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We report on our analysis of the melting process of highly magnetized solid
3He. Akimoto et al. found that the solid-liquid interface becomes unstable
during melting in a magnetic field of 9 T. The liquid then penetrates into the
solid in the form of cellular dendrites. The instability, which was predicted
by Puech et al., was attributed to a Mullins-Sekerka type of instability due
to the magnetization gradient on the solid side. The measurements on which
we base our analysis clearly show gradients on both sides of the interface.
We present an eztension of the linear stability analysis for this situation, as
well as a numerical calculation of the dispersion relation of interface defor-
mations. Our results are in good agreement with the experiment and explain
the initial suppression of the instability, caused by the magnetization gradient
in the liquid.

PACS numbers: 67.80.Jd, 67.65.42, 68.45 -v, 47.54.+r, 47.20.Ma.

1. INTRODUCTION

Because the effective Fermi temperature of liquid 3He is large compared
to the nuclear magnetic moment (Tr/u3 > 175 Tesla), it is impossible to
obtain significantly magnetized liquid >He by the brute force method (”cool
as low as possible at the maximum available magnetic field”). The best
method to produce highly magnetized liquid 3He is the melting of solid 3He
in a high magnetic field.! Since the solid behaves almost as a Curie param-
agnet down to a few milliKelvin, a magnetization of 80% can be obtained
at T = 5 mK in a field of 9 T. Therefore Castaing and Noziéres? suggested
the rapid melting method to study the magnetization dependence of the
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strongly correlated 3He Fermi liquid. Although the high magnetization of
the liquid is produced in a non-equilibrium situation, the relaxation of the
magnetization is a relatively slow process (T7,; =~ 50 — 1000 s). This spin
lattice relaxation time is much longer than any microscopic relaxation time
in the system, which allows thermodynamic and transport measurements,
while the magnetization slowly decays.

Of course the melting of the solid must take place on a time scale shorter
than T ;. In their seminal paper, Castaing and Nozitres? suggest a melting
scenario in which an enhanced magnetization boundary layer is built up on
the solid side of the interface. This boundary layer is caused by the increased
magnetization of the just produced liquid. The equality of chemical poten-
tials of liquid and solid at the interface is guaranteed by the sufficiently rapid
exchange of spins at the interface on a microscopic scale, and thus the solid
obtains a boundary layer with enhanced magnetization during melting. The
width of this layer is given by the magnetization diffusion length ¢, = D, /V,
where V is the velocity of the melting interface, and D, the diffusion coefhi-
cient in the solid. Since the magnetization influences the melting pressure,
this situation is very similar to the generic case of a gradient driven growth
problem.*% Bonfait et al.® suggested that in analogy to the usual case of
solidification, the build-up of this boundary layer would render the interface
unstable. This suggestion was backed up by a calculation of Puech et al..”
The situation they analyzed, sketched in Fig. 1(a), is the one often used in
theoretical considerations,* namely that of a planar interface propagating
with constant speed in the absence of gradients behind the interface. The
Mullins-Sekerka type analysis of Puech et al.” for this case predicted that the
interface would be unstable with a typical growth time for the most unstable
modes of the order of 0.1 seconds.

It was shown by Marchenkov et al.® that this predicted instability of the
interface of melting magnetized solid *He indeed exists. Since the instability
was not seen in zero magnetic field during melting of solid with the same
initial temperature, it was concluded that the magnetization and thus the
induced gradient is indeed the cause of the instability. A question that
remained was the late occurrence of the interface instability, often after a
significant fraction of the solid had melted.

