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an adequate portrait of the diffusion process. Correspondingly, 
it seems clear the the use of a classical diffusive description of 
the electronic motion with a phenomenological diffusion constant 
is faithful down to quite small distances and time scales. 

A new challenge for analytical theory is thus presented. The 
prevalent theory of ionic dynamics in solution derives from the 
hydrodynamic approach due to Zwanzigzl that evaluates the 
additional dielectric friction term arising in a polar solvent. In 
its sophisticated extended formulation by Hubbard and co- 
w o r k e r ~ , ~ ~ * ~ ~  this theory is relatively successful compared to ex- 
perimental data. Analytical treatments along these lines for the 
classical diffusion of a particle that responds instantaneously to 
polarization fluctuations, but lacks any classical inertial behavior, 
are clearly of great interest in light of the picture presented here 
for the electronic motion. It is an interesting question whether 

the deformability of the electronic distribution from a spherical 
shape plays any important role. 

Computer simulation investigations of such alternative pseu- 
doclassical models are accessible in any case, and it appears likely 
that our understanding of the transport properties of electrons 
in complicated dense polar fluids will make further strides in the 
near future. 

Acknowledgment. Partial support of this work by a grant from 
the Robert A. Welch Foundation is gratefully acknowledged, as 
is computational support from the University of Texas System 
Center for High Performance Computing. P.J.R. is the recipient 
of an NSF Presidential Young Investigator Award and a Camille 
and Henry Dreyfus Foundation Teacher-Scholar Award. 

Registry No. Water, 7732-18-5. 

I mplicatlons of the Triezenberg-Zwanzig Surface Tension Formula for Models of 
Interface Structure 

John D. Weeks* and Wim van Saarloos 
AT& T Bell Laboratories, Murray Hill, New Jersey 07974 (Received: February 28, 1989; 
In Final Form: May 9, 1989) 

While the Triezenberg-Zwanzig (TZ) formula and a modified version introduced by Wertheim both relate the surface tension 
of a liquid-vapor interface to interfacial correlation functions, they appear to support very different models of interface structure. 
We resolve this paradox by showing that although the Wertheim and the TZ formulas are equivalent in the thermodynamic 
limit, their underlying physics as well as their range of validity is different. The former is valid only on very long length 
scales (requiring system sizes much larger than the capillary length), while the latter continues to be relatively accurate down 
to scales of the order of the bulk correlation length. Thus the TZ formula is consistent both with the capillary wave model, 
which gives correlation functions affected by the long-wavelength interface fluctuations that occur in a large system, and 
with the classical van der Waals picture, which holds for small system sizes. We also discuss some more general issues involved 
in the use of the density functional formalism for a two-phase system. 

I. Introduction 
The derivation of the Triezenberg-Zwanzig (TZ) formula for 

the surface tension’ represented a major conceptual advance in 
the modern theory of interfacial phenomena. This was one of the 
first, and certainly one of the most elegant and instructive, ap- 
plications of density functional theory to a two-phase system, and 
today it remains the starting point for almost all theoretical work 
in interfaces.2 

In this paper we reexamine some of the results and implications 
of the density functional methods pioneered by T Z  and their 
connection to the qualitative pictures of interface structure sug- 
gested by the capillary wave modeP5 and the van der Waals 

That some subtle issues arise can be seen from an 
examination of the original TZ formula (generalized to d-di- 
mensions5) for the surface tension u of a planar liquid-vapor 
interface whose normal vector is along the z axis: 
Po = 

-- JdZl Jdz2 Jdr2 ~122C~Zl,Z27~12) P’O(Z1) P’O(Z2) 
2(d - 1) 

(1.1) 

(1) Triezenberg, D. G.; Zwanzig, R. Phys. Rev. Left .  1972, 28, 1183. 
(2) For a recent review, see: Rowlinson, J. S.;  Widom, B. Molecular 

Theory of Capillarify; Clarendon: Oxford, 1982. 
(3)  Buff, F. P.; Lovett, R. A,; Stillinger, F. H. Phys. Rev. Letr. 1965, 15, 

621. 
(4) Weeks, J. D. J .  Chem. Phys. 1977, 67, 3106. 
(5) Bedeaux, D.; Weeks, J. D. J .  Chem. Phys. 1985, 82, 972. 
(6) Widom, B. In Phase Transitions and Critical Phenomena; Domb, C . ,  

(7) van der Waals, J. D. Z .  Phys. Chem. 1894, 13, 657; for an English 
Green, M. S., Eds.; Academic: New York, 1972; Vol. 2. 

translation, see: Rowlinson, J.  S .  J .  Stat. Phys. 1979, 20, 197. 

Here @ is the inverse temperature (kBT)-l ,  C the (generalized) 
direct correlation function, r a (d - 1) dimensional vector in the 
interface plane, rI2 = Irl - rzl, and dpo(z)/dz 3 ~ ’ ~ ( z )  the derivative 
of the density profile po(z) (see section I11 for precise definitions). 
Implicit in (1.1) is the existence of a weak external field +o(z) 
that produces macroscopic phase separation. 

According to capillary wave theory, in dimensions d I 3, ~ ’ ~ ( z )  
has a sensitive dependence on the strength of that external 
(gravitational) field and vanishes as the field strength g tends to 

If this prediction is correct, then implicitly C must also 
have a strong field dependence so that the surface tension u has 
a finite limit, becoming essentially independent of g as g - O+. 
This is physically required and is predicted by the exact Kirk- 
wood-Buff formula8 for u. For d = 2, Bedeaux and Weeks5 
explicitly showed that the capillary wave model satisfied (1.1) as 
an identity, with a C that indeed had a strong field dependence. 
Along with the strong field dependence, the capillary wave model 
also predicts a strong dependence on system size for C and ~ ’ ~ ( z )  
in (1.1). One of the main goals of this paper will be to examine 
the approximate validity of (1.1) and (1.2) below for finite systems 
as well as in the thermodynamic limit. 

