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Abstract

This paper is an pedagogical essay on the scenario of the instabilities and the transition to turbulence in visco-elastic polymer flows.
When polymers are long, they get easily stretched by the shear present in flows, and the viscosity of the solution or melt is large. As
a result, inertial effects are usually negligible as the Reynolds numbers are small but the fluid is strongly nonNewtonian due to the
shear-induced elasticity and anistropy, and the slow relaxation effects. The dimensionless number governing these nonNewtonian
effects is the Weissenberg number Wi. From a number of precise experiments and theoretical investigations in the last fifteen years, it
has become clear that as the Weissenberg number increases, visco-elastic fluids exhibit flow instabilities driven by the anisotropy of
the normal stress components and the curvature of the streamlines. The combination of these normal stress effects that drive laminar
curved flow unstable and the possibilty of the elastic effects to store energy in high shear regions and to dump it elsewhere in less
sheared regions, appears to be strongly self-enhancing: Instabilities and the transition to a turbulent regime driven by these elastic
forces, are often found to be hysteretic and strongly subcritical (nonlinear). There are two main underlying themes of this introductory
essay. First of all, that it is profitable to let one be motivated by transition scenarios in Newtonian fluids as a function of Reynolds
number, when investigating possible transition scenarios in visco-elastic fluids as a function of Weissenberg number. Secondly, that
the self-enhancing effects of polymer stretching will also cause subcritical instabilities in visco-elastic parallel shear flows. The aim
of this paper is to introduce and discuss these issues at a pictorial level which is accessible for a nonexpert. After introducing some
of the basic ingredients of polymer rheology we follow a number of the important theoretical and experimental developments of
the last fifteen years and discuss the picture that emerges from it. We then turn to a discussion of recent theoretical and numerical
approaches aimed at establishing whether visco-elastic parallel shear flows indeed also exhibit a subcritical transition to elastic
turbulence. We show how a simple extension of the well-known condition of Pakdel and McKinley for the instability threshold of
curved flows, can be extended to the nonlinear (subcritical) instability scenario of parallel visco-elastic shear flows. This extension
predicts the critical amplitude for the nonlinear instability to decrease as 1/Wi2 and to be independent of the wavenumber k
of the perturbations. The fact that the threshold is k-independent over a large range of k’s suggest that many modes will be excited
at the same time, and hence that the instability will generally drive the flow turbulent. Implications of these results and an outlook
for the future are discussed as well.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction: the challenge of understanding nonlinear visco-elastic flows

It is well known that when the Reynolds number Re = V L/� increases, flows of Newtonian fluids typically follow
a scenario illustrated in Fig. 1(a): (i) at small Re the flow is laminar and stable, (ii) at some intermediate value the
laminar flow profile becomes unstable, so that a more complicated flow pattern develops, while (iii) at sufficiently large
Reynolds numbers the flow is turbulent. Newtonian fluids are simple fluids like water and alcohol whose dynamics is
described by the Navier–Stokes equations. For a fluid with kinematic viscosity � in a geometry of linear scale L with a
typical flow velocity V, the Reynolds number Re = V L/� is the ratio of the inertial term of O(V 2/L) and the viscous
damping term of order �V/L2 at the largest relevant scale, the scale of the flow geometry. So, since the Reynolds number
measures the importance of inertial effects relative to the viscous damping effects, the typical scenario summarized
in Fig. 1(a) is that as inertial terms become more and more important in normal Newtonian flows, there is a tendency
to more and more complicated flow patterns and eventually turbulence. Sometimes the first transition is a transition
to a nontrivial coherent flow pattern, and this transition is followed by one or more secondary bifurcations, before the
turbulent regime is reached. But a direct transition from a laminar flow to a turbulent flow is also possible.

Of course, the qualitative and quantitative details of this transition scenario depend very much on the problem at hand.
For example, in the Taylor–Couette geometry (a fluid confined between two concentric rotating cylinders [1–3]), the
first nontrivial change when the outer cylinder is fixed while the inner one rotates with increasingly large rotation rate,
is a sharp transition to Taylor vortex flow, induced by a linear instability of the laminar flow profile. When the rotation
rate is increased even more, one rapidly encounters secondary bifurcations to more complicated flows and turbulence
[3]. For counterrotating cylinders, there may even be a direct transition to turbulence, i.e., there is no intermediate
regime with nontrivial coherent flow. This is consistent with the fact that in planar Couette flow (two parallel plates
moving in opposite directions, with a fluid in between) the laminar flow is linearly stable for any Re, while a nonlinear
(subcritical) transition to turbulence occurs in practice for Re of order 300–400 [4]. After all, in the limit in which
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Fig. 1. Qualitiative sketch stressing the simularities between the typical scenario found in Newtonian fluids as the Reynolds number Re increases,
and in visco-elastic fluids upon increase of the Weissenberg number Wi. (a) The typical scenario which is found for Newtonian fluids characterized
by Re. As the Reynolds number increases, the laminar flows often first give way to nontrivial but coherent flow patterns which can be stationary
(e.g., the pattern of Taylor vortices in a Taylor–Couette cell) or periodic (e.g., the Von Karmann vortex street behind a cylinder). For sufficientily
large Re the flows are turbulent. Keep in mind that the intermediate regime of nontrivial coherent flows does not always exist—e.g., in pipe flow
there is a direct (subcritical) transition from laminar to turbulent flow which itself is incoherent, but which nevertheless appears to be organized by
coherent structures, see Section 4.1. (b) Low Reynolds number flows of visco-elastic fluids are characterized by the Weissenberg number Wi which
measures the importance of relaxation, elasticity and anisotropy effects due to the visco-elasticity. The lower figure illustrates that it is profitable to
think of visco-elastic fluids as following a similar scenario to more complicated flows and turbulence, upon increasing Wi, as Newtonian fluids do
as upon increase of Re. Of course, in any practical situation one should keep in mind that there are important differences between the two cases and
the fact that the route to turbulence followed in a particular case depends crucially on the flow geometry.

Fig. 2. Rod climbing in a solution of high molecular weight polystyrene in a Newtonian fluid: when the inner rod is rotated, the shear-induced stretching
of the polymer makes them climb up the rod. Photo courtesy of G. H. McKinley (MIT), http://web.mit.edu/nnf/. A movie of this phenomenon can
also be downloaded from this web page.

the gap is small and the cylinders counterrotate with the same rotation rate, Taylor–Couette flow approaches planar
Couette flow. Likewise, the transition to turbulence in pipe flow is direct and nonlinear, although, as we shall discuss
in Section 4.1.4, weakly turbulent flow in this geometry still appears to be organized by coherent structures [5].

In visco-elastic flows of polymeric solutions and melts, the Reynolds numbers are often quite small, since the viscosity
is large. Instead, the important dimensionless number characterizing the rheology of polymers is the Weissenberg num-
ber Wi which controls the stretching of the polymers, the so-called normal stress effect, and the relaxation phenomena.
When the Weissenberg number Wi becomes large, in practice larger than 1, the rheology becomes very nonNewtonian
[6–11]. A simple well-known example of this is the so-called rod-climbing effect [6] illustrated in Fig. 2: in this figure
the rod in the center which is immersed in the polymer solution is rotating. Due to the shear-induced stretching of the
polymers, the polymer “climbs” the rod. These effects, which we will describe in more detail in Section 2.1, result in
nonlinear effects on hydrodynamic length scales, as they are induced by the shear rate (the velocity gradient) in the
flow being large enough, larger than the inverse of the longest polymer relaxation time. So, in visco-elastic flows the
nonlinear effects do not come from inertial terms but from the elastic terms.

http://web.mit.edu/nnf/
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The question now naturally arises whether small Reynolds number visco-elastic flows will follow roughly a similar
scenario as the Newtonian fluids—a laminar flow regime, followed possibly by a regime with nontrivial coherent
flow patterns, then turbulence—as a function of the Weissenberg number Wi, as sketched in Fig. 1(b), and what the
mechanism of destabilization would be.

Clearly, this question can only be posed and answered precisely for a given flow geometry and for a given rheological
model (the so-called “constitutive equation” for the visco-elastic stresses). Nevertheless, the normal stress effect, which
we think is the major mechanism of flow destabilization and transition to turbulence in visco-elastic flows, is very robust
and common to virtually all polymers. Therefore, we feel that it is useful to think of this question in this broader sense,
and to be guided by the analogy between well-known Newtonian scenario of Fig. 1(a) and the putative visco-elastic
scenario of Fig. 1(b) when tackling a specific problem.