This question was addressed by Akimoto et al.® by performing a rapid
melting experiment in a strong magnetic field with a small magnetic field
gradient. Growing the solid with a horizontal interface, they were able to ob-
tain information about the magnetization profile along the direction normal
to the interface. Qualitatively the results are sketched in Fig. 1(b), in which
the most notable agreement with Fig. 1(a) is the enhanced magnetization
in the boundary layer in the solid. These measurements therefore provide a
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direct experimental confirmation of the scenario suggested by Castaing and
Nozieres.? Two main differences are the relaxation of the solid magnetiza-
tion during the melting, and the strong magnetization gradient in the liquid,
caused by the fact that the melting doesn’t start from an all-solid situation.
Akimoto et al.” convincingly but qualitatively argued that the delay in the
instability was caused by the strong gradient in the liquid magnetization. In
this paper we present a quantitative analysis of the melting scenario.

(a) ~——— interface (b)
c
9
2 L
N _
o liquid
(@)
]
S

liquid solid solid

distance from the interface

Fig. 1. (a) Sketch of the magnetization profile of a planar interface melting
with a constant speed, for which Puech et al.” performed a linear stability
analysis. The magnetization profile falls off exponentially in the solid, while
there is no gradient in the liquid. (b) Sketch of the build-up of the magneti-
zation profiles as concluded from the experiments of Akimoto et al.,” at the
moment the melting starts (black line) and at three successive times during
the initial melting phase. Note that while the boundary layer in the solid
is building up, a stabilizing gradient is also building up in the liquid. In
the bulk of the solid the magnetization relaxes due to the increase in the
temperature. Both pictures are drawn in a frame moving with the interface.

In the next section we recall the experimental conditions.? In Section 3
we extend the linear stability analysis and derive the wave number depen-
dence of the temporal growth coefficient. Also, we discuss how far the physics
can be understood from the approximation that the characteristic length of
the instability is in between the diffusion lengths of the two phases and com-
pare the numerical calculations with the experimental results. A discussion
of some aspects of this analysis forms the concluding section.
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2. EXPERIMENT

The cryostat used in the experiments has been developed for optical
observations in strong magnetic fields at ultralow temperatures. It contains
a nuclear demagnetization stage, a 9 T magnet and an optical system. The
lowest temperature reached is 65 pK in zero magnetic field. The *He could
not be cooled below 0.6 mK due to a heat leak of 200 pW caused by the
camera. In maximum field the liquid *He can be cooled to 2 mK while taking
images every 5 s. The optical part consists of a LED, thermally anchored at
the 1 K pot, optical fibers, a beam expander attached to the 50 mK shield,
”cold” mirrors just outside the cell and a CCD camera located inside the
IVC at 65 K. The setup is described elsewhere'® in much more detail.

The sample cell is a Frossati-style compressional cell. It is thermally
anchored to the nuclear stage and contains a silver/platinum sinter. The
volume of the 3He space can be varied by changing the pressure on the *He
side of a flexible cylindrical Kapton membrane with a thickness of about
130 gm. On the melting curve this results in *He crystal growth or melting.
The pressure is measured by a sapphire pressure gauge located at the top of
the cell. Also, a vibrating wire viscometer has been installed in the upper
part. The optical part of the cell is situated below the Pomeranchuk part.
It consists of a white Araldite body containing two Suprasil windows, 3 mm
apart. The temperature was measured with a carbon resistance thermometer
at the bottom of the optical cell. Fig. 2 shows a schematic view.
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Fig. 2. Schematic drawing of the optical part of the cell. The dotted lines
indicate the light beam. In between the windows the solid-liquid interface
has been drawn. The curvature is somewhat exaggerated.
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The solid was grown by slowly compressing the *He chamber. To start
solidification at the bottom of the cell and to keep the interface horizontal
during growth, a heat input of about 20 nW was provided by the nucleation
heater. After growing, the solid was left to relax for about 6 hours to get the
interface as flat as possible. Sometimes a small amount of solid was melted
to obtain a smooth interface. As indicated in Fig. 2, it is not completely
horizontal but rounded due to adhesion. The difference in height between
the top of the interface and the place where it touches the windows is only
about 0.3 mm.

