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Abstract

Recently singular solutions have been discovered in purely elongational flows of visco-elastic fluids. We surmise that these solutions are the
mathematical structures underlying the so-called birefringent strands seen experimentally. In order to facilitate future experimental studies of these
we derive a number of asymptotic results for the scaling of the width and extension of the near-singular structures in the FENE-P model for
polymers of finite extensibility.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Recently, there has been renewed interest in the properties
of extensional flows of dilute polymer solutions, in particular
in a class of flows known as internal stagnation point flows,
such as the four roll mill flow and the cross-slot or cross chan-
nel flows shown in Fig. 1. Theoretical modelling of such flows
has proven to be particularly challenging, and despite exten-
sive experimental and theoretical investigation, some aspects of
these flows remain to be elucidated. For example, Arratia et
al. [1] have recently found a bifurcation to asymmetric station-
ary flow patterns in a cross-channel flow of a dilute polymer
solution, followed by a secondary instability to time-dependent
asymmetric flows. In spite of its simple appearance, this insta-
bility is not yet fully understood. Conversely, instabilities have
been found numerically that have no clear experimental counter-
part (for example, Harris and Rallison [2,3] and Xi and Graham
[4]).

In traditional investigations of elongational flows, it has often
been assumed, either implicitly or explicitly, that the base flow
solution is the classical solution [5] of the Oldroyd-B continuum
equation in which the stresses are constant in space. However,
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Rallison and Hinch [6] already mentioned singular solutions
of the UCM equations that are strongly peaked at the cen-
tre line along the outflow direction, and Renardy [7] recently
pointed out that these singular solutions are also relevant for
Wi < 1/2, where they do not actually diverge, but are still sin-
gular. Although such solutions are not easy to probe numerically,
recent work by Thomases and Shelley [8] shows that these
solutions do emerge spontaneously in high accuracy numeri-
cal simulations of a model problem for elongational flows. One
reason for this may be that, as we will discuss, the constant stress
solutions typically do not satisfy the physical boundary condi-
tions at the edges of the flow region. A natural question that
therefore emerges is whether these singular solutions are the
mathematical counterpart of the so-called birefringent strands
that have been found experimentally [9–11] and numerically
[12–14]. Such strands are thin regions of highly extended poly-
mers along the central outgoing streamlines. A strand can modify
the flow, leading to a “dip” in the observed velocity profile of the
exit flow [15,16], and it seems reasonable to assume that they
affect any instabilities that might occur.

The singular solutions mentioned by Renardy [7] arise in
models like the UCM model which essentially assume that the
polymers are infinitely extensible. A second important ques-
tion that emerges from these studies is therefore how these
singular solutions are modified when we consider finitely exten-
sible polymers, as in the FENE-P model [17]. The first step in
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Fig. 1. (a) The four-roll mill. (b) Cross-channel flow.

this direction was made by Renardy [7], who showed that for
the Giesekus model, which limits the growth of elongational
stresses, stress profiles remain smooth while stress gradients
can diverge.

The aim of this article therefore is to study the scaling of the
main characteristics (e.g. the width) of these singular solutions
strands in a simple way, and to analyse the modifications due to
the finite extensibility. Our analysis is done for the ideal case of
purely elongational flow, which is a good approximation near the
stagnation point. By confining the analysis to this simple case we
are able to derive a number of explicit asymptotic scaling results
which we hope will facilitate making the connection between the
(almost) singular solutions and the birefringent strands.

Our results are consistent with results for steady flow by
Renardy [7], Thomases and Shelley [8] and Xi and Graham
[4]. However, since our approach is essentially one-dimensional,
we can obtain a better numerical resolution, and it may be
hoped that some calculations that are not (yet) feasible in a
full two-dimensional approach, such as eigenvalue calculations
for stability analysis, may be performed within the framework
we present here. It should be mentioned, however, that the cur-
rent experimental resolution [18] is substantially worse than the
numerical resolution, even for full 2-D numerics.

The layout of this paper is the following. In Section 2, we
summarize the equations for extensional flow of a UCM fluid,
and the structure of the singular solutions discovered recently.
After analysing extensional flow of a FENE-P fluid in Section
3, we derive various asymptotic results for this case in Section
4. We end the paper with a brief discussion of the robustness of
our results.