Simply put, the aim of this article is to introduce the reader in a pedagogical way to some of the basic open issues
concerning visco-elastic flows that emerge from approaching such flows from this angle. As we shall discuss, in the
last decade several key experiments have been done which demonstrate the existence of visco-elastic instabilities
and turbulence and which lead us to propose that our thinking be guided by the analogy in Fig. 1. Moreover, these
experiments indicate, loosely speaking, that visco-elastic flows might have an ever stronger tendency to become turbulent
than normal Newtonian fluids. This forces on us the question what the typical route to turbulence of visco-elastic flows
is, and whether the scenario of Fig. 1(b) is realistic. Many of the issues are still largely open, and researchers are
struggling to find a way to approach them. It is therefore too early for a review of the subject—instead this article has
more the character of an introductory essay aimed at bringing together evidence from various angles on how strong the
tendency of visco-elastic fluids is to exhibit subcritical flow transitions. One of the main threads of this essay will be that
this tendency to subcritical behavior is so strong, that also viso-elastic parallel shear flows exhibit a direct subcritical
transition to visco-elastic turbulence.

Apart from the intrinsic scientific interest in exploring the similarity of the two scenarios of Fig. 1, there are also very
good practical reasons to do so. If Newtonian fluid dynamics remains a challange even today, then visco-elastic flows
seem to pose unsurmountable problems. First of all, at the technical level, the difficulty is that while the Navier–Stokes
equations for a Newtonian fluid are simply equations for the velocity vector field, the rheological equations for a
visco-elastic fluid involve a nonlinear “constitutive equation” for the stress tensor. Any calculation is therefore much
harder for visco-elastic flow than for Newtonian flow, and even conceptually simple approximation schemes often lead
to cumbersome expressions with many terms. Secondly, the structure of these equations is such that in flow regions with
significant shear, components of the stress tensor tend to grow exponentially fast; this makes numerical simulations of
such flows so hard that the difficulty of extending numerical techniques to significant Weissenberg numbers has been
termed the High Weissenberg Number Problem [12–14]. Finally, a complicating factor is that because there are many
different constitutive equations, one always faces the question to what extent a given theoretical result is an artifact of
a particular constitutive equation or an explicit example of a relatively general phenomenon.

For all the above reasons, even if analogies can only help give qualitative insight into which instability scenario or
route to turbulence might be possible or expected in a particular case, exploring these analogies can be of great help in
studying visco-elastic flows.

Let us illustrate that following the guidance of this analogy may indeed be powerful and lead to many new questions
and ideas, by telling how it led us to what will be the main underlying theme of this essay. Our interest in visco-
elastic flows as a pattern formation problem arose when we posed ourselves the question “will visco-elastic flow in
a parallel flow geometry (plane Couette flow, Poiseuille flow) exhibit some kind of nonlinear instability to (probably
weakly) turbulent flow, just like Newtonian pipe and Couette flow become turbulent at high enough driving forces?”
As we shall discuss, it has been accepted for quite some time that in flow geometries with curved streamlines (like
a Taylor–Couette cell), visco-elastic flows become linearly unstable at high Weissenberg numbers, even when the
Reynolds number is small [15]. These instabilities are due to the anisotropy of stress tensor, which also gives rise to the
so-called rod-climbing effect of polymer solutions, shown in Fig. 2. As we will discuss in more detail in Section 4.1,
if one is a bit familiar with the nonlinear (subcritical) transition to turbulence in Newtonian pipe flow or Couette flow,
one naturally expects visco-elastic pipe flows to have a similar nonlinear subcritical transition to some kind of turbulent
state. Simply put, one expects the laminar state to be linearly stable to perturbations of infinitesimal amplitude, but
once the amplitude of the perturbation is large enough, the perturbed flow will have curved streamlines and the curved
streamlines in combination with anisotropic forces mechanism will take over and the perturbations will grow even
larger [17–20]. This is the essence of what is called a subcritical (nonlinear) transition.
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Fig. 3. Illustration of the surface irregularities that occur in the extrusion of a polymer fluid from a tube. (a) Observations made by the group of
Bonn (unpublished): five snapshots of a polymer flowing out of a tube (the wider structure at the top), with the flow rate increasing from left the
right. Beyond some critical flow rate (between the second and third snapshot) the “extrudate” becomes irregular. An important issue is whether these
irregularities could be the result of a subcritical flow instability in the tube or whether, as is commonly believed, this behavior is always driven by
instabilities at the inlet or outlet of the extruder. (b) At high flow rates the extrudate is very irregular. Larson [26] has suggested that this may be a
manifestion of “turbulence without inertia”. Experimental evidence for such noninertial elastic turbulence is discussed in Section 3.6. Reprinted by
permission from Macmillan Publishers Ltd: Nature, copyright (2000).

Fig. 4. Three snapshots from experiments on polymer–crosslinker system (polyvinyl alcohol/sodium tetraborate) flowing out of the tube, close to
the onset of the formation of irregular behavior of the outflow. The flowrate is increasing from left to right. As indicated in the figure, the typical
lengthscale of the undulations is about twice the tube diameter. From [17].

Quite surprisingly, after parallel shear flows were shown to be linearly stable in the mid-seventies of the previous
century, the implicit assumption in the field seems to have been that such flows would also be nonlinearly or even
absolutely stable, i.e., that even if such flows are perturbed significantly, they will return to steady laminar flow behavior.
As we shall discuss later in Section 4, the final verdict on this issue is not yet in, but there are both strong theoretical
and numerical indications that indeed there is indeed a nonlinear flow instability, with a threshold which decays rapidly
(as 1/Wi2) with Weissenberg number. Moreover, we shall show that a simple back-of-the-envelope extension of the
linear stability criterion of curved flows predicts that the threshold is wavenumber-independent, suggesting that the
instability normally will give rise immediately to turbulence.

The question concerning the nonlinear stability of parallel shear flows actually has immediate practical and tech-
nological relevance. To see this, take a look at some of the photos in Figs. 3 and 4 of a polymer melt flowing out of
a tube shown at the top of the figure. In the five snapshots in Fig. 3(a), the flow rate increases from left to right; the
picture clearly illustrates that beyond some rather well-defined flow rate (close to the one near the middle snapshot), the
outflow (the “extrudate” in industrial terms) shows undulations whose amplitude increases rapidly with increasing flow
rate. As Fig. 3(b) illustrates, at high enough flow rates the flow appears to be chaotic or turbulent [26]. In fact, various
recent high-precision experiments on visco-elastic model fluids have given overwhelming evidence for the presence of
turbulence in visco-elastic fluids at low Reynolds numbers [21–25]. To contrast this with the inertia-driven turbulence
in Newtonian flows, Larson has coined the term “turbulence without intertia” or elastic turbulence [26].

Although we will focus here on the basic issue of polymer flow stability and the onset of turbulence, we note that the
effects illustrated in Fig. 3 are directly relevant technologically: the standard way of making polymer fibers and sheets in
industry is extrusion, in which the molten polymer is forced through a small opening and subsequently cooled to obtain
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the final product. Since undulations of the extrudate like those shown in the Figs. 3 and 4 are unwanted, the occurrence
of such instabilities is the rate-limiting factor for such extrusion processes [7,27–30]. A detailed understanding of these
types of phenomena has remained elusive for already over 40 years: the earliest documented attempts date back at least
to the 1960s [21], when the use of polymer fibers became widespread. Although it is clear that in some cases instabilities
at the outlet of the extruder are at the origin of melt fracture phenomena, if indeed polymer pipe flow itself exhibits a
nonlinear instability, these will in some sense pose a fundamental barrier to avoiding melt fracture instabilities. In fact,
as we shall discuss later, if the instability is subcritical (nonlinear), it is likely that in practice extrusion instabilities
are strongly coupled to the nonlinear instabilities in the pipe, as the latter need to be triggered by an perturbation of
sufficiently large amplitude.

As we will focus in this paper on elasticity-dominated phenomena at low Reynolds numbers, we will not touch here
on the well-known problem of drag reduction, the reduction of drag of Newtonian turbulence by adding small amounts
of polymers to the fluid [31–33]. Neither will we review theories for well-developed elastic turbulence, as we focus
here on the nonlinear instability that will drive a laminar parallel shear flow unstable.

The outline of the paper is as follows. In Section 2 we first introduce at an elementary level some of the basic
ingredients of polymer rheology. We discuss the shear-induced stretching of the polymers, the effects it gives rise to,
as well as the dimensionless numbers associated with it. We then introduce some of the constitutive equations for
polymer rheology. In Section 3 we will then follow a number of important theoretical and experimental developments
of the last fifteen years. The picture that emerges in particular from these experiments is that the tendency of normal
stress effects to drive laminar curved flow unstable together with the possibilty of the elastic effects to store energy in
high shear regions and to dump it elsewhere in less sheared regions, is strongly self-enhancing. It results in a strong
tendency for such flows to exhibit subcritical instabilities and to rapidly give rise to elastic turbulence. In Section 4 we
then turn to a discussion of recent theoretical and numerical approaches aimed at establishing whether visco-elastic
parallel shear flows also exhibit a subcritical transition to elastic turbulence. We close the paper with a brief discussion
of the implications of these results and of the outlook for the future.

2. Some basic elements of visco-elastic flows

In this section we introduce some of the basis ingredients of polymer rheology.