This predicted strong field and size dependence of the corre- 
lation functions in (1.1) is quite different from what is suggested 
by the classical van der Waals picture. Here one envisions an 
“intrinsic” profile of finite width and correlation functions re- 
sembling those of the bulk phases, which are essentially inde- 
pendent of system size or the strength of a weak external field.6 

Perhaps this point can be seen even more clearly from the 
formally equivalent expression for u involving the (generalized) 

(8) Kirkwood, J .  G.; Buff, F. P. J .  Chem. Phys. 1949, 17, 338. 
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pair correlation function H(z,,zz,rlz), first derived by Wertheimg 
pu = 
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1 
2(d - 1) JdZI Jdzz Jdr,, ‘122H(zlJ2,r12) Pdb(Zl) x 

04 b(z2) (1 .2) 
where the external field, do(z), now appears explicitly. For the 
gravitational field do = mgz, we see that the right-hand side of 
(1.2) is formally proportional to 2. Hence only for a “nonclassical” 
H that has long-ranged correlations diverging as g - O+ could 
(1.2) possibly be c ~ r r e c t . ~  

This is consistent with capillary wave t h e ~ r y , ~ - ~  which predicts 
an exponential decay of correlations in H only for distances of 
the order of the capillary length L,, where 

(1.3) Lc = [ u / ( m g h  - P”))11’2 

Here ( p i  - p,) Ap is the difference in number density of the bulk 
phases. Indeed for d < 3, H i s  of order unity’ until r I 2  is of order 
L,. It is easy to show from the results of Bedeaux and Weeks’ 
that (1.2) is satisfied exactly in all dimensions in capillary wave 
theory . 

On the other hand, one of the attractive features of the original 
T Z  formula (1 . l )  was that it appeared to give a more rigorous 
justification for the classical van der Waals square-gradient ex- 
pression for the surface ten~ion.l-~*’ As noted by TZ, if one makes 
a local Ornstein-Zernicke (OZ) approximation for C in ( l . l ) ,  
appropriate for the bulk phases, then it immediately reduces to 
the classical van der Waals formula. This is known to give at least 
a qualitatively correct value for a for a Lennard-Jones fluid near 
the triple point, provided an “intrinsic” ~ ’ ~ ( z )  whose width is of 
the order of the bulk correlation length lB is used.2 

Thus the question arises, how can the TZ formula continue to 
give sensible results when two such widely different assumptions 
about the behavior of interface correlation functions are made? 
Since this is certainly not the case for the formally equivalent result 
(1.2), is the apparent consistency with the classical picture just 
a misleading coincidence? What is the T Z  formula telling us 
about interface structure? 

The answers to these questions turn out to touch on some 
general criticisms that several workers1“12 have raised about the 
logical foundations of the derivations based on functional methods 
that lead to (1.1) and (1.2), and indeed about the validity of the 
T Z  formula itself. As will be discussed in more detail below, we 
believe all these concerns can be met, provided proper attention 
is paid to the external field when taking the thermodynamic limit. 

A general discussion of this point and definition of our model 
system is found in section 11. We believe it is advisable to 
thoroughly understand this simple system before attempting a 
more general treatment. In sections 111 and IV, we carefully 
review the derivations of (1 . l )  and (1.2). While our treatment 
is certainly not rigorous or the most general possible, we have tried 
to focus on the important conceptual issues that we believe must 
be dealt with in any more formal approach. In section V our 
results are compared to the predictions of capillary wave theory, 
and some final remarks are found in section VI. 

11. Importance of External Field in Description of a 
Two-Phase System 

There are several qualitatively new issues that arise in the 
description of a two-phase system using the grand ensemble, where 
the number of particles can vary. Bulk-phase correlation functions 
and thermodynamic properties are completely specified in terms 
of the inverse temperature and the chemical potential 1.1. As 
the system size tends to infinity, a one-phase system acquires a 
well-defined average number density independent of any local 

Weeks and van Saarloos 

(9) Wertheim, M. S. J .  Chem. Phys. 1976, 65, 2377. 
(10) Requardt, M.; Wagner, H. J. Physica A 1988, 154, 183. Requardt, 

M. J. Stat.  Phys. 1988, 50. 737.  
( 1  1 )  Requardt, M.; Wagner, H. J. Are Liquid-Vapor Interfaces Really 

“Rough” in Three Dimensions? Going Beyond the Capillary Wave Model 
(preprint). 

( 1  2) Ciach, A. Phys. Reu. A 1987, 36, 3990. 

effects from short-ranged wall potentials or from an arbitrarily 
small but nonzero external field. 

In contrast, if p = bq appropriate for two-phase coexistence, 
then both the location of the two bulk phases and their relative 
volume fractions are sensitive functions of the wall potentials and 
external field strength. As a result, the thermodynamic limit must 
be taken with care, with explicit consideration of external field 
effects. This basic point has been ignored in some recent dis- 
cussions in the literature, including some that purport to be rig- 
orous treatments. 

It was recognized long agoI3 that in the complete absence of 
any external field the distribution functions in a two-phase system 
simply become appropriately weighted linear combinations of those 
for the two bulk phases. In this degenerate case, the correlation 
function H in (1.2) does not decay to zero at large rI2, and the 
results like (1.2), or that involving its inverse C in ( l . l ) ,  make 
no sense. 

A nonzero field regularizes these ambiguities, just as an ar- 
bitrarily weak magnetic field allows us to realize that there is a 
finite magnetization in the Ising model below T,. In a system 
where two-phase coexistence is possible, an appropriately chosen 
external field will induce macroscopic phase separation and, in 
the grand ensemble, can also determine the relative volume 
fractions of the two bulk phases. In the presence of a nonzero 
field there is an invertible relation between the potential d0(z) 
and the density po(z), and we can use density functional methods 
in much the same way we do for a one-phase system. The resulting 
equations [e.g., (1.2)] will themselves give indications of the subtle 
effects of interface wandering3-’ that can arise as g - O+, and 
these can be treated in a controlled way. 