2. Purely extensional flow of a UCM fluid

Putting the stagnation point at (x, y) = (0, 0), a purely exten-
sional flow field is given by

�v = (vx, vy) = ε̇(x, −y), (1)

where ε̇ is the elongation rate. This flow field satisfies incom-
pressibility, �∇ · �v = 0. In a nondimensionalized formulation of
the UCM model, the flow field becomes

�v = (x, −y), (2)

and the constitutive equation for steady flow is [5]

T+Wi
[
(�v · �∇)T − ( �∇�v)

T · T − T · ( �∇�v)
]

= �∇�v + ( �∇�v)
T
. (3)

Fig. 2. Uniform extensional flow on an infinite strip.

Here T is the stress tensor, �v the velocity, and Wi the Weissenberg
number, which for purely extensional flow we define as

Wi = ε̇λ, (4)

with λ the relaxation time of the polymers. The momentum
conservation equation for creeping flow is

�∇ · T − �∇p = 0. (5)

Solutions for steady flow are found by inserting the pure
extensional flow into the constitutive equation:

Txx + Wi

(
x
∂Txx

∂x
− y

∂Txx

∂y
− 2Txx

)
= 2,

Txy + Wi

(
x
∂Txy

∂x
− y

∂Txy

∂y

)
= 0,

Tyy + Wi

(
x
∂Tyy

∂x
− y

∂Tyy

∂y
+ 2Tyy

)
= −2.

(6)

If we assume a spatially uniform stress field, these equations
reduce to

Txx = 2

1 − 2 Wi
; Txy = 0; Tyy = −2

1 + 2 Wi
. (7)

It is well-known that for Wi ≥ 1/2, this solution diverges and
becomes unphysical [5]. If we no longer require that the stresses
be constant in space, the stress fields lose smoothness even below
Wi = 1/2, as was pointed out by Renardy [7]. Around and above
this value of Wi, there are large stress gradients around y =
0, reminiscent of a birefringent strand. We shall derive these
solutions, essentially following Renardy’s presentation.

We choose as flow domain the strip (x, y) ∈R× [−1, 1]. On
this domain, we assume pure extensional flow, see Fig. 2. We
assume that the stresses depend only on y:

Txx ≡ Txx(y); Txy ≡ Txy(y); Tyy ≡ Tyy(y) = p(y), (8)

such that momentum conservation is obeyed. We impose bound-
ary conditions for the normal stresses on the “inflow” boundaries
[19]:

Txx(±1) = ξ; Tyy(±1) = η. (9)

The equations reduce to

Txx(y) + Wi (−yT ′
xx(y) − 2Txx(y)) = 2,

Txy(y) + Wi (−yT ′
xy(y)) = 0,

Tyy(y) + Wi (−yT ′
yy(y) + 2Tyy(y)) = −2.

(10)
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The solution can be given in closed form:1

Txx = 2

1 − 2 Wi
+
(

ξ − 2

1 − 2 Wi

)
|y|1/Wi−2,

Txy = 0,

Tyy = −2

1 + 2 Wi
+
(

η + 2

1 + 2 Wi

)
|y|1/Wi+2.

(11)

The first part of the xx and yy stress components is the same as
for the uniform solution (7). The second part has to be added to
make the solution consistent with the imposed boundary con-
ditions. Due to the fractional exponents in this part, none of
these solutions is smooth, (except when 1/Wi is an integer).
This becomes important when approximating these functions
using spectral methods.

As Eq. (11) clearly shows, the classical constant stress solu-
tion (7) only exists for very special boundary conditions. Indeed,
the non-smooth terms in Eq. (11) are present at every Weis-
senberg number unless one chooses ξ = 2/(1 − 2 Wi) and η =
−2/(1 + 2 Wi). As Wi approaches 1/2, these terms create a nar-
row region of large extensional stress, qualitatively similar to a
birefringent strand, as was already observed by Rallison and
Hinch [6].

More interestingly, the purely elongational flow, Eq. (1) does
not support any boundary value for the shear stress Txy other
than Txy = 0 at the boundary [19,20]. Forcing Txy 	= 0 at the
inflow would inevitably modify the velocity profile, Eq. (1): in
addition to the purely extensional flow field, it would acquire a
shear component. The importance of this modification will be
discussed in Section 5, where we address the relevance of our
results to the stability of experimental realizations of stagnation-
point flows [1].

Note also that even in the range where the uniform solu-
tion clearly breaks down (Wi ≥ 0.5), the non-uniform solution
(11) is well-defined. However, the stress on the central outgo-
ing streamline diverges, and for Wi ≥ 1, the total elastic energy,
which is proportional to the integral of trT, also diverges.