2.1. A polymer melt or solution under shear becomes an anisotropic elastic fluid with relaxation

What makes a polymer melt or solution so different from a regular Newtonian fluid? Simply put, the answer is that a
polymer fluid is a visco-elastic fluid: as illustrated in Fig. 5, once shear gradients �̇ ≡ �vx(y)/�y become large enough,
the elastic polymers become stretched and acquire an average orientation. As a result, shear makes the fluid anisotropic.
For most polymer solutions and melts, the most important effect [6] is the build-up of a difference N1 ≡ �p,xx − �p,yy

Fig. 5. Qualitative sketch of the stretching and orientation of polymers in a simple shear flow vx(y) in the x direction. (a) For small gradients
�̇ ≡ �vx(y)/�y, the polymers are hardly deformed—they are circularly symmetric on average. (b) At large shear rates �v(y)/�y the polymers
become stretched and oriented on average. As a result, the normal stresses become different: �p,xx �= �p,yy .
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in the normal stress1 �p,xx along the flow direction x and the normal stress �p,yy in the direction along the shear
direction y (see figure). For simple shear flows of Newtonian fluids, �xx = �yy = 0 and thus N1 = 0, but for polymers
N1 increases quadratically in the shear rate �̇. For viscous polymers, inertial effects are small since the Reynolds
number Re is inversely proportional to the viscosity. Since the viscosity of polymers increases rapidly with the polymer
length [34,35], the Reynolds number quickly goes down with the degree of polymerization. On the other hand, the
stretching effects illustrated in Fig. 5 quickly go up with the degree of polymerization. Hence the relevant dimensionless
number characterizing the rheology of sufficiently long polymers is therefore not the Reynolds number Re, but the
so-called Weissenberg number Wi, the ratio of the normal stress difference N1 and the shear stress �p,xy due to
the polymers:

Wi = |N1|
|�p,xy | = |�p,xx − �p,yy |

|�p,xy | . (1)

For Wi>1 the fluid behaves essentially like a regular Newtonian fluid, but for Wi of O(1) or larger the visco-elastic
properties make polymer solutions and melts into complex fluids with a rheology very different from ordinary fluids:
The peculiar phenomena of visco-elastic liquids we are interested in all happen for Wi > 1 when the normal force
differences are larger than the shear forces.

The stretching of the polymers which brings about the anisotropy means that the fluid gets elastically loaded: When
the polymers stretch, elastic energy is stored in the sheared fluid. This elastic energy can be released after the fluid
element has been adverted to other regions where the shear-induced stretching forces are smaller. Thus, an important
mechanism of elastic energy transfer is introduced.

A third important aspect associated with the stretching is that the polymer liquid has an internal relaxation time: If
shear changes, it takes the polymers some time to adapt to the new shear stresses. Thus the fluid effectively has some
memory.

The anisotropy, elasticity and memory effects are in essence three different manifestations of one and the same
effect—they are all intimately connected and can not be tuned very easily independently: the longer the polymer, the
larger the relaxation time, the sooner the shear-induced anisotropy occurs, and the weaker the strength of the elastic
spring which gets loaded.

As for Newtonian fluids, the shear stress (�xy in the above example) is linear in the shear rate �̇ for small �̇. The
normal stress difference, however, increases quadratically in �̇—this reflects the fact that when the shear gradient in
Fig. 5 has changed sign, the effect on the normal forces due to the polymer stretching remains the same. Since the
Weissenberg number is according to (1) the ratio of the normal stress difference over the shear stress, Wi increases
linearly in �̇ for small �̇:

Wi ∼ �̇ (small �̇). (2)

Let � be the characteristic (longest) relaxation time of the polymers. We can think of the constant � as the relaxation
time of stretching of the polymers, the time scale on which a stretched polymer blob will relax to its equilibrium
scape in the absence of shear. Since the shear rate �̇ has the dimension of inverse time, we can thus introduce a second
dimensionless number, the Deborah number [6] defined as

De = ��̇. (3)

Of course, real polymers are characterized by many relaxation times [34,35]—we should think of � as being the longest
relaxation time which governs the long scale relaxation of the polymer blob. Moreover, as we already indicated above,
anistropy, elasticity and relaxation are intimately related effects, and in the simplest approximation there is only one
constant � governing these effects. Likewise, as we shall see below, in the simplest constitutive equations for the polymer
stress tensor �p, frame invariance dictates that the strength of all the nonlinear and relaxation terms is governed by only
one parameter � with the dimension of time. Moreover, in these constitutive equations, the Weissenberg number Wi is
strictly proportional to �̇ for all shear rates, and in these cases the Deborah number De and Weissenberg number Wi are
essentially the same, up to a numerical factor of order unity. In a way, it is somewhat surprising how well a single time

1 We use, following the book by Bird et al. [6], the notation to denote the polymer stress tensor by �p; in the physics literature, � is more common
for a stress tensor.
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scale model often works, to capture the gross rheological features. This is a signal that often the normal stress effects
and the elasticity are the dominant effects governing the flow. Nevertheless, one should keep in mind that in general
the two dimensionless numbers are not the same and that many polymer-pecific effects (e.g. shear thinning, which is
not modeled by the simplest constitutive equations) can play a role.

For polymer solutions which are sufficiently dilute that the viscosity of the solvent can not be neglected, there
is an additional dimensionless number � associated with the ratio of the solvent viscosity �s to the polymer
viscosity �p,

� = �s

�s + �p
. (4)

When very small amounts of polymers are added to a solvent, e.g. to achieve drag reduction [31–33], � is very close
to 1. We are here especially interested in the opposite regime �>1 where the overall viscosity is dominated by the
polymers and the Reynolds number is small.

2.2. Constitutive equations

The simplest model to capture the three basic ingredients of polymer rheology discussed above and which hence
has become the working horse of theoretical studies of visco-elastic polymer flow [6,9,10]) is the so-called Oldroyd-B
model; it is defined by the following “constitutive equation” for the polymer shear stress tensor �p in terms of the shear
rate tensor ∇v through

�p + �[��p/�t + v · ∇�p − (∇v)† · �p − �p · (∇v)] = −�p(∇v + (∇v)†). (5)

This constitutive equation is characterized by one single relaxation time �. Indeed, the first two terms in (5), �p+���p/�t ,
make any changes in �p relax on the timescale �. The second and the third terms, ��p/�t + v · ∇�p, describe advection
of the stress along the flow streamlines. The other two nonlinear terms (with (∇v)† indicating the transpose of the
tensor ∇v) are in fact required to form a frame-independence time derivative of the polymer stress tensor.2 We refer
to a detailed discussion of the necessity to incorporate these terms to the literature [6,10].

The above equation for �p in terms of the shear rate have to be supplemented by the Navier–Stokes equation

	[�v/�t + v · ∇v] = −∇p − ∇ · [�s + �p], (6)

where �s is the stress tensor of the solvent which is given by the usual Newtonian expression

�s = −�s(∇v + (∇v)†). (7)

It is customary to take the fluid (with density 	) to be incompressible so that

∇ · v = 0. (8)

The above equations are referred to as the Oldroyd-B model [6,10].
If there are no polymers so that �p=0, then Eq. (6) simply reduces with (7) and (8) to the incompressible Navier–Stokes

equation for the solvent. In this equation, the “only” nonlinearity is the nonlinear term v · ∇v on the left-hand side
of Eq. (6), as the “constitutive equation” for the solvent is the linear relation (7) between �s and the shear ∇v. The
importance of this nonlinear term is measured by the Reynolds number Re. In the opposite limit, when the solvent
is unimportant (� → 0 in (4), a limit which is referred to as the Upper Convected Maxwell (UCM) model),3 the
structure is very different. This is most easily seen in the zero Reynolds number limit, when (6) reduces simply to
the linear equation

Re → 0 : 0 = −∇p − ∇ · �p. (9)

2 All the terms between square brackets together form the so-called upper convected derivative [6].
3 This is because when all the nonlinear terms are ignored, (5) is simply the linear Maxwell model for visco-elastic response. The term between

square brackets is simply the so-called upper convected derivative that arises in a frame-invariant formulation.
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so that all the nonlinearities now come from the constitutive equation (5). In fact, the nonlinearities are in this case
bilinear in ∇v and �p. In other words, when we go from a Newtonian fluid to a highly viscous polymer fluid, the
nonlinearities shift from the Navier–Stokes equation to the constitutive equation. In between, the equations are of
mixed character.