Fig. 3 shows the time-trace for this decompression. The pressure was
reduced from 34 bar to 30 bar in 60 s. The initial temperature was 8 mK.
Because of a problem with the lower thermometer, the temperatures have
been taken from another decompression, with a similar depressurization rate.
We measured the total magnetization in the cell. Because of the difference in
relaxation times between the solid and the liquid phase, the magnetization
decay changes slope around the instability. This happens around 50 s, when
there is still a significant amount of solid *He in the cell.
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Fig. 3. The time evolution of the pressure and the total magnetization in
the optical cell during the decompression shown in Fig. 4. The temperature
trace is obtained from a decompression with a similar pressure evolution,
fraction of solid and starting temperature.
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Fig. 4 shows a series of images taken during a rapid decompression.
Pictures are taken every 5 s with an aperture time of 1.2 s. The image size
is 240 x 240 pixels. The diameter of the light beam is 3 mm, so the resolution
is about 13 pm. The thick black line on the images is due to reflections. The
bottom of this line is identified with the liquid-solid interface. The first frame
is taken at equilibrium before melting. For about 40 s the interface remains
smooth and horizontal. Although some structure in the solid can be seen
before, the system is not fully unstable until 45 s after the beginning of the
decompression. At that time cellular dendrites appear from the interface in
the vertical direction. The typical size is 50 - 100 pm.

A gradient coil has been installed to measure magnetization profiles.
A field gradient of 0.3 T/m is applied vertically, parallel to the 9 T field.
The pickup coil around the optical part of the cell (see Fig. 2) is tuned
at 287 MHz. The magnetization is then measured by the NMR absorption
during a frequency sweep. This provides cross-sections through slices per-
pendicular to the vertical z-direction, parallel to the interface. Profiles are
measured at regular intervals. Some are depicted in Fig. 5, in which the
right-hand side corresponds with the bottom part of the cell. At equilib-
rium the magnetization of the solid is much higher than that of the liquid.
It drops over a region of 0.3 mm, indicating that the interface was slightly
curved and tilted. During melting the interfacial region shifts to the right
and a boundary layer builds up in the solid. Also, the bulk solid magnetiza-
tion relaxes and the gradient in the liquid decreases. At the time at which
the instability occurs, the gradient in the liquid has decreased substantially
and the bulk solid magnetization is about the same as that of the liquid near
the interface.

3. THEORY
3.1. Mullins-Sekerka Instability

The Mullins-Sekerka linear stability analysis'! was originally developed
to investigate the stability of a moving planar interface during the freezing
of an alloy. In a diffusion driven system the progression of an arbitrary
perturbation of the interface is calculated. The general idea is that a gradient
in front of a moving interface will lead to an instability. A small outward
ripple will compress the isotherms and therefore increase the gradient. This
will increase the heat flow and thus favor growth at that particular spot. As
a result dendrites will be formed.

For ®He below the minimum of the melting curve the latent heat is
negative and therefore both the direction of the heat flow and the sign of
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Fig. 4. Optical images during a rapid melting experiment of solid 3He in
a 8.9 T magnetic field, taken with an aperture time of 1.2 s. The bottom
of the thick black line marks the interface of the solid in the lower part of
the cell. The sample cell has a width of 3 mm between the optical windows.
The instability occurs around 45 s after the start of the decompression. All
solid has disappeared after 100 s (last three images).
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Fig. 5. A selection out of the magnetization profiles measured during the
same rapid melting experiment as shown in Figs. 3 and 4. The vertical
field gradient is 0.3 T/m, which corresponds to 10 kHz/mm. The initial
temperature is 8§ mK and the magnetic field is 8.9 T.

the temperature gradient are reversed. Solidification will therefore still be
dendritic,'? whereas melting will generally be smooth. If however the lig-
uid is magnetized and then rapidly melted, an instability will occur.” To
describe this, the Mullins-Sekerka model will be used. The driving force will
now be the (relative) magnetization field. The derivation of the dispersion
relation below largely follows that of Puech et al.,” except for the shape of
the magnetization profile, in which the magnetization gradient in the liquid
is now included.