3. Extensional flow in a FENE-P model

The FENE-P model avoids the blow-up of the extensional
stress by implementing a nonlinear force law for the polymer
molecules [17]. The solvent is usually treated explicitly. We
shall ignore the solvent viscosity, thus formulating an extension
of the UCM model rather than the Oldroyd-B model.

We shall formulate the FENE-P model in terms of the con-
formation tensor

A = 〈�R�R〉, (12)

where �R is the end-to-end vector connecting two beads of a
single dumbbell. The brackets denote an ensemble average.

1 A similar solution was given in [7]. The UCM equations reported there, how-
ever, seem to be written for uniaxial extensional flow �v = (1, −(1/2), −(1/2))
rather than for planar extension �v = (1, −1) as claimed in [7] and as in the
present paper. This explains the difference between Eq. (11) here and Eq. (9)
from [7].

In our nondimensionalization, the stress is given in terms of
the conformation tensor as

T = 1

Wi

(
A

1 − tr A/L2 − I
1 − 2/L2

)
. (13)

Here, I is the unit tensor and L2 is the maximal value of the trace
of the conformation tensor, that is, L is the maximal extension
of the dumbbells, relative to their equilibrium extension. The
‘2’ appears in the rightmost denominator because in two spatial
dimensions this is tr I.

The constitutive equation for steady flow then is [8]

Wi[(�v · �∇)A − ( �∇�v)
T · A − A · ( �∇�v)]

= −
(

A
1 − tr A/L2 − I

1 − 2/L2

)
. (14)

Note that Eqs. (13) and (14) differ from the “classical” FENE-P
model in that they are restricted to two dimensions and assume
the other components of the conformation tensor (Axz, Ayz, Azz)
to be zero. In the two-dimensional flow Eq. (2), the classical
FENE-P model [5] would have Azz 	= 0. However, this approxi-
mation bears no influence on the asymptotic result for the width
of the birefringent strand found in Section 4.

The momentum balance is nonlinear in the conformation
tensor:

1

Wi

( �∇ · A
1 − tr A/L2 + A · �∇(tr A)

L2(1 − tr A/L2)2

)
− �∇p = 0. (15)

Again, if we assume that the conformation tensor (and, hence,
the stress tensor) depends only on y, this expression simplifies,
and we find one equation for Axx and Ayy, and an equation for
Axy in terms of Axx and Ayy:

1

1−tr A/L2

(
∂Ayy

∂y
+ Ayy

1−tr A/L2

∂tr A/L2

∂y

)
−Wi

∂p

∂y
= 0.

(16)

and

1

1 − tr A/L2

(
∂Axy

∂y
+ Axy

1 − tr A/L2

∂tr A/L2

∂y

)
= 0. (17)

There are a few things to note about this system. The first equa-
tion involves only Axx and Ayy. Suppose now that we can solve
the constitutive Eq. (14) for Axx and Ayy; we can then always
find a p(y) to satisfy the momentum balance. From the second
equation, we find that if Axy ≡ 0 is a solution of the constitutive
equations (which in uniform extensional flow it is, as we shall
see), then this always satisfies the momentum balance, similar
to the UCM case. We can therefore restrict ourselves to find-
ing a solution for the constitutive equations, given a uniform
extensional flow. An analytical solution is no longer possible,
and we will give numerical solutions. However, there is ana-
lytical information to be obtained from the equations, mostly
asymptotics.

Analogous to the UCM case, we assume that the extension
depends only on y, and we insert the pure extensional flow into
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Fig. 3. Extension Axx for different L2, for Wi = 0.9, 2.0, 8.0, and Wi → ∞. Note the different scales on the vertical axis.

the constitutive Eq. (14):

Wi(−yA′
xx(y) − 2Axx(y)) = −

(
Axx(y)

1 − (Axx(y) + Ayy(y))/L2

− 1

1 − 2/L2

)
,

Wi(−yA′
xy(y)) = − Axy(y)

1 − (Axx(y) + Ayy(y))/L2 ,

Wi(−yA′
yy(y) + 2Ayy(y)) = −

(
Ayy(y)

1 − (Axx(y) + Ayy(y))/L2

− 1

1 − 2/L2

)
.

(18)

We shall use the same domain and boundary conditions as for
the UCM case. For simplicity, we assume Axx = Ayy = 1 (the
equilibrium values) at y = ±1. It is clear that Axy ≡ 0 is indeed
a solution of the equations. We can then ignore this component
of the conformation tensor, and we may restrict ourselves to the
diagonal components.