We noted above that it is immediately obvious that relaxation behavior is incorporated by the time derivative term
in the constitutive equation (5). That the other two basic ingredients of polymer rheology, anistropy and elasticity, are
also properly described by the Oldroyd-B or UCM model, is less obvious at first sight, but can be checked by analyzing
simple flows like the laminar profiles in plane Couette or pipe Poiseuille flow. It is then found [6] that these models do
indeed give rise to normal stress terms and a first normal stress difference N1 proportional to �̇2 through the nonlinear
terms in the constitutive equation (5). Coming from the continuum level description, the intimate connection between
relaxation, elasticity and anisotropy is dictated by the requirements of frame-invariance: this requirement dictates that
all the nonlinear terms in (5) come with the specific prefactors ±1, and hence that in the simplest approximation, these
effects are all governed by the single relaxation parameter � in the model. Starting from a more microscopic level, this
constitutive equation can be derived for noninteracting dumbbells connected with Hookean springs [6,10].

On the one hand, because of the tensor nature of the field �p, even this model, which is essentially the simplest
one for polymer rheology, is very difficult to analyze in practice—almost any analysis of a nontrivial flow problem
has to rely on a substantial amount of numerical work. On the other hand, the Oldroyd-B and UCM model still do
exhibit some shortcomings, which require one to go to more complicated extensions in a number of circumstances. The
most important of these shortcomings is that in elongational flows like (vx, vy, vz) = ε̇(2x, −y, −z), the model breaks
down at �ε̇ > 1/2. This breakdown is essentially due to the fact that this constitutive equation is based on modeling a
polymer as a dumbbell with an infinitely extensible elastic spring: for �ε̇ > 1/2 the elongational flow is strong enough
to drive the two sides of the dumbbell infinitely far apart from one another. This nonphysical behavior can be avoided
by extending the model so as to make the springs nonlinearly elastic with a finite maximum extension—the so-called
FENE-P model—or by including a nonlinear saturation term in (5); an example of this is the so-called Giesekus
model [6].

We note in passing that these rheological models are notoriously hard to simulate at moderate and large Wi [12]—the
High Weissenberg Number Problem already referred to above. The basic reason for this can easily be seen as fol-
lows, and is again related to the sensitivity of elongational flow regions: in regions of elongational flow the non-
linear �p · ∇v term and its adjoint lead to exponential growth in component of �p in the terms between brackets of
(5), which makes a regular numerical code prone to instabilities. One way around this, proposed recently [13,14],
is to simulate what amounts to the logarithm of the polymer stress tensor, whose growth is only linear in time in
these regions.

2.3. Model polymer fluids and optimal models for the various regimes

As we saw above, in the simplest approximation one arrives at constitutive equations with essentially only one
parameter, the relaxation time �, which we think of as the relaxation time of a polymer in response to shear. It is
remarkable that it is possible in practice to make model polymers, so-called Boger fluids, whose rheology conforms
well to the Oldroyd-B model [36]. Moreover, even though there are certainly a number of polymer-specific effects
involved, even the rheology of technologically relevant polymers is often captured grosso modo by simple constitutive
equations.

If one, however, wants to reproduce rheological properties of a particular polymer better than just qualitatively,
one has to take into account the nature of the fluid. UCM, Oldroyd-B and FENE-P are common examples of models
derived from considering a single dumbbell in a flow and, therefore, work only for very dilute solutions. Semidilute
solutions and melts are better described by Giesekus, PTT, Larson-Marrucci models, etc. [6,11]. Often one has to
include a spectrum of relaxation times to enhance agreement with the experimentally observed rheological properties.
Moreover, one has to keep in mind that not every model performs equally well in a given type of flow. One example is
the Oldroyd-B fluid which qualitatively describes rheological properties of a dilute polymer solution in shear flow, but
fails to predict physical values of the viscosity in extensional flow—it diverges when the relaxation time of the polymer
times the extension rate exceeds 0.5.

In what follows, we focus on the Oldroyd-B model since it contains the most important rheological ingredient for
viscoelastic instabilities and turbulence—the normal-stress effect.



A.N. Morozov, W. van Saarloos / Physics Reports 447 (2007) 112–143 121

a b

c

stable unstable

stable unstable

c
o
n
v
e
c
ti
o
n

a
m

p
lit

u
d
e

nonlinear branch

Fig. 6. (a) Sketch of a Taylor–Couette cell. (b) Sketch of a rotation rate axis, with a critical number a la Larson marked on it. (c) Qualitative sketch
of the subcritical scenario as found by Groisman and Steinberg [42].

3. Polymer flow instabilities and “turbulence without inertia”

3.1. How it all began: visco-elastic instabilities in a Taylor–Couette cell

Although systematic studies of visco-elastic flows date back many years,4 in many ways it is fair to mark the beginning
of the more modern perspective with the 1990 paper by Larson et al. [38]. These authors analyzed the stability of zero-
Reynolds number flow in a Taylor–Couette cell using the Oldroyd-B model discussed above. A Taylor–Couette cell is
sketched in Fig. 6(a); it consists of a fluid between two co-axial cylinders which can rotate independently.

As we noted already in the introduction, the Taylor–Couette cell is one of the most basic experimental setups to study
inertia-driven instabilities and turbulence in Newtonian fluids [1–3]. The phase diagram as a function of the rotation
rates of the inner and outer cylinder is very complicated, exhibiting many patterned and turbulent states [3]. One nice
aspect of the Taylor–Couette cell is that when the gap d between the cylinders is small, one approaches plane Couette
flow when the cylinders are rotating with equal but opposite speed.

Larson et al. [38] noted that this system is also an ideal system to study visco-elastic instabilities in the limit that
the Re is small. Technically, the advantage is that the system is translation invariant along the cylinder axis (assuming
the cell to be very long) so that one can consider Fourier modes for the spatial modulation along the axis.5 Since in the
Re → 0 limit inertial effects are unimportant, only the difference in rotation rates of the two cylinders matters, so one
can for instance take the outer cylinder fixed and study the stability of the laminar azimuthal flow as a function of the
rotation rate 
 of the inner cylinder.

For the Oldroyd-B model, Larson et al. [38] predicted there to be a clear linear instability of the visco-elastic laminar
azimuthal base flow: As sketched in Fig. 6(b), there is a critical rotation rate 
c,


2
c = �

kzd

�

d

Ri
, (10)

where Ri is the radius of the inner cylinder, d is the gap between two cylinders, kz is the wavelength of the velocity
modulation along the cylinders, and � is a dimensional constant which is related to the temporal eigenvalue and which
depends on De, kz and �. Beyond 
c, the laminar flow profile is linearly unstable to periodic modulations along the axis
of the cylinder with the wavelength kz, indicating that beyond the threshold the flow would exhibit a banded structure
very reminiscent of the Taylor vortices which form first in the Newtonian case when passing a critical rotation rate.
Clearly, the critical value (10) depends on the gap-to-radius ratio of the cell d/Ri: when the radius goes to infinity,
the instability disappears as the threshold 
c shifts to infinity. This is consistent with old results [39] that show that
visco-elastic planar Couette flow is linearly stable fow all Wi. The important interpretation which then emerged from

4 See, e.g., [21] and references in [6]. A very readable historical perspective can be found in [37].
5 In addition, one can make a number of simplifying approximations if the gap between the cylinders is much less than the radii of the cylinders.
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this work and later extensions [9,40,41] was that when the inertial effects are unimportant, visco-elastic flows can
exhibit an elasticity-driven instability when the flow-lines are curved. We will summarize the physical argument in the
following subsection.

Using Boger fluids, the first experiments in [38] already confirmed the existence of such an elastic instability. In
more detailed experiments a few years later, Groisman and Steinberg [42] found that the predictions for the threshold
rotation rate 
c also agreed quantitatively quite well with their experimental findings. However, they also found that the
instability is subcritical, as sketched in Fig. 6(c): once the flow pattern sets in, finite-amplitude nontrivial flow patterns
continue to exist when the rotation rate 
 is reduced below the critical value 
c. In the experiments, the resulting
so-called “di-whirl” convection patterns are quite localized and they continue to exist down to 
 � 
c/2. Thus, these
experiments show two important results: (i) They confirm that with appropriately prepared model polymer solutions,
one can make quantitative contact between experiments and theoretical predictions for Oldroyd-B fluids. (ii) They
are the first solid experimental evidence that instabilities in visco-elastic fluids tend to be subcritical, i.e., nonlinearly
enhanced.

3.2. Curvature of the base flow and anisotropic elasticity: the general mechanism of linear instabilities

It has become clear from the work described above that in the small Reynolds number limit, visco-elastic flows
generally tend to become linearly unstable due to normal stress effects when the streamlines are curved [9,15,38].
To understand why such flows are unstable, first consider a flow with curved streamlines, as illustrated in Fig. 7(a).
When the Weissenberg number is larger than about 1, the polymer is stretched by the shear gradients. The inner part
of the (artist impression of) the polymer on the left stretches and rotates, because of the larger curvature of the stream
lines and the larger shear near the center, towards the situation of the second polymer charicature on the right. Clearly
this polymer is therefore being pulled towards the center—this is the origin of the rod-climbing effect of Fig. 2. To
understand the mechanism of a finite-wavelength instability in confined curved flow, consider next Fig. 7(b). Again, for
Weissenberg numbers larger than about 1, there is a significant normal stress effect which tends to pull fluid element
in towards regions of higher curvature of the flow lines. Now, consider a small perturbation of the flow, so that the
perturbed streamlines become as indicated with the solid lines in Fig. 7(b) (the unperturbed ones are indicated with
dashed lines). Some of the fluid elements move outwards a bit, some move inwards towards regions of larger shear. The
effective force pulling the latter fluid elements inwards thus increases, whereas the effective force on the fluid elements
moving outwards decreases, as the size of the arrows indicating the effective force indicates. Clearly, the effect may thus
be self-enhancing, implying that the flow is unstable if the forces are large enough. Moreover, we expect the instability
to set in earlier the larger the Weissenberg number, and the larger the curvature of the streamlines is.

