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Abstract – We study the vibrational modes of three-dimensional jammed packings of soft
ellipsoids of revolution as a function of particle aspect ratio ε and packing fraction. At the jamming
transition for ellipsoids, as distinct from the idealized case using spheres where ε= 1, there are
many unconstrained and nontrivial rotational degrees of freedom. These constitute a set of zero-
frequency modes that are gradually mobilized into a new rotational band as |ε− 1| increases. Quite
surprisingly, as this new band is separated from zero frequency by a gap, and lies below the onset
frequency for translational vibrations, ω∗, the presence of these new degrees of freedom leaves
unaltered the basic scenario that the translational spectrum is determined only by the average
contact number. Indeed, ω∗ depends solely on coordination as it does for compressed packings of
spheres. We also discuss the regime of large |ε− 1|, where the two bands merge.

Copyright c© EPLA, 2009

Introduction. – There is no doubt that increasing the
pressure on a floppy assembly of particles can create a rigid
material. Less obvious is the assertion that such matter
caused by jamming is generically different from ordinary
solids. At zero temperature, frictionless, ideal spheres jam
when the number of inter-particle contacts is precisely that
necessary to constrain all motion; this leads to an excess
of decidedly unusual low-frequency vibrational modes.
However, it has been argued that frictionless spheres, with
no significant rotational degrees of freedom, represent a
singular situation that is too idealized to reflect the true
nature of the marginally jammed state. In particular,
jammed ellipsoids can have dramatically fewer contacts
than needed to inhibit all motion so that there will be
many zero-frequency vibrations. Thus the distribution
of collective excitations could be fundamentally altered
by particle shape. Contrary to this expectation, we find
that the spherical jamming transition, like many singular
points, controls a broader class of behavior but in an
unusual nontrivial way. The new degrees of freedom
introduced by ellipsoids create a rotational band but
leave unaltered the basic scenario that the translational
spectrum is determined solely by the average number of
contacts per particle.

(a)E-mail: zorana@lorentz.leidenuniv.nl

We study these issues in the context of the spectral
density of vibrational excitations, D(ω). In a three-
dimensional solid, the low-frequency spectrum should
follow the Debye law D(ω)∼ ω2 dictated by the elastic
modes. This is one of the most robust generic behaviors in
all of materials science. However, this law breaks down in
a spectacular fashion for the case of a rigid solid formed
from the jamming of spheres interacting via finite-ranged
repulsions [1–7]. The onset of jamming in such systems has
features of a first-order transition, with a discontinuity in
the number of interacting neighbors per particle [1,8], as
well as features of a second-order transition, with power
law scaling and diverging length scales [1–14]. Just above
the zero-temperature transition, D(ω) is approximately
constant down to zero frequency [1,2] implying the exis-
tence of a new class of low-frequency excitations that arise
because the solid is on the verge of instability [3–5]. The
Maxwell criterion for rigidity [15] proposes that the aver-
age number of interacting neighbors per particle, Z, should
be high enough to constrain all relevant degrees of freedom
in the sample: Z �Zc. For frictionless spheres, the critical
coordination number, Zc = 6, coincides [1] with the value
found at the jamming threshold packing fraction, φc. At
packing fractions φ> φc, Z exceeds Zc and consequently
the plateau in the density of states persists only down to a
frequency ω∗ that depends solely on δZ ≡ (Z −Zc) [2–5].
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The apparent gap emerging in the spectrum between
ω= 0 and ω= ω∗ contains ordinary elastic plane waves
described by Debye theory. Is the new physics of the excess
modes robust for jamming transitions generally [16] or is
it applicable only to this idealized situation of spheres?
It was succinctly demonstrated [17] that in one sense