For L2 = 10, 100, 1000 we then find, for different Wi, the
plots in Fig. 3. These are clearly qualitatively similar to the
birefringent strands that have been found experimentally and
numerically [9–14].

The formulation in terms of a conformation tensor allows us
to translate these results immediately to a birefringence profile:
for the relative change in index of refraction n, we have the
proportionality [21]

�n

n
∝
√

(Ayy − Axx)2 + 4A2
xy. (19)

For the strongly stretched central region, the birefringence is
approximately directly proportional to Axx.

For the stresses, we can use Eq. (13). Since in our nondimen-
sionalization, the physical stress is given by η Wi T, with η the
viscosity, we plot Wi Txx rather than Txx in Fig. 4.

4. Asymptotic results for a FENE-P fluid

We present four types of asymptotic results. The first is the
behaviour of the flanks of the strand. Here we shall find that
we recover the UCM behaviour. Next, we look at the maximal
“extension” A0

xx of the strand—the value of Axx at y = 0. It
depends on Wi and L2. We then combine these results, and give
an approximate expression for the width of the strand, which we
define as the point where the UCM profile intersects A0

xx. We
also show that this gives practically the same results as another
definition for the width, namely the inflection point of the Axx

profile. Last, we look at the behaviour of the extension around
y = 0, and we show that even though the stresses at the centre
stay finite, stress gradients may diverge for y → 0.

4.1. Outer flanks

For small extensions, the FENE dumbbells behave approxi-
mately as linear springs. We would therefore expect to recover
UCM behaviour outside the centre of the strand, where the
extension is relatively low.

To compare the FENE-P profiles to the UCM results, note
that from Eq. (13) we find that for small extension at large L2

T ≈ 1

Wi
(A − I) for tr A � L2 and L2 � 1. (20)

For the xx component, this implies

Wi Txx ≈ Axx − 1. (21)

For the present boundary conditions, this means that outside
the centre of the strand, we have

Axx ≈ WiT UCM
xx + 1 = 2 Wi

1 − 2 Wi
(1 − |y|1/ Wi−2) + 1. (22)

Fig. 4. Normal stress Wi Txx for different L2, for Wi = 0.9, 2.0, 8.0 and Wi → ∞. Note the different scales on the vertical axis. The insets show a smaller range.
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Fig. 5. Extension Axx (solid line) compared to “UCM extension” Wi Txx + 1 (dashed line) for different L2, for Wi = 0.9, 2.0, 8.0 and Wi → ∞. Note the different
scales on both axes.

This approximation also works well for very high Wi, because
the right hand side of Eq. (14) is then negligible, until tr A comes
very close to L2. Note that we compare the UCM stress with the
FENE-P extension. For the small extension limit, the comparison
of the stresses in both models also gives good results (in that
case, the approximation (21) holds well), but it breaks down in
the large Wi limit.

If we compare the profiles for the conformation tensor to
the solution for the UCM fluid, as in Fig. 5, we see that for
Weissenberg number above roughly 1.0, the flanks of the stress
profile are approximated by those of the UCM case, cut off in
the centre by the value of Axx at y = 0. This observation helps
us to obtain some asymptotic analytical results for the structure
of the birefringent strand.

4.2. Maximal extension

We can find the maximal extension by taking the limit of the
Eqs. (14) and (15) for y → 0. The advection terms then vanish,
and we are left with the system

−2 Wi Axx = −
(

Axx

1 − tr A/L2 − 1

1 − 2/L2

)
, (23a)

2 Wi Ayy = −
(

Ayy

1 − tr A/L2 − 1

1 − 2/L2

)
. (23b)

This system does not allow a simple analytical solution. How-
ever, we can make a fair approximation by assuming that
Axx � Ayy and Axx � 1 (this requires L2 � 1). We then have
an autonomous equation for Axx:

−2 Wi Axx = −
(

Axx

1 − Axx/L2

)
. (24)

This is easily solved and gives

Axx = L2
(

1 − 1

2 Wi

)
. (25)

This approximation can be shown to be self-consistent. For
Wi � 2, clearly Axx � 1. Furthermore, since the flow is purely
compressive in the y-direction, we expect Ayy ≤ 1. In fact, we
can find an asymptotic expression for Ayy at y = 0 from Eq.
(23b). For large L2, the rightmost term is approximately 1, and
assuming Ayy � Axx, the equation simplifies to

2 Wi Ayy − Ayy

1 + Axx/L2 = 1. (26)

Inserting the asymptotic expression (25) for Axx, we find

Ayy = 1

4 Wi
. (27)

For large L and Wi � 2, this implies that Ayy is of O(1/L2) com-
pared to Axx, and the above approximation is self-consistent. We
conclude that for L2 � 1 and Wi � 2, Eq. (25) is a reasonable
approximation.