Our analysis is carried out in the simplest possible system, so 
that we can focus on conceptual issues. We assume the inter- 
particle interactions are of strictly finite range (e.g., a truncated 
Lennard-Jones potential) and will later briefly discuss some of 
the complications that arise from longer ranged (power law) 
interactions. The particles are contained within a large vertical 
“column” with volume L61L,, where the height in the z direction 
L, is much larger than the transverse dimensions L. To avoid 
extraneous effects arising from wall potentials (and resulting 
questions of wetting, etc.), we take periodic boundary conditions 
along all transverse faces. In the presence of an appropriately 
chosen external field, by taking the limit L, - before L - OD, 
we can clearly find results independent of boundary conditions 
in the z directions. 

If liquid-vapor coexistence is possible ( p  = pq), then as L, - 
m an arbitrarily weak gravitational field d0(z) = mgz will induce 
macroscopic phase separation with the denser (liquid) phase fa- 
vored for z < 0. By proper choice of constants in p and do we 
can arrange for the Gibbs dividing surface at  z = 0 to be in the 
center of the column. To minimize the effects of the field on the 
bulk phases, we truncateI4 it a t  some distance 0 << z, << L,/2 
so that 

do(z) = mgz Izl 5 zw 

= sgn (z)mgz, Izl > z, (2.1) 

with z, chosen so that limd+ gz, = 0’. With this truncated field, 
for small g the chemical potential in both bulk phases approaches 
pq. According to capillary wave t h e ~ r y , ~ , ’ ~  we can make such 
a choice for z, and still have z, of O( W), where Wis the interface 
width in the weak field. Thus we can arrange to have a field 
gradient only in the interfacial region. 

Let us now return to the derivation of the T Z  formula (1.1) 
and the Wertheim variant (1.2), which we refer to as the TZW 
formula. Although (1.2) was originally derived9 as a consequence 
of (1.1) and the inverse relation between H and C (see (4.4) 
below), it is quite instructive to derive it directly using functional 
methods in the grand ensemble. This is the subject of the next 
section. 

(13) Mayer, J. E. J. Chem. Phys. 1942, 10, 629. 
(14) Weeks, J. D. Phys. Reu. Lett. 1984, 52,  2160. 
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111. Derivation of the TZW Formula (1.2) 
We consider a large system, as always at  finite g. In the grand 

canonical ensemble, the free energy R is a functional of the external 
potential 4(R). Here 

-pQ = In E (3.1) 

with E the grand partition function, R = (r,z) is a d-dimensional 
vector, and we take a general potential d(R) not necessarily equal 
to C$~(Z) in (2.1). The singlet distribution function (density profile) 
consistent with this potential is given by the functional deriva- 
tive2,15,16 

(3.2) 

and the average number of particles in the open system is 

( N )  = I d R  p(R) (3.3) 

Finally the generalized pair correlation function is given by a 
second functional derivative2J5J6 

62[-@n1 
6 [BM-P~(RI )I 6 [@~-P4(Rz)l (3.4) - - 

When we perturb about the potential 40(z) in (2.1), then (3.2) 
and (3.4) give the functions po(z) and H(z1,z2,r12) used in (1.1) 
and (1.2). 

Consider now imposing a small-amplitude and long-wavelength 
variation of the external potential +o(z): 

&m) = 4o(z-h(r)) - 4o(z) 

= -4b(z) h(r) (3.5) 

where we imagine h(r)  arbitrarily small so that we need keep only 
the lowest order terms. Note that the small parameter is the 
distortion h(r) rather than the magnitude of the potential $(R). 
Thus this formalism can also be used when there are regions where 
+(R) is large, e.g., when considering a finite system with a hard 
wall. To indicate explicitly the scale of variation of h(r) ,  we take 

h ( r )  h,(r/X) (3.6) 

where the parameter X will be chosen later. By definition of the 
functional derivative we then have from (3.4) 

b(R1) = Jdr2 dz2 H(ZIJ2712) P4b(z2) W 2 / M  (3.7) 

In particular, a simple displacement of the external field, with 
h ( r )  = 6h = constant, must produce a similar displacement in 
po(z), since in the grand ensemble only the field induces inho- 
mogeneities in the fluid. Thus 6p(R) = - P ' ~ ( Z )  6h, and (3.7) 
becomes9J7 

Equation (3.8) is exact and applies to one- as well as two-phase 
systems. 

According to capillary wave theory,s in the presence of a finite 
field there is a scale L, [see (1.3)] such that, for rI2 2 L,, the 
interface correlation function H decays exponentially to zero. As 
far as we know, this important result has not been proven rig- 

(15) See, e.g.: Stell, G. In The Equilibrium Theory of Classical Fluids; 
Frisch, H. L., Lebowitz, J. L., Eds.; Benjamin: New York, 1965; p 11-171. 
Percus, J. K. Ibid., p 11-33, An elementary introduction is given in section 
7.5 of Balescu, R. Equilibrium and Non-equilibrium Statistical Mechanics; 
Wiley: New York, 1975. 

(16) Weeks, J. D.; Bedeaux, D.; Zielinska, B. J. A. J .  Chem. Phys. 1984, 
80, 3790. 

(17) Lovett, R.; Mou, C. Y.; Buff, F. P. J .  Chem. Phys. 1976,65, 570. 

orously, but it is certainly very plausible that for finite g and 
finite-ranged particle interactions there is some scale Li(g) (which 
itself will diverge as g - 0') where H decays exponentially to 
zero.18 While we have every reason to believe the capillary wave 
prediction L,' = L, is correct, in order to make the fewest as- 
sumptions in this paper, we admit the possibility L,' # L, for the 
moment. 