In Fig. 7(b), we consider a wavy perturbation along the streamlines. In the laminar flow state of the Taylor–Couette
geometry, there are curved streamlines “stacked on top of each other” all along the axial direction. The same type
of reasoning as above leads to the conclusion that a perturbation with a wavevector along the axis, so that the flow
moves inwards somewhat at some levels and moves outwards in regions in between, should become unstable too.
Which instability is strongest is a quantitative question which can only be settled with a full-fledged linear stability

Fig. 7. Qualitative sketch of a flow situation with curved streamlines. At large enough Weissenberg numbers when there are significant normal
stress differences, the normal forces tend to pull a fluid element in towards the region of largest curvature of the streamlines and largest flow rate.
(a) Illustration of the origin of the rod-climbing effect: under the flow a polymer like the one on the left, is stretched and oriented by the flow to a
situation like the one on the right. Effectively, the polymer is pulled inwards. (b) The full lines indicate small perturbations of the streamlines around
the unperturbed, shown by dashed lines. Fluid elements which are displaced inwards towards regions of larger curvature are pulled in even more,
fluid elements which are displaced outwards are being pulled in less. Hence the flow is unstable.
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analysis. As Larson et al. [38] found, the perturbation with wavevector along the axis usually goes unstable first, and as
a result the first nontrivial state is a banded flow structure, reminiscent of Taylor vortices. There are, however, regions
of parameter space where perturbations with different symmetry are more unstable.

Pakdel and McKinley [15,16] have shown that many of the instability criterions based on the balance between
curvature and normal stress effects can be summarized by an expression of the form

�

R

|N1|
|�p,shear| > M2. (11)

Here � is the length scale over which a perturbation moving along a streamline will decay; in other words, � = Usl�,
where Usl is the typical velocity along the streamlines and �, as before, is the polymer relaxation time. Furthermore, R
is the typical radius of curvature of the base flow, while in the ratio of the normal stress term N1 and the shear stress
�p,shear we recognize the Weissenberg number Wi introduced in (1). Finally, M is a constant, which depends on the
flow geometry, and which typically ranges from 1 to 6 [15,16].

Note that (11) is actually the most natural dimensionless criterion that incorporates all the necessary ingredients of
instabilities driven by the combination of anisotropic elastic normal forces and curvature. The term N1/�p,shear = Wi
is the dimensionless measure of the anisotropy of the normal forces—the larger Wi the larger this driving term. In
addition, the smaller the radius of curvature R, the stronger the instability, hence the term 1/R. Finally, the decay
length � should not only be there for dimensional reasons, but is also taking into account the physical effect that the
longer a perturbation survives, the longer it can help to drive the flow unstable. Thus, on hindsight, one could almost
have guessed the general form of this condition. We will refer to (11) as the Pakdel–McKinley condition, and will later
in Section 3.5.3 extend its interpretation so as to have it predict the threshold for subcritical instabilities in parallel
shear flows as well.

Finally, it should be stressed that the instability condition (11) has not really been derived; instead, the status of
the condition is more that Pakdel and McKinley [15,16] observed that all know instability criteria could be recast in
this form, which is physically most reasonable.6 We are tempted to think that this condition should be viewed as a
reasonable expression valid at large enough Weissenberg numbers and not too small radii of curvature. Thus, as it
stands, the above expression suggests that even at small Wi an instability could set in if the streamlines are sufficiently
curved. We consider it more likely, however, that such instabilities are suppressed at small Wi, and that the above
expression should be thought of as a good asymptotic large-Wi rule of thumb which is accurate for sufficiently large
Wi, larger than at least 1. Clearly, this issue needs to be addressed in more detail in the future.

3.3. Ring-like and spiral waves in a plate–plate geometry

Let us now turn to a discussion of important experiments on spiral patterns in a plate–plate experiments. In such
experiments, the typical example of which is sketched in Fig. 10(a) below, one has two cylindrical plates of which the
upper one can rotate. The gap between the cylinders, which is of constant thickness, is filled with the elastic fluid. The
flow patterns can be visualized from the top or bottom plate.

Byars et al. [44] have performed an extensive series of experiments on the flow patterns that form in such experiments
on two realisations of the Boger fluid: two different concentrations of polyisobutylene dissolved in polybutene and
tetradecane. Fig. 8 shows an example of a typical observation: the first nontrivial flow patterns that form are either
concentric ring patterns or spiral patterns roughly halfway between the center and the outer edge. These patterns
are comprised of vortices that rotate in the gap between two plates bringing the fluid from one plate to the other
and back, and are wound up in such a way that they look like either rings or spirals from above. The emergence
of these concentric vortex-like flow patterns is in full agreement with the linear stability analysis by Öztekin and
Brown [46]. These authors studied the stability of the laminar base flow for the Oldroyd-B model and found that both
rings and spirals bifurcate from the laminar state, though spirals are slightly more unstable. Recently, Schiamberg
et al. [47] have systematically studied various patterns occurring in the plate–plate flow geometry and transitions
between them.

6 Moreover, in complicated flow geometries, instabilities typically set in regions where the effective value of the ratio on the left of (16) is
largest [43].



124 A.N. Morozov, W. van Saarloos / Physics Reports 447 (2007) 112–143

Fig. 8. Example of a spiral flow pattern observed by Byars et al. [44] in a plate–plate geometry. The photo on the left shows the raw experimental
observation viewed from the top. In the picture on the right the pattern is enhanced using digital subtraction.
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Fig. 9. (a) Experimental data from Byars et al. [44] showing that the transition to ring-like convection patterns in visco-elastic fluids is often subcritical.
Along the vertical axis the excess shear stress on the upper plate is plotted as a function of the rotation rate of the upper plate. The excess shear stress
is the total shear stress on the upper plate minus the one in the laminar state, calculated from the fluid viscosity and the rotation rate of the plate. The
open symbols denote data points in the laminar base state, the filled symbols the state where convection rings form. The data give clear evidence for
the transition to be subcritical, with the saddle-node point where the convection branch starts located about 20% below the instability threshold of
the laminar base state. (b) A weakly nonlinear amplitude expansion for this experimental situation predicts subcritical behavior which is similar to
the experimental findings [45]. A is the amplitude controlling the strength of the secondary flow, and De is the Deborah number. Note that the linear
stability analysis predicts instability to set in at smaller shear rates than experimentally observed [46].

An experimental finding which is worth stressing from our perspective is that also these experiments showed a
tendency for hysteresis, and hence for subcritical behavior. An example of some of these experimental results is plotted
in Fig. 9(a). In this plot, the enhancement of excess torque necessary to rotate the upper plate at a give rate, is plotted
as a function of the rotation rate. As the data show, one can follow the existence of this nontrivial flow branch to values
of the rotation rate some 20% below the critical value where the instability sets in, and the amplitude of the excess
torque is finite at the critical value of the linear instability. Both of these are clear signatures that the bifurcation to the
nontrivial flow patterns is subcritical.
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Fig. 10. (a) Sketch of the plate–plate geometry used by Groisman and Steinberg in their experiments [22]. (b) Two snapshots of turbulent flow in the
experiment at Wi = 13 and Re = 0.7 [22]. Reprinted by permission from Macmillan Publishers Ltd: Nature, copyright (2000).

As we mentioned above, amplitude expansions [49–51] are a well-established technique to study the pattern dynamics
just above the threshold of a supercritical transition. Also when the transition is weakly subcritical (“weakly” meaning
that the jump at the transition is not too large, in some appropriate way of measuring this),7 one can study the near-
threshold behavior of the patterns. Motivated by the experimental results shown in Fig. 9(a), we have therefore studied
the near-threshold convection using an amplitude equation to fifth order. As the data Fig. 9(b) show, such an expansion
gives results consistent with the experimental findings: the transition is subcritical, and, depending on the parameter
range, the saddle-node point (“nose”) of the nonlinear branch is in the range 1–20% below the critical value of the
linear instability.

