels
start to move on the real axis, some getting closer together
and some further apart. Because of reflection symmetry
under �h → −�h (which is also apparent in fig. 3), the shift
is quadratic in h. We determine ξ of a mode from the
collision value hc at which two modes collide along the

44001-p5
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real ω-axis and “pop” into the complex plane. According
to RMT [16], the typical collision parameter is then

h2c ≈
mean level spacing
typical level velocity . For our systems the mean level

spacing is proportional to 1/Ld and the typical level
velocity does not depend on Ld, from which the scaling
ξ̄ ∼Ld/2 immediately results upon identifying hc with ξ

−1.
3) In line with the large spread in the values of ξ, we

find that the distribution P (ξ/ξ̄) implied by fig. 2 falls
off as (ξ/ξ̄)−3 for large ξ both in 1 and 2 dimensions.
This power law decay can be derived from how the level
repulsion of the extended modes changes, when we change
the perturbation parameter h by ∆h [19].

Conclusions and outlook. – In this paper we have
introduced a new method, motivated by previous studies
of non-Hermitian quantum problems [17], which allows
an analysis of localization in phonon spectrum, including
the regime ξ̄ �L when the eigenmodes are extended
within the finite systems we can study. The method is
especially relevant for granular packings, where ξ̄ �L
throughout most of the frequency range, since even in
this regime our method gives different results depending
on the amount of disorder. For the system sizes that are
numerically accessible at present we cannot yet test the
proposed scaling relation ξ � ℓ∗ ∼ 1/∆Z quantitatively.
Nevertheless, the disappearance of the “quasi-localized”
low-frequency modes as we approach the jamming point by
lowering the pressure, agrees with the scenario advanced
by Wyart et al. [4–6] that up to this length scale the
low-frequency rearrangements and modes extend over
a diverging scale ℓ∗. We aim to study larger systems
and more packings in the future using sparse matrix
eigenvalue routines rather than a Mathematica program,
to investigate the nature and scaling of the low-frequency
modes in more detail.
A few final remarks are in order. i) Our method will
allow us to determine which type of disorder (mass
disorder, bond disorder or topological disorder) plays
the dominant effect in the localization behavior. ii) The
resonant region of the quasi-localized mode shown in
fig. 6 has quadrupolar symmetry, and is reminiscent
of the quadrupolar deformation fields that have been
proposed [23] to dominate quasistatic shear relaxation.
Although this is not true for all quasi-localized modes,
this may not be accidental. The possible connection
between these resonances and shear transformation zones
is extremely intriguing and should be pursued further.
iii) The results for ξ̄(ω) in finite system typically show
an upswing for small ω, except at the largest pressures;
whether this is a finite system analogue of the well-known
ω→ 0 divergence in infinite 2d systems [13] is unclear
to us. iv) The states with large but finite localization
lengths at low frequency that we find at high pressures (see
fig. 6(a)) are intriguing. It will be interesting to see if these
states persist in the presence of the entropic interactions
at finite temperature. v) Diffusion on percolation lattices
is also an appealing model system to apply the method
to: close to the percolation threshold most eigenmodes are

truly localized and thus have ξ≪L, while away from the
percolation threshold there is a crossover to the regime
where ξ̄≫L [19].
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