We now consider a long-wavelength distortion of the external 
field, Le., a scale of variation X >> L,' in hs(r/X). Expanding 
hs(r2/X) about hs(rl/X) in a Taylor series, we have from (3.7) to 
first order 

6 p ( ~ ~ )  = h,(rI /~)Jdr2 dzz ~ ( z 1 , z 2 , r l Z )  84b(z2) (3.9) 

Provided that the deformations in h occur on a length scale long 
compared to the decay length L,' of H ,  i.e., X >> L,', the con- 
tributions from the higher order terms in the Taylor series ex- 
pansion can be made arbitrarily small.lg Using (3.8), (3.9) can 
then be rewritten as 6p(RI) = -pl0(zl) h(rl). Thus, as an obvious 
generalization of the idea leading to (3.8), for sufficiently 
small-amplitude and long-wavelength variations in the external 
field, the density variations follow those of the field: 

4o(z-h(r)) * po(z-h(r)) (3.10) 

We are now in a position to derive (1.2). We require that the 

Jdr h(r) = 0 (3.1 1) 

At long wavelengths, where (3.10) holds, (3.11) implies that (6N)  
= SdR 6p(R) = 0. To second order, the change in free energy 
R from the modified external field is thenz0 

distortion of the potential satisfies 

1 mQ = -2JdR1 dR2 864(Rl) H(R132) "2) 

1 
2 = --J dR1 dR2 P4bb1)  Wrl) H(z1,~2712) Pdb(z2) h(r2) 

(3.12) 

since the first-order term vanishes upon using (3.1 1) and (3.2). 
With the aid of (3.8), (3.12) can be rewritten exactly as 

p6R = - i J d R  , & # J ~ ( Z )  h2(r) ~ ' ~ ( z )  + 1 

+Rl 4 dR2 [ml) - h(r2)1284b(z1) H(ZlJzlrl2) P4b(Zz) 
(3.13) 

Expanding f(rl,r2) = [h(rl) - h(r2)lz in a Taylor series about r2 
= r l ,  we see that the first nonzero term is [rl2.Vh(r1)l2 = 
x1#h(rl)12, where we take the x axis of r12 along Vh(r,). Noting 
that H is a function of lrI21 only, (3.13) to lowest order can then 
be written 
psn = 

1 1 
- - J ~ R  2 P ~ W  h2(r) P ' ~ ( z )  + 2prTzwJdrl i w r I ) i 2  ... 

(3.14) 

(18) Of course, when the particle interactions are not of finite range, but 
decay to zero as a power law of the distance [Le., r-1, we expect H a n d  C 
to finally cross over to a power law behavior for r - - and nonzero g. Though 
important in a careful mathematical treatment (see, e.g., ref IO), this crossover 
is physically not very relevant, since on length scales of O(L,), the capillary 
wave contributions to H are much larger than those from the direct power law 
interactions (For d < 3, the capillary wave contribution is O(1) at Lc). Thus, 
in the limit g - O+ the power law contribution becomes arbitrarily small. 
However, if the power y is sufficiently small, capillary waves may be sup- 
pressed altogether. See, e.&, the anisotropic van der Waals model of ref 16, 
where the interface is 'stifr. The situation is similar to the one in critical 
phenomena, where it has been shown that as tB - -, power law interactions 
do not affect the critical behavior, and in particular the exponent 11, provided 
the power y is large enough (see, e.g.: Sak, J. Phys. Rev. E 1973,88 281 and 
references therein). 

(19) Note that if we have power law interactions as discussed in ref 18, 
the expansion (3.9) is only asymptotic. 

(20) This same approach was taken by Weeks et a1.I6 (see Appendix C) 
in deriving the T Z  formula (1.1). See also ref 11. 
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where 

1 
P r T Z W  E 

- 2(d - 1) JdZl J-dz2 P4J’O(Zl)  Pdk(z2)Jdr12 r122H(z13Z2712) 

(3.15) 

Note that it is because we have a nonzero external field (g > 0) 
that the correlation function H vanishes a t  large ir121 and (3.15) 
is well-defined. If the scale of variation of h(r) satisfies X >> L i ,  
then the higher order terms in the Taylor series in (3.14) (indicated 
by ...) again make negligible contributions, and (3.14) is an ar- 
bitrarily accurate approximation to (3.13). In precisely the same 
limit, we know from (3.10) that the field induces a long-wavelength 
density variation 6p(R) = -P’~(Z) h(r); the accompanying change 
in area of the distorted Gibbs dividing surface is then 

6A = l J d r  IVh(r)12 (3.16) 
2 

Hence for long-wavelength distortions the last term in (3.14) 
involves the change in area of the Gibbs dividing surface induced 
by the field, while the first term involves work against the external 
field (see (3.17) below). 

Under these conditions, we can identify P 6R in (3.14) with the 
thermodynamic prediction for the free energy change induced by 
a macroscopic distortion of the Gibbs dividing surface. This same 
idea forms the basis for capillary wave theory3 and was a key step 
in the derivation of the original T Z  formula.’ 

There are two terms in the thermodynamic approach: work 
given by the change in area of the distorted surface times the 
macroscopic surface tension u and work against the external field. 
The latter term gives 

P6V = JdR P+o(z) ~ P ( R )  

1 
= - I d .  2 P4Jo(z) p”o(z)Jdr h2(r) 

(3.17) 1 
= - - Jdz @$’o(z) pt0(z) Jdr  h2(r) 2 

where we have expanded Gp(z,h(r)) to second order, since the 
first-order correction to 6Vvanishes on using (3.1 l), and integrated 
by parts. Using (3.16) for the change in area, the total ther- 
modynamic free energy change is then 

1 1 
2 

p6W = --JdR P$J’,,(z) h2(r) ~ ’ ~ ( z )  + ;Bo]dr lVh(r)I2 

(3.18) 

where u is the (macroscopic) surface tension (or surface stiffness 
in an anisotropic fluidI6) in the presence of the field $@ The first 
term reduces to the usual capillary wave expression (1 /2)mgApJdr 
h2(r) on using the explicit expression (2.1) for $Jo.21 

Comparing the thermodynamic result (3.18) with (3.14), we 
have rTZW = u; thus (3.15) or (1.2) is our desired expression for 
the surface tension. We believe this derivation makes it clear that 
(3.1 5) is indeed an exact expression for the surface tension provided 
the following important points are kept in mind. (i) There must 
be a nonzero external field for these expressions to make sense, 
though the external field strength can be taken arbitrarily small. 
(ii) Thus, strictly speaking, r in (3.15) represents the surface 
tension in the presence of a weak external field, but the field 
dependence is that of the macroscopic u in (3.18), which we know 
to be negligibly small as g - O+. As recognized by Wertheim,g 
this implies that H must have long-ranged correlations as g - 
0+, so that indeed reaches a finite limit independent of g. (iii) 
Because of the long-ranged correlations, the system size L must 
be much greater than L i ,  the range of correlations in H. (Strictly 
speaking, the thermodynamic result (1.2) applies only in the limit 

(21) Note that the potential energy term is positive for all (long-wave- 
length) density fluctuations satisfying (3.1 1). since we consider distortions 
relative to the equilibrium Gibbs dividing surface at z = 0, whose position is 
set by @OW. 