spheres represent a singular situation and therefore may be
a poor starting point for describing the generic properties
of jammed solids. The introduction of even a small distor-
tion to a sphere introduces many new degrees of freedom
that need to be constrained for complete stability. While
a sphere has only three relevant (translational) degrees of
freedom, a spheroid (an ellipsoid of revolution with one
symmetry axis) requires two additional coordinates (two
Euler angles) to specify its orientation. Maxwell’s counting
argument for the rigidity of spheroid packings would neces-
sitate an average coordination number Zc = 10. Clearly a
discontinuous increase in density would be needed if the
introduction of an arbitrarily small distortion of the sphere
required the average number of contacts per particle to
jump discontinuously from 6 to 10. The rapid increase
of the coordination number Z with distortion and, in
particular, of the packing fraction [17–22] has garnered
much attention (“M&M’s pack more efficiently than
spheres” [17,18,23]). Nevertheless, at the jamming thresh-
old Z increases smoothly —not discontinuously— from
Z = 6 as spheres deform into ellipsoids, so that for small
distortion Z is below Zc = 10 in apparent violation of the
Maxwell criterion. While there are exactly the minimum
number of contacts needed for mechanical stability at the
jamming transition of spheres, there are fewer than the
minimum number needed for ellipsoids. There must there-
fore be unconstrained degrees of freedom [20] so that the
solid is not stable (to quadratic order) to some excitations.
Here we investigate how rotations introduce new nonzero-
frequency excitations. Remarkably we find that these
modes do not destroy the picture developed for spheres but
instead can be naturally incorporated into this scenario.

The Maxwell stability argument and the occur-

rence of zero modes. – It is clearly somewhat odd to
think of Zc as jumping discontinuously as soon as there
is a minute distortion of the particles from spherical
symmetry, so it is useful to briefly reconsider the Maxwell
argument for the stability/instability threshold [15]. The
Maxwell criterion is based on global counting arguments
for the minimum number of contacts needed to maintain
force balance on all particles. Since contacts are shared
by two particles, the minimum number of contacts neces-
sary to clamp all particles which experience forces, Zc, is
according to this argument twice the number of degrees
of freedom of a particle. As the apparent discontinuity
in Zc simply arises from our decision whether or not to
include the rotational degrees of freedom in the counting,
it is more intuitive to restore continuity by thinking
of each sphere as having 6 degrees of freedom: three
for translations and three for arbitrary rotations so

that Zc = 12. The rotations of individual (frictionless)
spheres do not contribute in any way to the stability
of the packing and are thus simply the (Zc−Z)/2 = 3
zero-frequency modes per particle that are trivially
localized on each particle. A natural scenario is that these
innocuous zero-frequency modes progressively become
mobilized into finite-frequency excitations with increasing
distortion of the spheres into ellipsoids. There are clearly
two important values of the coordination number, Z = 6
and Zc = 12. The important issue taken up here is
the question: which of these controls the spectrum of
excitations for the generalized case of ellipsoids?
From the above point of view, just above the jamming

threshold, the fact that Z is below Zc should manifest itself
in the presence of (Zc−Z)/2 normal modes of vibration
per particle with zero frequency —see fig. 1a. We study
here the nature of these modes and the question of how
they become mobilized into finite-frequency excitations so
as to find out whether this process changes the jamming
scenario of frictionless spheres as the naive counting would
suggest. We find that the above picture, in which the
finite frequency vibrational modes are continuously turned
on as the distortion is increased, unifies the scenario for
aspherical particles with the one for spheres.
Since we are ignoring in the analysis below the trivial

rotations about their symmetry axis, our spheroids actu-
ally have five rather than six nontrivial degrees of freedom.
In this analysis, the critical contact number Zc is therefore
10 rather than 12 [17].

Preparation of packings of ellipsoids. – In our
numerical study, we simulate ellipsoids that are spheroidal:
they have two principal axes a and b that are the same and
a third one c that is different, a= b �= c. Depending on the
ratio of the axes, one distinguishes between oblate ellip-
soids with aspect ratio ε= c/a < 1 (“M&M”s) and prolate
ellipsoids with ε= c/a > 1 (“cigars”). Particles are of equal
size and mass m≡ 1 and interact with the repulsive Gay-
Berne potential [24]: V (rij , σij) = k/α((σij − rij)/σ0)α,
where rij = |rj − ri| is the distance between the centers of
the ellipsoids i and j, and σij is the orientation-dependent
range parameter. This expression is the same as the power
law potential which has been used in jamming studies
of frictionless spheres [1]: when rij = σij the ellipsoids
just touch and for rij <σij they repel with a force which
is a power of the effective overlap σij − rij ; they do not
interact otherwise. The range parameter σij is defined as