We consider a planar interface moving in the solid direction z. We as-
sume pure diffusive transport (no convection) in the bulk phases. The mag-
netization diffusion coefficients D; in phase i (i = s,1) are defined through:

d2mz _ dmz
Y922 ot

(1)

with m; the magnetization field (relative to the maximum magnetization). In
the frame moving with the interface in the positive z-direction (z — z — V't)
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the diffusion equations are:

32 my; Bmz 8777,@

Diga ¥V, = & )

with the (constant) planar interface velocity V. Conservation of magnetiza-
tion across the interface is expressed by:

omy

% 0)+ 07 0) Q

V(ms(0) — my(0)) = —D; 92

The left-hand side represents the magnetization density flux across the inter-
face in the direction of increasing z due to the displacement of the interface,
the right-hand side that due to diffusion. If the exchange of particles from
one phase to the other is faster than the magnetization relaxation time T
the effective fields are equal at the interface. The steady state solutions have
to satisfy the diffusion equations (2) (with dm;/dt = 0), together with these
interfacial boundary conditions and the boundary conditions at infinity. We
assume these planar solutions (denoted by mP!) to exist for both the solid
at z > 0 and the liquid at z < 0 and to remain unaffected by changes in the
interface shape.

We proceed by introducing a harmonic perturbation £ of infinitesimal
amplitude &y on the interface. For simplicity we take only one direction z in
the plane of the interface into account.

7= &(x,t) = etttk (4)

Instability occurs if any Fourier component of an arbitrary perturbation
grows, stability if all decay. The evolution of the mode is determined by the
sign of the parameter 7. Associated with this deformation are perturbations
dm,; of the magnetization field on both sides, which have to disappear several
wavelengths away from the interface. The spatial decay lengths g; L are
defined through:

dm(z) = deVtHikee=as2 (5)

dmy(z) = §erttikacns (6)
These are substituted in the diffusion equations (2), giving:

v = Ds(q? — k*) — Vg, (7)

y=Di(gf - k) +Vq (8)

in which ¢, and ¢; are the positive solutions.
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The next step is a linear expansion of the magnetization fields and
gradients to first order in ¢ around the planar solutions m?’ Lat z = 0, which
is now the average interface position.

Om?!

mi(€) —mf'(0) = 9mi(0) + 5 -(0)¢ (9)

The first term on the right-hand side is the change in magnetization field
d; at the original position. The second one expresses the fact that as the
interface deforms, it explores the steady state field and feels its gradient.
This equation reads the same for both phases, indicating that we have in-
cluded the gradients behind and in front of the interface. The expansions
of the gradients are then obtained by derivation with respect to z and using
equations (5) and (6):

oms . Omp ampt Vv

5o () =~ 5 (0) = ~gsm, — = (0) ¢ (10)
d omy
(&) = 5 (0) = qudmy (11)

On the solid side the magnetization falls off exponentially, with decay length
D,/V. We neglected the second derivative of mf l, assuming that the profile
is roughly linear near the interface on the liquid side.

Local equilibrium implies that all thermodynamic relations are valid
locally. The changes in magnetization fields on the interface, given by the
right-hand side of equation (9) then satisfy the boundary condition (3) with
the instantaneous interface velocity v = V + 9¢€/9t. Also they correspond
to equal changes in effective field h:

om?!

dmi + T (€) = xih (12)
in which x; is the magnetic susceptibility in phase 4, defined as dm;/0H.
Finally, the changes in chemical potential per unit volume u; are (¢ is the
surface stiffness):

Sps = —ak?*¢ — ¢~ mE(0)h (13)
S = —¢~'mf' (0)h (14)

Because we use the reduced magnetization the magnetic field is expressed in
J/mol. To express it in Kelvins we divide by the perfect gas constant. The
scaling factor ¢ then becomes V,,,/R. The changes in chemical potential are
equal at the interface where there is a free exchange of particles. Therefore
we can write:

adk?