L - 03, so we imagine taking the limit L - 0) before letting g - 0’. However, for L >> L,’ there should be essentially no 
difference in the two expressions.) Note that it is only for var- 
iations h(r) whose scale of variation satisfies X >> L i  that we can 
(a) justify the truncation of the Taylor series expansion of [h(r,) 
- h(r2)I2 in (3.13) to lowest order as in (3:14) and (b) identify 
the resulting IVh12 term with the change in area of the distorted 
Gibbs surface on the basis of (3.10). Both these conditions are 
required to identify j3 6R in (3.13) with the thermodynamic result 
(3.18). 

IV. Derivation of the TZ Formula (1.1) 
In contrast, we argue that the T Z  formula ( l . l ) ,  while 

equivalent to (1.2) in the thermodynamic limit L - m, also gives 
a good approximation to u even in small systems with U(EB) 5 
L << L:. In such a small system, long-ranged horizontal corre- 
lations are not possible, and we expect that the classical ideas of 
van der Waals should hold appr~ximately.~ Thus the T Z  formula 
can indeed provide some insight and justification for the classical 
approach. As the system size is increased, we enter the nonclassical 
regime dominated by long-wavelength fluctuations between distant 
parts of the interface. It is only in this latter regime that the TZW 
formula (1.2) is correct. Hence the T Z  formula (1.1) can be 
thought of as a bridge taking us from classical to nonclassical 
behavior as the system size L is increased. 

As we will see, the formal steps leading to our derivation of 
the TZ formula (1.1) closely follow those we have just taken to 
derive (3.15) and to identify r with u in (3.18). However, a crucial 
new feature is that manipulations involving the direct correlation 
function are most naturally carried out in a different ensemble 
where the density p(R), rather than the external field Q(R), is the 
independent ~ a r i a b l e . ~ ~ ’ ~ . ’ ~  Thus we can directly impose an ar- 
bitrary density variation on the system. The density functional 
formalism will, in effect, determine the (complicated) external 
field needed to produce a given density variation on smaller length 
scales where (3.10) no longer holds. Once the density variation 
is prescribed, we can immediately determine the change in area 
of the Gibbs dividing surface. Furthermore, as we argue below, 
the thermodynamic expression (3.18) remains approximately valid 
for finite L, even with L, >> L 5 @EB). Thus the identification 
of the density functional and thermodynamic expressions for the 
change of free energy with interface distortion can be made under 
less restrictive conditions, leading to a much greater range of 
validity of the T Z  formula. 

The appropriate free energy F for the density functional ap- 
p r o a ~ h ~ , l ~ * ’ ~  is based on a Legendre transformation of the grand 
ensemble free energy Q in (3.1): 

where F is a functional of the density p(R). From the properties 
of the Legendre transformation, the external field $J(R) consistent 
with a given p(R) satisfies a relation reciprocal to (3.2): 

(4.2) 

A second functional derivative gives the (generalized) direct 
correlation function 

62BF 

6P(R’) MR2)  
(4.3) 

For p(R) = po(z) ,  (4.2) and (4.3) give the functions 4Jo(z) and 
C(zl,z2,rI2) appearing in the T Z  formula (1.1). From (3.4), (4.3), 
and (4.1), we see that C is the inverse of H: 

- - 

X d R ,  H(RI,RJ C W A )  = ~(RI-Rz)  (4.4) 

To find the analogue of (3.8), rather than physically changing 
the density po(z) and the associated field &(z), we calculate the 
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change formally induced by a small vertical shift 6h in the entire 
system, including wall potentials, if present. Thus 6p(z)  = po(z4h) 
- po(z) and 64(z) = 40(z-6h) - 40(z). As 6h - 0, we have from 
(4.3) the exact result 

We can derive the TZ formula (1.1) directly from (3 .13,  using 
(4.5) and (4.4), but this would not indicate the greater utility of 
the TZ formula in systems with finite L < L,, where (3.15) no 
longer holds. Further, there have been some questions raised about 
the validity of these formal manipulations and the nature of C 
as L - 03 for d = 3.’*12 Thus it is quite useful to consider first 
a system with L some finite multiple of the bulk correlation length 
tE, but much less than L,. We see no reason to doubt the ap- 
plicability of density functional methods to such a system (provided 
of course that g > O!), and we can later examine whether the 
complications arise as L -+ a. 

For finite systems, as argued by Weeks,4 the most natural 
description of interfacial properties arises in the canonical en- 
semble, where the number of particles, N ,  is fixed, and chosen 
so that the Gibbs dividing surface is a t  z = 0, consistent with the 
field q50(z). This suppresses the trivial zero wave vector vertical 
translation of the Gibbs dividing surface as a whole produced by 
fluctuations in particle number N, these cause the interface width 
as measured in the grand canonical ensemble to diverge in the 
limit g - O+ with L Clearly it is the “intrinsic” structure 
of the interface unbroadened by such translations that is envisioned 
in the classical picture and that is measured in computer simu- 
lations. (Strictly speaking, L, should be taken finite as well in 
order to prevent even the canonical interface width from diverging 
as g - 0’. See the Appendix for a discussion of this and other 
related subtleties.) 

We use the flexibility of the density functional formalism to 
choose canonical densities and correlation functions in the fol- 
lowing. We note that the above derivation of (4.5) is valid in the 
canonical as well as in the grand ensemble,23 and for our system 
with periodic boundary conditions, it holds also for finite L without 
any boundary corrections in the transverse directions. We argue 
in the Appendix that boundary corrections from the top and 
bottom walls in (4.5) are negligible for z1 in the interface region, 
while for the analogous result, (3.8), such boundary corrections 
are essential in a finite system. 