This is confirmed by numerical solution of the system (23a).
In Fig. 6, we show the maximum value of Axx as a function of
Wi for different L2.

4.3. Width of the birefringent strand

Given these results, we can now proceed to derive an approx-
imation for the width of the birefringent strand as a function of
Wi and L2. We define the width as the location where the UCM
approximation intersects the value of the “centre maximum” of
the extension. This is essentially the width of the “plateau” in
Fig. 3.

Fig. 6. Maximum of Axx as a function of Wi for different L2. Numerical solution (solid line), compared with the approximation (25)(dashed line). The arrow indicates
the asymptotic value L2 for Wi → ∞. Note the different scales on the vertical axis.
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We combine the results in Eqs. (11), (21) and (25) to obtain
for the intersection point y0

2 Wi

1 − 2 Wi

(
1 − |y0|1/Wi−2

)
+ 1 = L2

(
1 − 1

2 Wi

)
. (28)

Solving for y0 thus gives the strand half-width as

y0 =
[

1

2 Wi
+ L2

(
1 − 1

2 Wi

)2
]Wi/(1−2 Wi)

. (29)

For Wi → ∞, we find y0 → 1/L. An expansion around Wi =
∞ gives

y0 ≈ 1

L
+ 2L2(1 − ln L) − 1

4L3

1

Wi
+ O

(
1

Wi2

)
. (30)

For L2 � 1 this reduces to

y0 ≈ 1

L
+ 1 − ln L

2L

1

Wi
+ O

(
1

Wi2

)
. (31)

The strand half-width in these approximations is shown in Fig. 7
for different values of L2. Note that the “exact” solution (29)
bends up for lower Wi. This is unphysical. It shows up because
both sides of Eq. (28) are approximations that break down for
relatively small L2 and Wi.

The asymptotic value 1/Lhas already been found by Mackley
and coworkers [10], in a more qualitative way.

4.4. Central region

The behaviour of the extension (and, hence, the normal
stresses) as y → 0, is not immediately clear from the plots
in Figs. 3 and 4. In particular, the question arises whether the
stresses display singular behaviour for y → 0, as was found by
Renardy for the Giesekus model [7].

It is clear from Eq. (18) that y = 0 is a singular point of this
system of differential equations: as y → 0, the highest-order
derivative vanishes. The conformation tensor will therefore not
be analytical in y at y = 0. To determine the degree of this sin-
gularity, we follow the usual procedure for dealing with singular
points [22], and we expand the solution around y = 0as

A(y) =
∞∑

r=0

ary
β+r + A0, (32)

with β in general non-integer, and A0 the uniform solution of
Eq. (23a). We then seek an expression for the exponent β of
the dominant (lowest-order) term by balancing the leading-order
singular terms. For the small-extension limit, the equations actu-
ally reduce to the UCM equations, and the exponent is given by
the exact solution Eq. (11), that is,

β = 1

Wi
− 2 for tr A � L2. (33)

For moderate to high extension, we need to take into account
the finite extensibility of the polymers. To lowest nontrivial order
in y, the expansion (32) becomes, in components,

Axx(y) = A0
xx + axxy

β,

Ayy(y) = A0
yy + ayyy

β.
(34)

We insert this into the constitutive Eq. (14) for purely extensional
flow, and expand the fractions in that equation to first order in
axx and ayy. We then have at first order, leaving out the constant
terms (which form the equation for A0),

axx

1 − tr A0/L2
+ A0

xx(axx + ayy)/L2

(1 − tr A0/L2)2 − 2 Wi axx − β Wi axx = 0,

ayy

1 − tr A0/L2
+ A0

yy(axx + ayy)/L2

(1 − tr A0/L2)2 + 2 Wi ayy − β Wi ayy = 0.