h= Am

£ (15)
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with Am = m£(0) — m} '(0). We can now derive an expression for the
temporal growth factor v, which comes into equation (3) through v = V4~£.
After substitution of all the expansion parameters &, d5, d;, v and h we get:

_ (Dsgs = V) OmE - Dig Oml"
Y= Am 0z (0) Am 0z (0)
agpk?
W(DSQSXS + Digixy +V(xi — xs)) (16)

Note that for the same magnetization gradient in the sollid as Puech et al.”
(8—3251(0) = —AmDLS) and no gradient in the liquid (a_gj’_(o) = 0) we repro-
duce their result. If however the gradient is non-zero (it is always positive
from our choice of coordinates), it reduces the growth rate . As we see in
Fig. 1 and Fig. 5, this stabilizing effect is especially significant during the
initial transient.

3.2. Quasi-Stationary Approximation

The general result (16) together with the equations for the spatial de-
cay of the magnetization (7) and (8) form the dispersion relation (k). To
evaluate this set we eliminate the parameters ¢; using approximations for
the length-scale and the time-scale. The magnetization diffusion length ¢;
in phase 7 is the decay length in the stationary solutions, defined as:

&' = - (17)

We expect the wavelength A = 27/k of the most unstable modes to be in
the same order of magnitude as the diameter of the dendrites, for which we
have the experimental value of 100 ym.

We assume the wavelength of perturbations that cause the instability
to be in the intermediate region (in between the diffusion lengths). This
approximation is quite natural in case of temperature fields, but there is
no evident physical necessity in our case and it will have to be checked
afterwards. Since D; < Dy:

1 1

e—l<k<z (18)

We rewrite equations (7) and (8) as:

1 1 ¥
=— 4 — /1 +402(k%2 + — 1
qs 223 2£s + S( + -D,g) ( 9)
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1 1
ql=—2—€lik\/1+#+m (20)
Both ¢s; and ¢; have to be positive, so only the positive roots remain. As
noted before, the model is only valid for slowly growing perturbations; only
those are accompanied by steady state fields. The relaxation times of the dif-
fusion fields (D;k2)~! are then much smaller than the characteristic growth
time of the perturbations y~!. Therefore, close to the instability threshold:

v < Dsk? (21)

The expansions of equations (19) and (20) now become:

~ L 2 . TN 32, Y
qs~£s+£5(k +Ds) 2 (k +Ds) (22)
1 Y
k- 4 —— 2
@ 20, T 2Dk (23)

where we keep the expansion of ¢; to first order in . After substitution
in equation (16) two terms containing x, cancel and we get the dispersion
relation in explicit form:

2 2 2
N 1+M<1+2><3D5k> _Y.__ DV
4D2(Am)2k Vv 2D, 2DZ(Am)k?
V o\ Omy agpV? %4
X <k - 2D,) 92 O~ 202 (Amy2 (D ikt X’) (24)

where we have neglected one term, using that the ratio D;x;/Dsx;s is much
larger than 1.

Because of the large thermal conductivity of the solid!® the temperature
measured at the bottom of the cell is equal to that of the interface. Further-
more, we assume the pressure to be uniform throughout the cell. We consider
the magnetization profiles to be ”frozen in” on the time-scale at which the
perturbations grow. This is justified by the experimental observation that
the instability occurs suddenly. It allows us to perform calculations on each
profile separately. We can thus calculate the dispersion relation at various
times during the decompression. Literature values have been used for most
parameters, corresponding to the values of temperature and pressure during
the decompression (see Fig. 3).

e ¢$=3-10"% m3K/J, for a molar volume of 24.9 cm3/mol.

e a=6-107% J/m?, from a direct measurement at 100 mK.'*
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e D, =107!! m?/s, from spin echo measurements on the melting curve
at low temperatures.!®

o D; = A(p)/T?, with A(p) a pressure dependent constant.'® During the
decompression A(p) varies from 1.7 to 1.9 -10~! m?K?/s and D; from
1077 to 1072 m?/s.

e xs = 1/T; x; = 5 K,'6 for Tr = 200 mK. In this system of units the
Curie constant is 1.

e V =15 pm/s, calculated from both the optical images (Fig. 4) and
the magnetization profiles (Fig. 5).

e Am = 0.6. The difference in magnetization at the interface at equilib-
rium is assumed to be constant during the decompression.