The surface tension uL in a finite system can be computed by 
molecular dynamics techniques using the Kirkwood-Buff formula; 
these  calculation^^*^^ have shown that it differs by only a relatively 
small amount from the infinite system limit u. The differences 
between u and uL mainly involve “unfreezing” longer wavelength 
capillary waves, which carry very little free energy provided L 
is a t  least of 0 ( t B ) . 4 ’ 2 5  

In the same way, we expect that if we impose a small-amplitude 
density perturbation 6p(R) = po(z-h(r))  - po(z) on this finite 

(22) The difference between the two ensembles, discussed in great detail 
in ref 4 and 16, essentially concerns only the treatment of the k = 0 translation 
mode. These differences can be important, since in the grand ensemble only 
the external field prevents large fluctuations in N, indeed, for fixed system 
size and arbitraril small g, these fluctuations can wash out the profile: On 

fluctuations in Nand  the density profiles in the two ensembles become the 
same, both being predominately determined by nonzero wave vector fluctua- 
tions between different parts of the interface. Note also that, in the canonical 
ensemble, the inverse C of H is defined for nonzero wave vectors only, because 
H i s  normalized such that jdRz  H(RI,R2) = 0. See eq D.4 of ref 16. 

(23) Thus (4.5) holds exactly for both the grand canonical profile and 
correlation functions, which for small system sizes are broadened by the k = 
0 translation mode, as well as when the more ‘classical” canonical functions 
are used. This illustrates the flexibility of the density functional formalism, 
where we can choose the appropriate densities and ensembles to fit our pur- 
poses. 

(24) See, e&: Sikkenk, J .  H.; Indekeu, J .  0.; van Leeuwen, J .  M. J.; 
Vossnack, E. 0. Phys. Rev. Lerr. 1987, 59, 98. 

(25) See also: Sengers, J. V.; van Leeuwen, J. M. J. Phys. Rev. A 1989, 
39, 6346, and van Leeuwen, J.  M. J.; Sengers, J.  V. Capillary Waves of a 
Vapor-Liquid Interface in a Gravitational Field Very Close to the Critical 
Temperature (preprint) for an analysis of the wave vector dependence of uL 
on scales larger than O(&J. 

the other hand,’,’ 6y for large systems with L, and L >> &, the field suppresses 
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system, the thermodynamic result (3.1 8) will still remain ap- 
proximately valid, with some ut = Q. This idea forms the basis 
for Weeks’ interpretation of capillary wave t h e ~ r y : ~  even down 
at scales of O(tB) one can approximately describe the free energy 
change for small distortions of the interface using the thermo- 
dynamic argument leading to (3.18). Note that since the density 
is now the independent variable, we can require tht IVh(r)l is small 
enough that the quadratic approximation to the change in area 
of the distorted surface, used in (3.18), is accurate. With this 
proviso, (3.18) should describe the free energy change for arbitrary 
small-amplitude distortions of the Gibbs dividing surface. 

Our strategy now parallels that of section 111. We evaluate 
the free energy change for such a small-amplitude distortion from 
the density functional formalism and equate this to (3.18). Again 
requiring that (3.11) holds, so the first-order term vanishes, we 
find immediately from (4.2), (4.3), and ( 4 . 3 ,  the analogue of 
(3.13): 

1 
P6F = --JdR 2 ~ ’ ~ ( 2 )  h2(r) P4b(z) - 

Expanding h(r2) about h(rl)  in a Taylor series we get the analogue 
of (3.14): 
P6F = 

- 1 S d R  ~ ’ ~ ( z )  h2(r) &b(z )  + -+TzJdr lVh(r)I2 i- ... 
2 

(4.7) 
where 

P r T Z  = 
1 

2(d - 1 )  -- JdZI Jdz2 P’O(Z1) P’O(ZZ)JdrlZ r122c(~1,z2712) 

(4.8) 
and where ... stands for the contributions from higher order terms 
in the Taylor series. 

In contrast to (3.14), the IVh(r)IZ term in (4.7) is now known 
to represent the change in area of the Gibbs surface, even for L 

L,, since this density variation was imposed from the outset. 
Moreover, since the form of the thermodynamic result (3.18) 
remains valid for arbitrary small-amplitude h(r),  (provided only 
that IVh(r)l<< l ) ,  we conclude from comparison with (4.6) and 
(4.7) that the higher order terms in the Taylor series in (4.7) must 
be small, and that 

rTZ % uL (4.9) 
where uL is the (finite system) surface tension appearing in (3.18) 
with L finite. In the limit L - a, uL - u, and the neglect of 
higher order terms can be justified more rigorously as in section 
111. Then (4.9) reduces to the original T Z  formula (1.1). 

From the above analysis, we can draw the following conclusions. 
(i) The unimportance of the higher order terms in the expansion 
implies that the higher order moments along the interface of 

(4.10) 

must each be small. While one could imagine an accidental 
cancellation of higher order terms for some particular distortion, 
the equality of (3.18) and (4.6) for a variety of distortions is 
possiblepnly if all higher order terms are small. Thus the pro- 
jection C of C onto pl0 as in (4.10) must be short-ranged along 
the interface. As we discuss below in section V, this result is in 
agreement with the predictions of capillary wave theory. (ii) Since 
(4.10) suggests that C is short-ranged, a reasonable order of 
magnitude approximation in a small system with L of is 
to replace C by its bulk phase value. This is the local O Z  ap- 
proximation of TZ, and (4.8) then reduces to the classical square 
gradient formula of van der Waals. In such a small system the 
density profile ~ ’ ~ ( 2 )  represents the “intrinsic” profile, unbroadened 
by capillary wave fluctuations, consistent with the OZ approxi- 
mation and classical ideas. In our interpretation, this approach 
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is successful because uL for a small system is a good approximation 
to the thermodynamic quantity u. 

V. Relation to Capillary Wave Model 
In the previous section, we have seen that the TZW formula 

( 1.2) explicitly predicts that long-range correlations develop at  
an interface in the limit g - O+. To our knowledge, the only 
possible source of such correlations are the long-wavelength ca- 
pillary waves. However, doubts continue to be expressed about 
the applicability of the standard capillary wave model as well as 
the validity of the T Z  formula,’w12 particularly for d = 3. 