σij
σ0
=

[

1− χ
2

(

(r̂ij · ûi+ r̂ij · ûj)2
1+χûi · ûj

+
(r̂ij · ûi− r̂ij · ûj)2
1−χûi · ûj

)]

−1/2

. (1)

Here, û is a unit vector along the principal axis of the
ellipsoid, ûi = sin θi cosϕi x̂+sin θi sinϕi ŷ+cos θi ẑ, and
χ is the dimensionless parameter, χ= (ε2− 1)/(ε2+1).
Spatial scales are measured in units of σ0 = 2a= 2b. For
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Fig. 1: (Colour on-line) The average contact number Z and
density of states, D(ω), of harmonic packings. (a) Illus-
tration of how the number of different modes per particle
(excluding rattlers) in the packings at jamming varies as a
function of the average contact number Z. Panels (b)–(d)
show that, as the ellipticity is increased, the average contact
number increases. For Z � 9, there are two well-defined
bands: a rotational band with (Z − 6)/2 modes per particle
and a translational band with three modes per interacting
particle as is the case for spheres. Upon increasing Z, the
number of zero modes decreases as zero modes are converted
into finite-frequency rotational modes. Above Z ≈ 9, there
is only one band. (b) Z as a function of the ellipticity
δε≡ ε− 1 and distance from jamming δφ for our 216-particle
packings. The sharp decrease around the spherical case
δε= 0 is consistent with earlier results [17,21,22] for hard
ellipsoids and spherically capped rods. The log-log plot of
δZ vs. |δε| in the inset shows that the rise of Z at jamming
is consistent with a δZ ∼

√

|δε| scaling. The crosses in
the main plot for small values of δε show that twice the
measured number of zero-frequency eigenmodes per particle
plus Z − 6 add up precisely to 4, in accord with panel (a).
(c) The density of states for slightly oblate ellipsoids,
δε=−0.04, for our packings close to jamming and at two
compressions. The existence of two bands separated by a
gap as well as a gap at zero frequency is clearly visible. (d)
For larger ellipticities the two bands merge, as is illustrated
here for δε=−0.33. The inset shows the data for δε= 1
where Z ≈Zc = 10 at jamming (see panel (a)). In accord with
this, the gap near zero frequency increases with increasing
compression (and therefore increasing Z ). This is consistent
with the argument that ω∗ increases as Z increases above Zc.

anisotropic particles, the parameter k that appears in
the expression for the potential is known as the well-
depth anisotropy function and is typically taken to be a
function of the three directions, k= k(ûi, ûj , r̂ij). In order
to simplify the expression for the potential, we take k= 1
(for a one-sided harmonic potential this means that the
bond stiffness equals 1 for every contact).
As in previous studies [1], we have used two types of

interactions, harmonic, with α= 2, and Hertzian, with
α= 5/2. We focus here on the results for the harmonic
potential; results for Hertzian forces, are qualitatively the

same, but will be presented in [25]. The configurations
were made by initially placing N particles at random in
a cubic box with periodic boundary conditions. We use
conjugate-gradient energy minimization to obtain stable
static configurations, and determine the critical jamming
density φc for each of our initial configurations by incre-
mentally compressing (decompressing) until zero pressure
is reached. We then compress the system to obtain
zero-temperature compressed configurations. Rattlers
are removed recursively [25]. We study two system sizes,
N = 216 and N = 512, and average over about 100 inde-
pendent initial configurations, at each value of Z and each
density φ. Here we will show results for N = 216 only.
From the linearized equations of motion for the coupled

translational and rotational vibrations of the ellipsoids, we
construct the dynamical matrix D for each configuration.
We then diagonalize D, whose eigenvalues are the squared
frequencies, ω2, of the vibrational normal modes.