. %(0), the magnetization gradient in the liquid at the interface has
been calculated from the magnetization profiles (Fig. 5). It varies from
1700 m~! down to values indistinguishable from zero and has a large
margin of error due to the uncertainty of the interface position.

Upon neglecting the small correction of k£ in the term with the liquid
gradient (see equation (18)) we rewrite equation (24) as:

D, ok
7_V_2<1—€a(k+2%,)—m‘m—y@%(0)> (25)
- £,V2 2xsDsk
Ds 1+ 5ok (1 + =5 )
in which the length-scale ¢, appears naturally:
_ agxiDy
fa = (Am)2D, (26)

Clearly, this is a relevant parameter for the stability of the system: all sta-
bilizing parameters are in the denominator (surface tension, liquid diffusion
coefficient); all destabilizing ones are in the numerator (magnetization jump
at the interface, solid diffusion coefficient). In equation (25) the term pro-
portional to 1 originates from the solid gradient and the negative ones from
the surface tension (~ k) and the liquid gradient (~ £~'). Also, there is a
critical velocity V. = 2D; /¢, above which there can be no instability because
the numerator would be negative for each value of k. In this approximation
(slowly growing perturbations), above this velocity any perturbations would
be surpassed by the macroscopic interface. It has a value of 8 mm/s, which
can never be reached experimentally. For reasonable values of the interface
velocity we can neglect the term containing V' compared to 1 (this implies
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Ly K 20;). Tt is easy to solve v(k) = 0 and we find that v becomes positive
for the first time at k = 1/2¢,, if:

omy, (Am)3 Dy 2
=0 =G (3,) @

Since the approximate equation (25) is only valid for intermediate values
of k and close to the instability, we can not expect reliable outcomes over
a wide range. We can however use condition (27) to calculate the time
at which the instability should occur. For this, both side of the equation
have been plotted against time in Fig. 6, in addition to the values of &k at
which + has a maximum (see equation (25)). During the decompression the
magnetization gradient in the liquid decreases gradually (see Fig. 5). The
increase of the composite parameter is a temperature effect, mainly due to
the decrease of D;. We see that the instability is predicted around 24 s at
k =55-10° m~! (A = 12 pm). This value satisfies our initial assumption
(18), but not convincingly and numerical study is inevitable.
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Fig. 6. The decay of the liquid gradient (squares) and the liquid diffusion
coefficient, plotted in combination with other parameters (triangles) during
decompression. The instability is predicted at the time of intersection of
these graphs. The corresponding value of % is estimated from the interpola-
tion of the k-values at maximum + (circles), obtained graphically from the
dispersion relation in the quasi-stationary approximation (25).
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4. NUMERICAL ANALYSIS

The set of equations (7), (8) and (16) can be reduced to one implicit
equation of degree four in v by elimination of gs and ¢;. It has been solved
numerically at various times during the decompression using the parameter
values from the previous section (including the measured liquid gradient at
the interface, obtained from Fig. 5). For each point in time v has been
calculated over a wide range of k-values. If the solution is complex, the real
part of v determines whether the perturbation is damped or amplified. From
the four sets of solutions {gs, g, v} those with R(gs) > 0 and R(g;) > 0 have
been selected. The results are plotted in Fig. 7.
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Fig. 7. Graph of the dispersion relation obtained from numerical calculations
at various times during decompression. Instability is predicted when the
graph crosses the horizontal axis (dotted line), which happens for the first
time at ¢ = 27 s. At that time the graph has separated into two distinct
branches at intermediate values of k.