We believe all these criticisms can be dealt with, provided one 
takes proper account of the external field. A detailed discussion 
of these issues and an analysis of the correlation functions H a n d  
C in the capillary wave model for d = 3 will be given elsewhere,26 
so we confine ourselves here to a few brief remarks. As stated 
earlier, it is easy to verify that the TZW formula (1.2) is satisfied 
identically in the capillary wave model. In this approach C is 
calculated through an explicit inversion of H with the aid of (4.4); 
in line with the remarks made in section 11, this has to be done 
in finite field g, since only then does H decay at  large distances 
r >> L,. We find26 that if this is done carefully by taking the limit 
g - O+ (L, - a) only at  the final stage of the calculation, one 
properly recovers the expected behavior and obtains agreement 
with the general results of the earlier sections. 

Another important finding of this paper is the fact that 

should be short-ranged [cf. (4.10)]. More specifically, the fact 
that (4.6), (4.7), and (3.18) should be essentially equivalent for 
arbitrary h(r) and all system sizes L k @EB) leads us to conclude 
that 

(5.2) 

Here 6(r) is understood to be a delta function on the scale r k 
O(&J. Note that the first term proportional to 6(rI2) does not 
contribute to the surface tension2’ and that we have left out any 
higher derivatives of 6(r) on the basis of the earlier observation 
that these terms should be small on scales larger than tB. It is 
straightforward to verify (5.2) explicitly for the capillary wave 
model in all dimensions,s-26 so that both the T Z  formula and the 
TZW formula are satisfied identically in capillary wave theory. 

Although on the basis of t_he T Z  formula alone one can only 
draw conclusions regarding C, we can use capillary wave theory 
to determine the essential structure of C for d 5 3. We find26*2s 
for fixed z , ,  z2  << Wand r I 2  << L, 

For d = 2, (5.3) is exact on all length scales in the capillary wave 
modeL5 In retrospect, one could probably have guessed the form 
of (5.3a) for d < 3, since it is the simplest form that is short-ranged 
in both z and r and still obeys the scaling relations given by 
Bedeaux and Weeks.5 However, note that we also obtain this 
form26 for d = 3, even though here scaling only holds for r 2 L,. 
Above three dimensions, however, H and C develop power law 
b e h a v i ~ r ’ ~ ~ ~  on scales EB << r << L,; as a result C does not reduce 
to the form (5.3) for d > 3. 

VI. Final Remarks 
Capillary wave theory exploits the same fundamental idea that 

is used in the derivation of the T Z  formula: the change in free 

(26) Weeks, J. D.; van Saarloos, W.; Bedeaux, D.; Blokhuis, E. Preprint. 
See ref 16 for a discussion of earlier objections to the capillary wave model. 

(27) The value of c, c>n be determined by using (4.5). 
(28) As was done for C, we omit a term proportional to 6(r) that may also 

arise. See ref 26 for further details. 

energy for long-wavelength interface distortions is given by the 
surface tension times the change in area. It offers a physical 
picture that helps us understand the limiting processes that must 
be taken to properly treat the complex interplay between the 
long-wavelength interface fluctuations, the external field, and finite 
system size effects. Combining these insights with the powerful 
formal methods of density functional theory gives us a deeper 
understanding of interface structure than would be possible from 
either approach alone. We believe this is one of the main uses 
of the density functional formulas involving u. They provide 
insight into the logical consistency of various descriptions of in- 
terface structure, and, given an appropriate theory, they can yield 
expressions useful in practical calculations. On the other hand, 
in molecular dynamics simulations, a determination of the net 
stresses as in the Kirkwood-Buff f o r m ~ l a ~ , ~ ~  will almost surely 
be a simpler and more accurate way of calculating the numerical 
value of u. A similar situation is seen for the compressibility 
formula for the pressure, which is the bulk analogue of the T Z  
formulae2 In simulations, the virial pressure is the preferred route, 
but the compressibility formula provides an important consistency 
check on theories for liquid structure. Indeed, several of the most 
accurate integral equation theories for liquid structure require 
consistency between the virial and compressibility pressures.29 

We have seen the remarkable robustness of the TZ formula: 
its (approximate) validity for small “classical” systems as well as 
for large systems dominated by long-wavelength fluctuations. This 
is in large part a consequence of its derivation using an ensemble 
where the density is the external variable. This freedom can be 
exploited in other situations where density functional methods are 
used; e.g., the theory of freezing, where a “broken symmetry” 
periodic singlet density is assumed for the solid phase.30 

Our work has more general implications. There have been 
several attempts to show directly the equivalence of the T Z  and 
Kirkwood-Bufp formulas for the surface tension.31 However, 
the first step in every attempt has been to transform the T Z  
formula (1.1) to the TZW formula (1.2). In this representation, 
one must explicitly deal with the long-ranged interface correlations, 
and the thermodynamic limit must be taken with great care, taking 
account of the external fields. This remark applies equally well 
to studies of the wetting transition that make use of the analogue 
of the TZW formula, where we believe some of the literature is 
misleading. We agree with Requardt and Wagner’O that to date 
no demonstration of the equivalence of the TZ and TZW formulas 
can be considered completely satisfactory. Of course, given the 
sound thermodynamic basis of these formulas, we have no doubts 
that such a rigorous demonstration could be carried out, partic- 
ularly if insights from the capillary wave picture are used to guide 
the formal analysis. The key idea that needs to be proven rig- 
orously, and then exploited in the demonstration of the equivalence 
using the TZW formula, is the decay of correlations in H at  
sufficiently large distances in the presence of a finite external field. 
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discussions. 