Analysis of the spectrum of vibrational-

rotational modes. – An illustration of how the
number of rotational, translational and zero-frequency
modes per particle at jamming varies as a function
of coordination number Z is shown in fig. 1a. There
are 3 translational modes per particle (red line); in
the spherical limit, Z→ 6, there are (10− 6)/2 = 2 zero
energy rotational modes per particle, because the isostatic
number for spheroids is 10. As Z increases, the number of
nonzero-frequency rotational modes per particle increases
as (Z − 6)/2 (blue line), while the number of zero modes
decreases by the same amount (gray line).
In fig. 1b we show the coordination number vs. the

aspect ratio ε of spheroids. The black symbols correspond
to configurations evaluated very close to the jamming
threshold φc(ε) for each value of the aspect ratio, ε. The
other colors correspond to compressions δφ≡ φ−φc rela-
tive to the threshold jamming density φc(ε). Note that Z
depends both on ε and δφ. The horizontal dashed line at
(Z − 6) = 4 corresponds to Zc = 10 which is the Maxwell
criterion for rigidity of spheroids. We have checked in
all cases that the number of zero-frequency modes per
particle at threshold is precisely (Zc−Z)/2 in accord with
fig. 1a; this is shown by the gray crosses. The inset shows
that for both oblate and prolate spheroids at the thresh-
old δZ ≡ (Z − 6) = 6.6(3)|δε|0.50(4), where δε≡ ε− 1, in
agreement with results for two-dimensional ellipses [20,26].
In fig. 1c and d, we show the averaged density of states
D(ω) for six typical situations. In fig. 1c, we showD(ω) for
spheroids that are close to spheres, δε=−0.04, for three
different compressions: close to jamming at δφ < 10−6

(black line), at δφ= 10−3 (green line) and for relatively
large compression, at δφ= 10−2 (blue line). We find that
for small δε, the system behaves nearly as if it was
made from spheres but with a new “rotational” band of
excitations. The plateau in the translational band of D(ω)
still exists with a sharp onset, ω∗, determined by δZ. Our
systems are too small to see the elastic plane waves below
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Fig. 2: (Colour on-line) (a) Plot of the rotational component
〈u2r〉 (solid line) and the translational component 〈u

2
t 〉 (dashed

line) of the eigenmodes for δε=−0.02 as a function of ω. The
lower frequency band is predominantly rotational (〈u2r〉 ≃ 1),
while the upper frequency band is essentially translational
(〈u2t 〉 ≃ 1). The red line indicates that at high frequencies
rotational contribution decreases as ω−2. (b) The same as in
(a), but with δε=−0.17, when the gap between the two bands
has just closed and most modes have mixed character.

ω∗. As we will show, ω∗ scales in the same way as the
plateau onset for spherical systems [2–5]. The rotational
band lies below the translational band and extends over
the range ω∗s � ω� ωs <ω

∗, as marked in fig. 1c. As we
will quantify, the spectrum is therefore described as having
a lower-frequency rotational band separated by a gap
from ω= 0 as well as by a gap from a higher-frequency
translational band.
In fig. 1d, we show D(ω) for highly nonspherical parti-

cles, δε=−0.33 for the same three values of compression
as shown in fig. 1c. For these systems, the gap between the
two bands has disappeared. Generally, the gap near ω= 0
in packings which have large ε and Z ≈Zc = 10 opens
up with compression above the jamming threshold. We
illustrate this in the inset of fig. 1d. This is in complete
agreement with the scenario for spheres [1,2].
We can determine the nature of the excitations in the

two bands by analyzing the eigenvectors of the dynamical
matrix. We first look at the relative contribution of the
rotational degrees of freedom to the mode, uµ(i), where
µ= 1, 2, 3 labels the translations and µ= 4, 5 labels the
two Euler coordinates of the orientation of each particle.
In fig. 2, we plot the rotational contribution 〈u2r〉=
∑N
i=1

∑5
µ=4 u

2
µ(i)/

∑N
i=1

∑5
µ=1 u

2
µ(i) (solid line) and

the translational contribution 〈u2t 〉=
∑N
i=1

∑3
µ=1 u

2
µ(i)/

∑N
i=1

∑5
µ=1 u

2
µ(i) (dashed line) separately. The lower

band, existing below ωs, is predominantly rotational in
nature while the upper band, above ω∗, is translational.
This is most pronounced when ε is small as shown in
fig. 2a. In the limit as ε approaches 0, we find that
the contribution of 〈u2r〉 in the upper band falls off as
(3.57(1) · 10−4) ω−2.07(1) up to the onset of localized
modes at high frequencies. The scaling ∼ ω−2 is precisely
what one expects from perturbation theory if the rota-
tional degrees of freedom are weakly coupled to the
translational ones. Figure 2b shows the data at a larger ε
where the bands have just merged. In this case most of
the modes are of mixed character, as the rotational and
translational contributions are comparable.
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Fig. 3: (Colour on-line) Participation ratio P (ω) of the rota-
tional modes for various ε as a function of frequency. The eigen-
modes at the upper edge of the rotational band are seen to be
strongly localized; throughout the rest of the band P (ω) is
quite flat and rather small. The data at the largest elliptici-
ties (δε=−0.17, and 0.20) correspond to values where the gap
between the two bands has just closed —the dip in these data
is the vestige of the merging of the two bands.