At the start of the decompression R(y) is negative for every value of
k. As time progresses the system grows towards instability. After 21 s the
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graph splits in two branches. At 27 s the top one has already intersected the
horizontal axis and the system has become unstable. By using interpolations
we find that R(v) is positive for the first time after 25 s for k = 4.5-10° m~1,
corresponding to a wavelength of 14 ym. After this the number of unstable
modes increases, as does the value of k for which () has a maximum.

For very small and very large values of £ all three parameters are com-
plex. Complex solutions always form conjugate pairs. As k moves from
either side towards the points where the graph splits, the imaginary parts
decrease. Between these critical points all parameters values are real. In this
region () has two different solutions for every value of &, one of which can
become positive. Inspection of the solutions shows that the corresponding
values of R(g;s) are symmetrical in V/D,. Furthermore, R(q;) = k is a good
approximation for each value of k. At very small values of k discontinuities
appear.

To investigate the conditions at which instability can occur we varied
each parameter while keeping all others constant at various times. Some
examples are given in Fig. 8. Increasing D; increases both the distance
between the critical points and the difference between the two solutions.
Similarly, increasing «, ¢, x; or D; has the reverse effect. Variation of V
changes the difference between the two solutions, but not the position of
the critical points. The system is more sensitive to changes in Am and less
sensitive to those in the liquid gradient. Variations in x,; have no effect
at all. Sometimes there are discontinuities in the lower branch when the
corresponding values of (gs) become negative.

To explain these observations we return to equation (16). Since 7 is
linear in both ¢, and ¢; it is obvious that, for a given value of &, all of them
are either complex or real. The terms containing the liquid gradient and the
surface stiffness are always negative. Because the solid gradient is negative,
R(7) can only be positive if R(gs) > V/D,. This corresponds with the top
branches in Fig. 7. Indeed, at the critical points:

1

gs = E (28)

Then, from equation (5) it follows that ¥ = —D,k?. These parabolas are
sketched in Fig. 8 (dotted lines). They represent an upper limit for the
dispersion of a stable system. As we can see from variation of Dj, the
critical points are always on these parabolas.

In order to derive an equation for the values of &k at the critical points,
we substitute ¥ = —D;k? and ¢; = k in equation (16). All constants and
the terms containing x; cancel. Again one term is negligible as £, < ¢;, and
we are left with an equation of degree 3 in k. Since k = 0 is not a physical
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Fig. 8. Variation of three parameters around one solution at a time at
which the system is already unstable (black line). An increase in the liquid
diffusion stabilizes the system, whereas an increase in the solid diffusion has
a destabilizing effect. A change in interface velocity will not shift the values
of k at which an instability can occur. See text for an explanation of the
dotted lines.

solution, we find indeed two k-values:

1 4apD?x; Omy
k= TR (1 + \/1 - ﬁm);ng(O)) (29)

This is ezactly the equation we find when solving v = 0 for (25). Note
that for our earlier instability condition (27) the square root is exactly zero:
for the critical points to exist (correspond with real k-values), the liquid
gradient has to be smaller than the combination of parameters plotted in
Fig. 6 (the right-hand side of equation (27)). As V and x; are not in this
expression, a variation in one of these parameters will not change the position
of these points. Equation (29) fully determines the topology of the solutions.
It enables us to calculate the critical points by hand and understand the
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changes in the solutions upon variations, like the strong dependence on Am
and the weak dependence on the liquid gradient. Although the parabola
changes slope between the critical points, the point in between is a good
indication for the most unstable mode:

1

20, (30)

k(Ymaz) =
Surprisingly this is the same result as Puech et al. found.” They also iden-
tified the length-scale £, with the most unstable perturbation, but derived
it from different approximations.