Appendix: Finite Size Effects and Boundary Corrections 
In section IV, we considered the interface in a canonical system 

of finite lateral size L in order to study the “intrinsic” structure 
of the interface, unbroadened by zero wave vector fluctuations. 
Strictly speaking, however, the vertical length L, also should be 
finite to suppress these fluctuations. Otherwise, in the case L, 

(29) See, e&: Rogers, F. J.; Young, D. A. Phys. Rev. A 1984, 24, 999. 
(30) See, e.g.: Haymet, A. D. J.; Oxtoby, D. W. J .  Chem. Phys. 1986,84, 

1769. 
(31) See ref 10 for a critical review of this work. The most straightforward 

attempt is found in: Waldor, M. H.; Wolf, D. E. J .  Chem. Phys. 1986, 85, 
6082. However, in addition to problems that arise in taking the thermody- 
namic limit, which the authors recognize, we believe their eq 17 is incorrect. 
The form (-@-‘a,, + F , 3 ) ( - f 1 8  + F 3) exp(-@W) should read instead exp- 
( L W [ ( - f ’ a , ,  + F83) exp(-@WC?j[(-f‘8jJ + F,?) exp(-@W)l. T t h  this form 
of eq 17, we have not been able to prove the equivalence of the firhood-Buff 
and the TZ formulas, using the type of analysis of Waldor and Wolf. 
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up into multiple domains by the creation of more than one in- 
terface, in order to take advantage of the entropy gain associated 
with the increased wandering of the domains. (A similar argument 
explains the lack of long-ranged order in the one-dimensional Ising 
model.) Alternatively, consider a canonical system with a single 
liquid domain containing two interfaces in an infinitely long 
column with a symmetric potential 40(z)  = 40(-z) that tends to 
locate the center of the domain near z = 0. Clearly, this system 
also develops diverging zero wave vector fluctuations as the field 
strength tends to zero. 

We now discuss some of the additional complications that one 
encounters in an analysis of a system with finite L and L,. The 
classical picture is most naturally realized in a finite system with 
short-ranged wall potentials at z = fL, /2  chosen to induce phase 
~ e p a r a t i o n . ~  It suffices to impose a “hard wall” condition d0(z)  
= m for lzl > L, /2  and to incorporate into 40(z)  for z near the 
lower wall at z = -L,/2 an additional short-ranged attractive term 
that favors wetting by the denser (liquid) phase. Otherwise, as 
before, we take 40(z) = mgz with g arbitrarily small. 

For such a finite system with L, and L of O(&,), a nearly 
classical picture holds provided we use a canonical ensemble 
description: where the number of particles, N, is fixed and chosen 
so that the Gibbs dividing surface is at z = 0, consistent with the 
potential 40(z).  With this setup, we expect to find an “intrinsic” 
interface whose properties are essentially unchanged as g - O+, 

Le., as the potential becomes arbitrarily weak in the interfacial 
region. 

In principle, with L, finite there are contributions in (4.5) from 
the top and bottom boundaries of our ~ y s t e m . ~  Since p(z) vanishes 
for Izl > LJ2,  the following boundary terms are generated by 
(4.5): C0(-Lz/2, zz)plw - C0(L,/2, z2)pw. Here Co(zl,zz) denotes 
the integral over rz of C(z1,z2,rI2) and plw and pw are the densities 
at the bottom and top walls. Using the definition (4.3), we expect 
that a given density change near the wall should correspond to 
a potential essentially localized near the wall, since the wall damps 
out long-ranged correlations. Thus the boundary corrections 
should be negligible for z2 near 0 in the interfacial region. 

The same “shift” argument used to derive (4.5) can be repeated 
to give a more general derivation of (3.8), valid for finite systems 
and in the canonical as well as the grand ensemble. In the grand 
ensemble, with L, infinite and L of O(&,), (3.8) holds true, not 
because of long-ranged “horizontal” correlations, but because of 
long-ranged “vertical” correlations caused by fluctuations in N 
as g -+ 0’. In the canonical ensemble, with L, and L of O(fb), 
boundary corrections from the top and bottom walls, yielding terms 
like H0(*L,/2, z2), allow (3.8) to continue to hold as g -  0’. Note 
that because of conservation requirements in the canonical en- 
semble and the small system size, the density displacement induced 
by a change in potential near the wall could have substantial effects 
on the density profile in the interfacial region. Thus, boundary 
corrections are more important in (3.8) than in (4.5). 
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The recently introduced measure for ergodic convergence is used to illustrate the time scales needed for effective ergodicity 
to be obtained in various liquids. The cases considered are binary mixtures of soft spheres, two-component Lennard-Jones 
systems, and liquid water. It is shown that various measures obey a dynamical scaling law which is characterized by a single 
parameter, namely, a novel diffusion constant. The time scales for ergodic behavior are found to be dependent on the particular 
observable being considered. For example, in water, the diffusion constants for the translational and rotational kinetic energies 
and for the laboratory frame dipole moments are very different. The implications of these results for the calculation of the 
dielectric constant of polar liquids by computer simulations are discussed. 

I. Introduction 
The ergodic hypothesis is one of the central concepts in the 

development of the statistical mechanical theory of thermody- 
namics.’ This hypothesis states that time averages and ensemble 
averages are identical for a system in thermodynamic equilibrium. 
The ergodic hypothesis provides a connection between the results 
obtained from analyzing the trajectory of a many-particle system, 
generated in computer simulations of the dynamics of molecular 
motions, to the results calculated by using the more abstract notion 
of an ensemble. An ensemble characterizes the various equilibrium 
states of the system. In computer simulation studies, estimates 
of these observable properties are obtained as time averages of 
functions, called phase-space functions, of the coordinates and 
momenta of the particles making up the system. Letf(t) be a 
phase-space function whose time average is a physically observable 
quantity. The ergodic hypothesis asserts that 

Formerly the National Bureau of Standards. 
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r--? lim L l r d t  o f ( t )  = v) (1.la) 

where the ( ) indicate an ensemble average. The appropriate 
ensemble for constant-energy, constant-volume molecular dy- 
namics simulations is the microcanonical ensemble. For a system 
with a given Hamiltonian H(p,q)  and total energy Eo, averages 
are expressed as 

cf) = p r  w m q )  - E o ) f ( r ) / S d r  W ( p , q )  - Eo) 
( l . lb)  

and the integration is over the phase space r of the system. 
It should be emphasized that there does not appear to be any 

uniform definition of ergodicity in the literature.2 As was ori- 

(1) A good discussion of ergodic theory in statistical mechanics is provided 
by: Wightman, A. S. In Statistical Mechanics at the rum of the Decade; 
Cohen, E. G .  D., Ed.; Mercel Decker: New York, 1971; pp 1-32. 
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