3.4. Elastic turbulence in a plate–plate geometry

The next important step in our story is the finding of Groisman and Steinberg [22,23] who revisited the plate–plate
geometry some six years ago. Their setup is sketched in Fig. 10(a). They used a dilute solution of high molecular
weight polyacrylamide in a viscous sugar syrup with a relaxation time � = 3.5 s. Conceptually, these experiments are
very much like the ones on the ring and spiral patterns discussed above, but when Groisman and Steinberg pushed the
experiments to slightly large Wi at low Reynolds numbers (Re is typically smaller than 1 in their experiments) they
found a strong tendency to turbulent behavior. Two typical snapshots of the swirly flow in these experiments are shown
in Fig. 10(b).

The data is analyzed quantitatively in Figs. 11 and 12. In Fig. 11 the shear stress on the top plate, normalized by the
value of the shear stress the fluid would have if the flow would have been laminar at the same rotation rate, is plotted
as a function of the rotation rate. The range of shear rates presented in Fig. 11 corresponds to Weissenberg numbers in
the range 1–25, the range where elastic and normal stress effects are important.

The data sets labeled 1 and 2 correspond to the viscoelastic fluid at different sizes of the gap between the plates:
d = 10 and 20 mm, respectively (see Fig. 10(a)). The third data set represents the pure solvent. For the data sets 1
and 2, the curve of the total normalized stress first rises slowly above 1. This corresponds to the regime discussed
above where there are regular concentric ring type convection patterns and spirals. Upon increasing the rotation rate
(and hence Wi) the curves then quickly rise sharply. This is the regime where the visco-elastic turbulence, which
is visualized in Fig. 10, sets in. Thus, there is a very rapid transition to turbulence in these experiments, and as the
arrows indicate, this transition to turbulence is hysteretic, and hence subcritical, too: when the rotation rate is decreased
slowly once the flow is turbulent, the turbulent state disappears at a slower rotation rate than the one where the rapid
transition to turbulence occurred upon increasing the rotation rate. Obviously, the data set 3 does not exhibit any rise
of the shear stress above the laminar value indicating that the phenomenon observed is purely due to the presence
of the polymer.

7 Mathematically, an amplitude equation At = εA + �|A|2A − |A|4A applies in the subcritical regime ε < 0 , |ε|>1 provided � =O(
√

ε) so that
all terms on the right are of the same order, with |A| ∼ |ε|1/4.
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Fig. 11. Shear stress on the top plate in the plate–plate experiments by Groisman and Steinberg [22] as a function of rotation rate of the upper plate.
The shear stress is normalized by dividing by the shear stress if the flow would be laminar, calculated using the viscosity of the solution. Three
different data sets are shown: the curves labeled 1 and 2 are for the flows with the distance between the plates d = 10 and 20 mm, respectively. Curve
3 corresponds to the pure solvent without polymers. Reprinted by permission from Macmillan Publishers Ltd: Nature, copyright (2000).

Fig. 12. Spatial and temporal spectra as measured in the plate–plate experiments by Groisman and Steinberg [22]. Reprinted by permission from
Macmillan Publishers Ltd: Nature, copyright (2000). (a) Average Fourier spectra of the brightness profiles along the diameter (thin black line)
and along the circumference at a radius 2d (thick gray line). Note that since the brightness in Fig. 11 does not provide any information about
local velocity, the value of the scaling exponent has no physical meaning. (b) Power spectra of velocity fluctuations taken at different shear rates
�̇ = 1.25, 1.85, 2.7, 4.0, and 5.9 s−1 above the transition.

The strong tendency for visco-elastic flow to exhibit self-enhanced turbulent behavior is illustrated by the large
enhancement of the measured shear stress over the laminar value: Note that the data are plotted on a logarithmic scale
along the vertical axis, and that the enhancement of the shear stress is easily a factor 10. As Groisman and Steinberg
[22] point out, in Newtonian turbulence one has to go up to Reynolds numbers of order 104 to get such very large
enhancements!

That the states which to the eye appear to be turbulent in Fig. 10(b) indeed have all the features of turbulence is
demonstrated by the spatial and temporal spectra shown in Fig. 12: the spectra show clear power law scaling over at
least a decade. Recent theories for this power law scaling [48] are in good agreement with the exponents found in these
experiments.

Taken together these experiments by Groisman and Steinberg have been instrumental in identifying turbulence
without inertia or elastic turbulence, words coined by Larson [26], as an important and well-defined problem associated
with visco-elastic fluids. All indications of these experiments are that polymer fluids tend to become turbulent very
easily even at low Reynolds numbers. This means that once there is a bit of nontrivial flow, the normal forces and
curvature of the streamlines tend to enhance the flow—this gives raise to subcritical behavior.
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Fig. 13. (a) Qualitative sketch of the stability situation in the case of a subcritical instability. Under the dynamics, small amplitude perturbations
decay to the zero-amplitude fixed point, but beyond a critical amplitude, perturbations grow. (b) If there is a subcritical bifurcation for visco-elastic
flow, the critical amplitude is expected to come down with increasing Wi. (c) For visco-elastic Taylor–Couette flow, the threshold rotation rate 
c

shifts to larger values when the gap ratio d/Ri is decreased. This naturally leads us to suspect that bifurcation-from-infinity scenario of (b) for
visco-elastic plane Couette flow.

3.5. Parallel shear flows and anisotropic elasticity: subcritical instabilities

3.5.1. The argument for linear instabilities in curved flows predicts subcritical instabilities in parallel flows
As we saw above, when the base flow has curved streamlines, then the anisotropic visco-elastic forces will make the

base flow linearly unstable for large enough Weissenberg numbers. When a state is linearly unstable, this means that
some perturbation modes of arbitrarily small amplitude, whose dynamics is governed by linearizing the rheological
equations about the base state solution, will grow exponentially in time. However, it is immediately clear that the well-
known and generally accepted argument for the instability mechanism of visco-elastic flows also implies that parallel
shear flows—flows in geometries whose streamlines are straight, like plane Couette flow, or plane and pipe Poiseuille
flow—should be nonlinearly unstable: Since the streamlines of the unperturbed problem are straight, a perturbation
of infinitesimal amplitude is not sufficient to drive the flow unstable. However, with a perturbation of finite amplitude
the streamlines of the perturbed flow are curved, and once the amplitude is large enough, the perturbed flow should be
unstable for large enough Weissenberg number, as sketched in Fig. 13(a). We might say that we need a perturbation
on top of a perturbation to drive the flow unstable, and hence the flow is nonlinearly unstable. Moreover, if there is
such a nonlinear instability, the nonlinear driving force for the instability will increase with increasing driving force,
so the critical amplitude of the perturbation that separates decaying perturbations from growing ones, will decrease as
a function of Wi. Hence we typically expect a situation as sketched in Fig. 13(b): it is as if there the critical threshold
“bifurcates from infinity”.

As we shall discuss in Section 4.1, in plane Couette flow or Poiseuille pipe flow of Newtonian fluids, the laminar
base flow is also linearly stable for all Reynolds numbers, but there is a transition to turbulence at large Reynolds
numbers Re. Very much as in Fig. 13(b), the threshold for the transition to turbulence decreases with increasing Re
(experimentally as Re−1 [53]). This situation is sometimes also termed a “bifurcation from infinity”, a term already
alluded to above. Note, however, that this name sometimes obscures the fact that the best way of understanding the
real physics is not by thinking about it as a bifurcation from infinity! The transition to turbulence in Newtonian pipe
flows is a good illustration of this, as we shall discuss in Section 4.1.

3.5.2. Digression on the differences between supercritical and subcritical bifurcations
Let us digress briefly on the word subcritical instability, and the difference with the more common case of a

supercritical bifurcation. When the base state of a system exhibits a linear instability, at the point where the instability
sets in a branch of nonlinear solutions bifurcates off. This situation is sketched in Fig. 14(a). This nontrivial branch of
nonlinear solutions, which in the case of a finite wavelength instability of the base state describes a branch of patterned
solutions, exits in the supercritical regime, the regime where the base state is unstable. This case is therefore referred
to as a supercritical bifurcation. Since as sketched in Fig. 14(a) the amplitude of these patterns (i.e., the strength of
the modulation of the dynamical fields) grows continuously beyond the bifurcation point, just beyond threshold these
solutions can be analyzed perturbatively. These methods are called amplitude expansions [49–51], and they can be used
to analyze both the existence and the dynamics and competition of solutions in the weakly nonlinear regime. They thus
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Fig. 14. General illustration of the bifurcation diagrams at (a) a supercritical instability, (b) a subcritical instability and (c) a subcritical instability
that “bifurcates from infinity”. In these plots, dashed curves indicate branches of solutions which according to bifurcation theory are unstable. Note,
however, that “stability” means here stability with respect to growth or decay of the amplitude. In a realistic pattern forming system, the nonlinear
branches of solutions can be unstable to other finite wavelength perturbations. This happens in fact for the nonlinear solutions that govern weak
turbulence in Newtonian—see Section 4.1.

provide an essentially complete description of the nontrivial near-threshold dynamics. Usually, among the nontrivial
pattern solutions that bifurcate off from the base state there are classes of stable nonlinear solutions, but this is not
always the case.8

Usually, the word “subcritical instability” refers to situations like those of Fig. 14(b), where the branch of patterns
which bifurcates off from the point where the base state becomes unstable exists below this critical value (hence “sub-
critical”). The solutions on this branch are unstable and hence dynamically irrelevant—the branch of stable and hence
physically nonlinear pattern solutions is the one corresponding to the upper branch, which bifurcates off from the so-
called “saddle-node” point, the “nose” on the left where the unstable and stable branch merge. The above continuation
argument shows that this case and the “bifurcation from infinity” case of Fig. 14(c), where the base state never becomes
unstable, are often intimately related. The important common feature of both cases is that in the subcritical range where
the base state is linearly stable, a finite perturbation of the flow state is needed to drive the base flow unstable. We will
therefore refer generally to both of these cases as a subcritical bifurcation. Moreover, one should keep in mind that in
complicated situations, the nonlinear state associated with the upper branch may not always be a nonlinear attractor.
But even then these weakly unstable nonlinear solutions can organize much of the chaotic or weakly turbulent nonlinear
dynamics (see footnote 8).