(35)

We can simplify these equations considerably. We put A0
yy → 0,

because according to (23b) it is of order 1/L2 compared to the
other terms and also compared to 1 − A0

xx/L
2. We then substi-

tute the asymptotic result (25) for A0
xx. Since the system is linear

in axx and ayy, we can scale them such that

axx = 1 and ayy = γ, (36)

where γ is the ratio ayy/axx. We are then left with the system

Wi[(4 Wi − 2)(1 + γ) − β] = 0,

Wi γ(β − 4) = 0,
(37)

which has two solutions:

γ = 0, β = 4 Wi − 2 and γ = −2 Wi − 3

2 Wi − 1
, β = 4.

(38)

Fig. 7. Width of the birefringent strand as a function of Wi for different L2. “Exact” solution, Eq. (29)(solid line), compared with the approximation (31)(dashed
line). The arrow indicates the asymptotic value 1/L, and the (squares) denote a numerical result where the width is defined by the inflection point of the stress profile.
Note the different scales on the vertical axis.
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Fig. 8. The exponent β as a function of Wi. The dashed lines are the asymptotic
approximations: the curve is from Eq. (33), the two straight lines are from Eq.
(38). The dots were calculated from numerical solutions for axx and ayy .

The three asymptotic results for β in Eqs. (33) and (38) are
plotted in Fig. 8, together with numerical results for L2 = 10.0
and L2 = 100.0. These were obtained by integrating the
differential equation (Eq. (18)) numerically from y = 10−10

to y = 1.0 and taking the slope in a log–log representation
of axx and ayy. Because the stress is a regular function of
the extension, these exponents immediately carry over to the
stresses around y = 0.

From the asymptotic results, we can conclude the following:
although the stresses themselves remain finite for any Weis-
senberg number, for sufficiently large L there is a range of
Wi for which β < 1 and stress gradients become infinite. This
range lies roughly between Wi = 1/3 and Wi = 3/4. These
bounds are obtained by putting β = 1 in Eqs. (33) and (38).
The range is finite, because for low Wi the velocity gradient is
insufficient to cause large extension gradients, while for high
Wi the polymers are already almost fully stretched well out-
side of the central region, which also prevents the formation of
large extension gradients in the central region (as can be seen in
Fig. 5).

The precise extent of the range in Wi for which the stress gra-
dient diverges, depends on L2; for small L2 it is absent entirely,
as can be seen in Fig. 8 for L2 = 10.0. Although the analysis in
the present paper is less straightforward, it is fully analogous to
Renardy’s result for the Giesekus model [7].

5. Concluding remarks

The results that we have derived here are valid for a rather
artificial geometry, namely a purely extensional flow on an infi-
nite strip. However, we believe that the results are still relevant
for more realistic flows. The approximation that quantities do
not depend on x is valid on the central incoming flow line. If we
can show that the results do not depend crucially on the exact
boundary conditions and on the assumption of uniform exten-
sional flow, then the results that were derived above still give
information on the shape of actual birefringent strands in fluids
that are described by the FENE-P model.

We hope that our results for the scaling behaviour of these
near-singular structures will stimulate new experiments on the
birefringence strands—we surmise that the birefringent strands
seen experimentally are indeed the experimental realizations of
these structures, but the data on these in the existing literature
lack the precision to test this claim.

Finally, we make a connection between our results and
the recently observed instabilities in the cross-channel flow
[1](see Fig. 1b). There, the fully-developed (or being close
to it) Poiseuille flow in the inlet channels provides boundary
conditions for the normal and shear components of the stress
tensor (Tyy and Txy in our notation) at the inflow boundaries
of the square region in the centre of the flow domain. These
boundary conditions clearly differ from the special values dis-
cussed in Section 2, and thus the flow in the central region
is not a constant-stress solution as Eq. (7) and is expected to
be dominated by strands similar to (11). Moreover, the non-
zero value of the shear stress and the parabolic profile of the
velocity at the boundaries imply that the actual flow in the
central domain is a combination of elongational and shear
components. One might then argue that the first instability
observed in [1] corresponds to switching from elongation-
dominated to shear-dominated velocity field, while the second
bifurcation would be a purely elastic instability of that shear-
dominated flow with curved streamlines [23,24]. The latter
are almost always Hopf bifurcations [23,24] which is consis-
tent with the time-dependent flows observed in [1] at large
Weissenberg numbers. Our results can be considered to be
a first step in constructing an analytic approximation to the
base flow in the cross-channel geometry which can then be
used in linear stability analysis. Inclusion of finite extensi-
bility is likely to be important in studies of the secondary
instability.
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