5. DISCUSSION

Our theoretical analysis combined with earlier experimental observa-
tions® has allowed us to verify in amazing detail both the melting scenario
proposed by Castaing and Noziéres? and the instability predicted by Puech
et al..” By extending their stability analysis to include the transient gra-
dient on the liquid side we have been able to understand the suppression
of the Mullins-Serkerka instability!! during the initial phase of the melting.
With literature values for the 3He properties and the measured magneti-
zation gradient in the liquid as input, our calculated dispersion relation is
fully consistent with the interpretation of the instability as an interfacial
instability driven by the magnetization gradient in the solid.

As far as quantitative agreement is concerned, the calculated value of
the most unstable mode (around 15 pm) and the typical scale of the insta-
bility (50 - 100 um) are in the same order of magnitude. This experimental
value serves just as an indication; remember that 15 pm is exactly the reso-
lution of our optical system. The time of instability is around 45 s, whereas
calculations predict an earlier time (25 s). This might be due to the choice
of some of the parameters. As noted before (see equation (29)) the system is
quite sensitive to changes in Am. It is calculated from comparing the bulk
magnetization in the solid with that in the liquid at equilibrium (which is
4%) and might be somewhat smaller than 60 %.

More disturbing is the discrepancy between the theoretical and experi-
mental value of the diffusion length in the solid. For our choice of parameters
¢, is less than 1 ym. The enhanced magnetization in the surface solid would
then be impossible to observe. Even for an entirely flat surface this would
be beyond the resolution of the NMR system. However, the boundary layer
is clearly visible in Fig. 5, so obviously it is a transient effect. Since we treat
each magnetization profile separately, perhaps it would be more justified to
estimate the gradient in the solid from our experimental data, as we do for
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the liquid. This would then by far be the most uncertain factor, but in any
case it would be much smaller than the steady state value. A decrease in
the solid gradient would delay the instability even further.

By solving the complete set of equations, we have shown that the quasi-
stationary approximation (21) is indeed valid for reasonable choices of the
physical parameters. It reproduces the same results in terms of time of in-
stability and most amplified wave-vector. More surprisingly, it produces the
ezact same equation (29) provided we take g; = 1/¢5 in the numerical case,
instead of the usual v = 0. The solid gradient is always negative, since
we choose the solid on the right-hand side of the interface. Therefore if
q;' > ,, the first term of the general dispersion relation (16) becomes neg-
ative. Evidently, the gradient in the solid can never be stabilizing since it is
in front of the interface, and we get imaginary solutions. Physically it means
that the magnetization decays over a length-scale larger than the diffusion
length. In other words, not all of the newly produced magnetization can be
transported away through diffusion only, so there is a source. Obviously for
a planar solution this is impossible. It is however precisely what we observe
in the initial phase of the melting: a build-up of a magnetization layer much
thicker than the diffusion length.

The critical case would then correspond to equation (28), where the
profile on the solid side would remain unchanged. This is analogous to
the situation of so-called ”unit undercooling” in case of temperature fields,
when the amount of latent heat transported away by diffusion through an
undercooled liquid is the same as the amount of heat required to produce
solid at its melting temperature. In Fig. 5 we see that after about 20 s
the enhanced magnetization starts to decrease from its maximum value of
about 2 %, indicating that the system is now in the quasi-stationary regime.
After this, provided the gradient in the liquid has decreased sufficiently, the
system quickly becomes unstable. The growth will then be determined by
the interface kinetics, which is not included in this model.

Finally we would like to remark that dendritic growth of 3He was investi-
gated by Rolley et al.'? at T = 100 mK. In this situation the sign of both the
latent heat and the temperature gradient (solidification gives cooling) are re-
versed compared to the usual situation, but the experimental results did not
differ significantly. However, they noticed a surprisingly weak side branch-
ing, probably related to the very weak anisotropy of the surface tension.
This is consistent with our observation that the liquid seems to penetrate
mostly as cellular dendrites in the solid, with no obvious side branching.
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