So it is important to keep in mind that subcritical bifurcation diagrams like those in Fig. 13(a,b) are actually very qual-
itative, contrary to those associated with so-called supercritical bifurcations, where the physically relevant branch origi-
nates from the linear instability. When a system exhibits a true linear instability, there is a single well-defined eigenmode
of the linear stability operator, which goes unstable first. At a supercritical bifurcation, the nonlinearities are saturating,
and as a result just above the threshold the amplitude of the modulation of the new patterns is small (see Fig. 14(a) below);
accordingly, one can describe the dynamics of the system just above the threshold in terms of amplitude modulations of
this most unstable mode [49–51]. When there is a linear instability in a case where the nonlinearities enhance (rather than
saturate) the growth, the pattern amplitude is already finite when the base state becomes linearly unstable. When the sub-
critical nature is strong, the linear instability (if it exists) is not very relevant for the existence of dynamics of the patterns
that typically already arise before the instability of the base state occurs. Typically, the location of the saddle-node point
where the nonlinear branch arises (bifurcates) is more important. In other words, a subcritical instability is, by its very
nature, governed by all kinds of nonlinear self-enhancing interactions and so there is almost never a simple approxima-
tion scheme that allows one to explore the infinite dimensional phase space of interactions in all details, and determine
which direction corresponds to the smallest threshold. Thus, in practice, one can explore such situations, in theoretical
studies as well as in experiments, only for a given class of perturbations. Theoretically, the simplest possibility is usually
to consider spatially periodic perturbations of fixed wavelength of the base flow, and explore the nonlinear stability of

8 For example, if one considers a supercritical bifurcation to traveling wave states, the dynamics just above threshold is governed by the so-called
Complex Ginzburg Landau equation. There are parameter regimes of this equation where the traveling periodic patterns that this equation describes,
are all linearly unstable [49–51]. The weakly chaotic dynamics that then emerges is then still governed by the Complex Ginzburg Landau equation,
however. In the chaotic regime of this equation, weakly unstable nonlinear solutions (so-called homoclon solutions) are the building blocks of
the chaotic dynamics [52]. The fact that weakly chaotic nonlinear dynamics is organized by weakly unstable exact solutions appears to have its
counterpart in the weakly turbulent regime of Newtonian fluid dynamics, discussed in Section 4.1.
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the base flow as a function of the amplitude of these periodic perturbation. This is what is done in the theoretical anal-
ysis described later in Section 4.2. Experimentally, one usually applies a well-characterized localized perturbation and
varies its amplitude (see, e.g., [53]). The advantage of numerical studies is that in principle both types of perturbations
can be applied.

As we shall discuss in Section 4.1 below, Newtonian turbulence provides very nice illustrations of the above dis-
cussion: while in plane Poiseuille flow the base state becomes linearly unstable at Re = 5772, so that the situation is
like sketched in Fig. 14(b), the transition to turbulence usually sets in at Re =O(1000). Actually, the nonlinear branch
that bifurcates from the point where the linear instability occurs, is different from the one that governs the transition
to turbulence! In practice, therefore, there is not a big difference between this case and the transition to turbulence
in plane Couette and pipe Poiseuille flow, where there is no linear instability of the base flow, so that the scenario of
Fig. 14(c) applies. Moreover, in all these cases, there is no branch of stable nonlinear solutions, although the weakly
turbulent regime near threshold does appear to be organized by exact nonlinear traveling wave solutions which are
weakly unstable. We will come back to this in Section 4.1.

3.5.3. A simple estimate of the critical amplitude based on the Pakdel–McKinley condition
Let us return to the subcritical visco-elastic instabilities. It is easy to obtain a simple estimate for the critical amplitude

of the periodic perturbations that will drive a parallel shear flow nonlinearly unstable by extending the interpretation
of the Pakdel–McKinley condition (11) following the lines laid out also in [54]. The Pakdel–McKinley condition is
normally viewed as the instability criterion for when base flows with a fixed finite radius of curvature R go linearly
instable upon increasing Wi. However, as we have seen, the physics of the nonlinear finite-amplitude instability is just
the same as that of the linear instability of curved base flows, and hence the threshold condition should be governed
by exactly the same dimensionless group. We can implement this idea for fixed Wi by considering a base flow with
straight streamlines in the x-direction, so that the curvature of the streamlines of the base flow is zero, and perturb the
flow with a periodic transverse modulation with wavenumber k. This situation is sketched in Fig. 15 for the case of
Couette flow, both in the lab frame in which the plates are moving, and in the frame moving (almost) with the speed
of the upper plate.

It will turn out to be most convenient to formulate the threshold condition in terms of the dimensionless amplitude
of a modulation with wavenumber k of the shear rate at the wall,

Ashear(k) = �vx/�y|wall

�̇
, (12)

where �̇ is the shear rate at the wall of the unperturbed shear flow. The easiest way to arrive at the threshold condition
is to view the perturbation in the frame moving with the upper plate velocity as sketched in Fig. 15(b). In this frame,

2π/k

in lab frame (both plates moving)

2π/k

in frame moving with upper plate

a b

Fig. 15. Initial periodic perturbations of parallel shear flows near the wall, used in the argument to estimate the critical amplitude for the nonlinear
instability. The case shown here is for plane Couette flow. The perturbation is viewed in the lab frame in (a) and in (b) in the frame moving (almost)
with the speed of the upper plate. The oscillatory motion of the streamlines in the fixed frame simply looks like a periodic vortex-like motion in
the moving frame. The insight that these vortices are localised near the plates is based on the fact that the eigenmodes of the stability operator are
strongly peaked in a region of extent 1/k near the walls.
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the perturbed flow consists of a vortex-type pattern with wavelength 2
/k, so the radius of curvature R of the perturbed
streamlines is of order 
/k:

R ≈ 


k
. (13)

Moreover, in line with the fact that the eigenmodes of the linear stability operator of the base flow are strongly peaked
over a distance of order 1/k near the wall, the typical velocity Usl in this vortex-type motion is approximately

Usl ≈ 1

k

�vx

�y

∣
∣
∣
∣
wall

= �̇

k
Ashear(k). (14)

Thus we have for the relaxation length � in the Pakdel–McKinley condition (11)

� ≈ 1

k
WiAshear(k), (15)

where we made the approximation Wi ≈ De = �̇� which in practice is a good approximation, as we discussed after the
definition of the Deborah number (3). Upon substitution of these estimates into the Pakdel–McKinley condition (11),
we obtain for the critical amplitude of periodic modulations of the shear flow, beyond which the flow is expected to be
unstable

Ac
shear ≈ M2

Wi2
independent of k, (16)

where as before M is some number which, based on the observations of Pakdel and McKinley [15,16], one naively
expects to be in the range 1–6. While this condition can be derived most easily in the frame moving with the plates,
analysis in the lab frame leads to the same conclusion, as it should of course.9

To our knowledge, this estimate, put forward also in [54], has not appeared before, and we are not aware of any
previous tests of this result either. We will discuss semi-analytical tests as well as numerical tests of this condition
in Sections 4.2 and 4.3. A very important aspect of this condition is that the threshold is predicted to be independent
of k. We shall see that this k-independence over a significant range of k-values is confirmed by the semi-analytical
amplitude expansion to be discussed in Section 4, but it is already important to stress here that the above argument is
only correct for wavelength shorter than the plate spacing d in plane Couette or plane Poiseuile, or the pipe diameter
in pipe Poiseuille flow, hence for k � 2
/d . Moreover, there will of course also be a large-k cutoff as well, the cutoff
associated with the scale of the polymers at which the continuum model will break down. In practice, this scale is several
orders of magnitude smaller, so we expect a large range of k-values over which the threshold is roughly k-independent.
This of course strongly suggest that once the instability sets in, the flow will tend to become turbulent, since many
modes are expected to be excited at the same time [54].