We can also determine the homogeneity of the modes
in space by computing the participation ratio P (ω) =

(
∑N
i=1

∑5
µ=1 u

2
µ(i))

2/N
∑N
i=1

∑5
µ=1 u

4
µ(i) of each mode.

Here we will concentrate only on the lower, rotational
band, since similar studies of the translational band in
spherical systems have already been reported [27]. Figure 3
shows that at low values of ε, the participation ratio
is small and that for the highest frequencies near ωs
the modes become highly localized. Due to finite-size
effects, our present data must be inconclusive; however,
we surmise that the rotational modes are quasi-localized
for small δε in the large system limit. For the two largest
values of δε shown in this figure, the bands have just
merged.
In fig. 4a the frequency of the lower edge of the rotation

band, ω∗s is plotted vs. |δε|= |ε− 1|. For small |δε|, the
behavior is essentially linear; for large |δε|, when Z at
jamming approaches 10, the gap closes.
Figure 4b shows ωs and ω

∗ as functions of |δε| for
harmonic configurations of prolate ellipsoids that are close
to the jamming threshold. We find ω∗ = 1.4(3)|δε|0.6(1)
and ωs = 3.5(3)|δε|1.1(1). The scaling of ωs can be under-
stood as the maximum frequency of a libration mode. As
fig. 3 shows, this mode is strongly localized, so we can
obtain the scaling of the maximum frequency by esti-
mating the torque response for rotating a single ellipsoid,
keeping the other ones fixed. For a small rotation by an
angle dθ, a contact is compressed or decompressed by an
amount σ0|δε|dθ, where σ0 is the size of the ellipsoids.
This changes the normal force by an amount keffσ0|δε|dθ,
with keff the effective bond strength (for the harmonic
data keff = 1). For a slightly oblate or prolate ellipsoid,
the change in torque is smaller by an amount |δε|, hence
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Fig. 4: (Colour on-line) Results for the various frequencies
defined in the text and in fig. 1c. (a) Results for ω∗s , the
lower edge of the rotational band, as a function of ellip-
ticity at the jamming threshold. For large ellipticities ω∗s
decreases as Z approaches 10. (b) Scaling of ωs and ω

∗

with δε at the jamming threshold. Data is for prolate ellip-
soids. ωs, the frequency corresponding to the upper edge of
the rotational band, which exists for small ellipticity, scales
approximately linearly in δε, in agreement with the argu-
ment given in the text. Instead ω∗ scales as |δε|0.6(1) (the red
lines are the best fits of the data). The point where the two
lines cross marks the vanishing of the gap between the two
bands. Inset: the same data for oblate ellipsoids. Numerically,
the values are very close to those for prolate ellipsoids at the
same ellipticity. (c) Scaling of ω∗ for various compressions for
oblate and prolate ellipsoids, showing that ω∗ is determined
by the contact number only, and that ω∗ varies linearly in δZ,
just as it does for spheres.

of order keffσ0|δε|2dθ as the bond vector and the normal to
the surface are almost parallel. This implies that the maxi-
mum frequency ωs ∼

√
keff |δε|. Similar results are found

in two dimensions [26]. The inset of fig. 4b shows ωs and
ω∗ as functions of |δε| for oblate ellipsoids. Values of the
exponents that we find for oblate ellipsoids are, within the
error bars, the same as for prolate ones, with prefactors of
ωs and ω

∗ that are 10% and 15% higher, respectively.
In fig. 4c we show ω∗ as a function of δZ for different

compressions and ellipticities. ω∗ is still dependent solely
on δZ and therefore the translational band does not
depend on whether the increase in δZ occurs due to an
increase in compression or an increase in the aspect ratio
of the particles. For spheres, the onset of the translational
band is determined by the excess number of contacts. Our
results show that for ellipsoids, the same scenario applies,
irrespective of the origin of the excess contacts. Note that
the upper and lower limits of the rotational band, ωs and
ω∗s do not obey this simple behavior but depend differently
on ellipticity and compression [25].
In this study we have dealt exclusively with small

systems. This raises the question about what finite-size
effects are important. As mentioned above, one important
effect is due to plane waves. The lowest-frequency plane

wave has frequency that is inversely proportional to
the linear dimension of the system: ωmin = cT kmin
where kmin = 2π/L with L the linear system size [7]. In
the systems we have studied, these are predominantly
in the upper translational band1. In larger systems
plane-wave elastic modes would begin to populate the
gap between the rotational and translational band —they
would hybridize with the modes found in this study,
so that localized rotational modes, for example, would
become resonant or quasi-localized.

Conclusions and outlook. – In conclusion, this study
solves the problem of how the new degrees of freedom
associated with nonspherical objects are incorporated into
the normal-mode spectrum at the jamming threshold.
Earlier findings [17–20] —that the isostatic conjecture
breaks down for ellipsoid packings in the regime where
Z < 10— suggest that what happens for spheres does not
immediately apply to more complex shapes. As a result,
the packing problem of spheres has sometimes been viewed
as an anomaly [17,23]. If this extended to the nature of the
jammed state and its dynamic response, any perturbation
from spherical symmetry would qualitatively change the
character of marginally jammed solid determined for
spheres at point J . Instead, we find that the structure
of the normal-mode spectrum remains robust. The new
modes that are introduced do not affect the plateau
in the density of states until the spheroid ellipticity
becomes large. Moreover, these rotational modes appear
to be localized so that they should not be efficient
at transporting heat. The onset of the modes in the
translational band still depends only on the excess number
of contacts δZ =Z − 6 as it does for spheres, irrespective
of whether the excess contacts result from compression or
particle asphericity. Thus, the singular jamming transition
for spheres, point J , in which the onset of jamming
coincides with the isostatic point, controls the behavior
of systems of particles with more complex shapes, just
as it controls the behavior of sphere packings that are
compressed away from the transition.
There are two important regimes for ellipsoid packings:

the first deals with small values of |δε|= |ε− 1| where the
physics is a perturbation around the case of spheres; the
second deals with large values of |δε|, where Z→Zc (with
Zc = 10 for spheroids and 12 for general triaxial ellipsoids).
In the large |δε| case, the system is well described by a
theory in which a plateau in the density of states opens
up near zero frequency just as it did for the case of spheres
near Z = 6. An interesting open question is how the gap
closes when Z→ 10 for large ellipticities.
The insights we obtain from the present study are

complementary to those obtained by including friction in
the vibrational spectrum of a jammed solid [6]. Here we

1On the basis of fig. 2 of [7], we estimate that the frequency of an
elastic mode that occurs at our largest densities ∆φ is of order 0.3;
since ω∗ is almost always smaller, in our relatively small systems the
translational band appears gapped.
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have a situation where the system jams when there are
many fewer contacts than are needed according to the
Maxwell rigidity criterion, while in the case of friction
there is always an excess of contacts compared to the
minimum necessary for stability [6,14,28–30]. Thus, in
the case of friction there was never a question of a possible
change in the underlying picture of jamming threshold.
Moreover, at the Coulomb threshold to mobilization,
the response dictated by the friction law is inherently
discontinuous, which makes the properties of packings
with friction much more sensitive to the preparation
history.
The addition of orientational degrees of freedom does

introduce a new band that is essentially rotational in
character while the upper band remains nearly completely
translational. It is interesting to note that the low-
frequency rotational modes couple in a simple manner
to the higher-frequency translations. This is perhaps
one of the root causes for the very wide spectrum of
dielectric response that has been observed in glass-forming
liquids [31]. The rotational modes should appear in the
heat capacity. Indeed, the boson peak seen ubiquitously
in glasses has been ascribed [32] to the excess modes
associated with the plateau of D(ω) —the fact that the
jamming scenario is found to be so robust is crucial for its
applicability to glasses.
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