Two final remarks. First of all, as we discussed at the end of Section 3.2, the Pakdel–McKinley condition is probably
only realistic for sufficiently large Wi, large enough that there are significant normal stress effects. For this reason, we
do not consider it realistic that it seems to suggest a nonzero threshold amplitude for any nonzero Wi. Secondly, we
note that we already warned before to be aware of what type or perturbation is applied in a given situation. Likewise, it
is important to keep in mind that the extension of the Pakdel–McKinley condition indicates that the natural threshold
condition is not in terms of the stress perturbation but in terms of the critical amplitude Ac

shear of the modulation of
the shear rate at the wall, as this translates most directly in the amplitude of the modulation of the streamlines. In
translating this condition of the shear perturbation at the wall into a modulation of the streamlines, we simply used
the additional insight that the eigenmodes of the linear stability operator are strongly peaked near the walls over a
distance 1/k.

9 In the lab frame, the horizontal velocity vx near the wall is of order of the velocity Uplate of the upper plate and the modulation of the velocity vy

will to a good approximation be sinusoidal, vy ≈ Avy sin kx, where Avy ≈ Ashear �̇/k. As a function of time, this implies vy ≈ Avy sin(kUplatet),
so the vertical spatial modulation �y of the streamlines is �y ≈ Avy cos(kx)/(kUplate). The curvature of the streamline is simply equal to the
second derivative of this expression with respect to x, hence 1/R ≈ Avy k/Uplate. Using that � in this case simply equals Uplate� since the velocity
along the streamlines is dominated by Uplate, we get �/R ≈ Avy k ≈ Ashear �̇� leading finally again to the same functional form (16), albeit with a
slightly different value of M due the missing factor of 
 in this naive estimate.
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Table 1
Critical values Wic for the onset of melt fracture phenomena according to Pahl et al. [27]. For comparison, viscosity of water is about 10−3 Pa s

Material �, Pa s Wic

Silicon Oil BW 400 1.21 × 102 4.74
Silicon Oil AK 2 × 106 2.02 × 101 4.36
Silicon Oil AK 5 × 105 6.23 × 100 4.79
Silicon Oil M 2 × 105 5.25 × 100 4.57

LDPE 1800 S 6.94 × 101 4.41
PMMA 3.50 × 102 4.62
PE 1.46 × 102 4.97
SB 3.27 × 102 4.53
ABS 90 1.92 × 102 4.74
PS 143 E 3.00 × 101 4.38
HDPE 5261 Z 2.07 × 103 4.68
PIB 10 4.10 × 100 5.24
PA N 12 1.75 × 101 4.37
Epoxy resin 5.91 × 101 4.39

3.5.4. Subcritical instability in plane Couette flow as a continuation of the Taylor–Couette flow in the small gap limit
Another way to arrive at the conclusion that visco-elastic plane Couette flow has a subcritical instability is as follows.

As we already remarked before, if we take a Taylor–Couette cell whose cylinders are counterrotating with the same
rotation rate, we can continuously approach plane Couette flow by taking the gap-to-radius ratio d/Ri to zero. For any
value of this ratio, the flow is linearly unstable for 
 > 
c given by (10). At the same time the experimental finding
that the transition is subcritical suggests that for any nonzero value of d/Ri the bifurcation diagram looks as sketched
in Fig. 13(c). Since the threshold 
c shifts to the right to infinity when we approach the case of plane Couette flow by
reducing the gap ratio d/Ri → 0, it is then natural to expect the bifurcation diagram of Fig. 13(b) for plane Couette
flow. In other words, the results on visco-elastic instabilities in Taylor–Couette geometries naturally lead us to suspect
the bifurcation from infinity scenario to apply to planar Couette flow. And if Poiseuille flow and plane Couette flow
are as similar for visco-elastic flows as they are for Newtonian flows,10 the same scenario is expected to apply to
visco-elastic Poiseuille flow as well.

3.6. The onset of melt–fracture type phenomena: a bulk rheological instability?

In the introduction, we already drew attention to the melt–fracture type phenomena [27–30] shown in Figs. 3 and
4: When the flow out of an extruder becomes too fast, the extrudate invariably develops unwanted undulations. As
can be clearly seen from Fig. 3(a) the strength of these undulations continues to grow with increasing flow rate, and
at very large flow rates the extrudate looks completely irregular as if it is frozen-in turbulence (Fig. 3(b)). There is a
whole zoo of phenomena which can be observed [55], and some of these effects (like the short-wavelength irregularities
commonly referred to as “sharkskin instability”) are believed to be caused by stick–slip like instabilities at the outlet
of the extruder. Nevertheless, there are strong indications that a more generic mechanism does underly many of these
observations. Indeed, Pahl et al. [27] have documented the onset of this behavior in terms of the critical Weissenberg
number Wic for the flow in the extruder for a large number of technologically relevant polymers. Their results are
summarized in Table 1 below.

From these data, Pahl et al. have concluded that melt fracture type phenomena set in at a critical Weissenberg number
Wic = 4.63 ± 0.26 [27]. One should take the error bars quoted for these results with a grain of salt—in most cases, the
normal stresses are not measured directly but inferred from the first normal stress coefficient extrapolated from other
data—and the rheology of many polymers from this diverse range can undoubtedly not be captured simply by a UCM
or Oldroyd-B model (e.g., because they show shear thinning and a small second normal stress difference). The fact

10 One can continuously interpolate between these two via Dean–Taylor flow—see [41].
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Fig. 16. Root mean shear of the fluctuations of the outflow in the experiments shown in Fig. 4 as a function of the maximum shear rate of the flow
in the tube. From [17].

that they nevertheless all exhibit a very robust transition to irregular flow behavior at a rather well-defined Weissenberg
number is indicative that this transition is either due to or strongly coupled with a bulk rheological transition.

It appears that since Poiseuille flow was shown to be linearly stable by Ho and Denn in 1978 [40], the possibility
of a bulk rheological transition in the extruder as the driving mechanism of melt fracture type phenomena has been
largely ignored in the field. The dominant interpretations that have emerged are in terms of stick–slip phenomena at the
wall [28], instabilities at the outlet of the extuder [28,30] or polymer-specific effects [55]. Although there is no doubt
that in some cases one of these phenomena is the root cause of the instability, none of these observations can explain
the main observation by Pahl et al. [27] that essentially all data point at a rather well-defined critical value Wi ≈ 4.8
of the Weissenberg number, which is a bulk rheological parameter (Fig. 16).

As we have already argued above, we expect parallel visco-elastic shear flows like Poiseuille flow to exhibit a
subcritical instability to some modulated or weakly turbulent flow state. This scenario will be developed further in
Section 4. If this scenario is corroborated by future investigations, it will clearly have important implications for our
understanding of melt fracture type phenomena: It would mean that a basic nonlinear flow instability would stand in
the way of suppressing these irregularities in the outflow. Even then, however, one should keep in mind that because of
its subcritical nature, this instability will in practice be strongly coupled with instabilities at the inlet or outlet that have
been observed: such instabilities could trigger the perturbations necessary to drive the flow in the extruder unstable. In
other words, if visco-elastic bulk pipe flow would be absolutely stable, inlet instabilities would damp out in sufficiently
long pipes, whereas if there is a true subcritical flow instability, an inlet flow instability would trigger irregular flow in
the pipe and hence make itself felt throughout the extruder. In this sense, the various effects may be strongly coupled,
which makes it difficult to make a precise prediction. In other words, if there are, e.g., inlet perturbations of a given
amplitude or intrinsic apparatus noise, then the resulting critical Weissenberg number is the one at which the critical
amplitude branch crosses this prescribed value. This is illustrated in Fig. 17.

Whatever the origin of melt fracture is, Bonn et al. [17] have presented evidence that the transition is indeed
subcritical, because they observed hysteresis. They measured the root mean square of the fluctuations in the cross-
section of the outflow in the experiment of Fig. 4. In Fig. 16 this “roughness” of the cross-section is plotted as a
function of the maximum shear rate at the wall in these experiments. In the regular laminar flow regime, this roughness
is immeasurably small, so it is a simple way to characterize the irregularities of the outflow quantitatively. As indicated
by the arrows in the figure, when the flow rate is slowly increased (diamond symbols), the melt fracture irregularities
develop only at much higher flow rates than if one slowly decreases the flow rate (circles), starting from the phase
where the irregularities are present.

3.7. The emerging picture

The picture that clearly emerges from the various experiments that we have discussed is that when the Weissenberg
number Wi in curved visco-elastic flows becomes somewhat larger than one, laminar flows are very prone to transitions
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Fig. 17. Qualitative sketch of how the presence of a particular noise or perturbation level would give rise to a transition at a finite Weissenberg
number Wic. The dashed lines indicate two hypothetical examples of levels of a perturbation amplitude, one due to stick-slip, the other from inlet
perturbations. The first one leads to a critical Weissenberg number Wicstick.slip, the second one to Wicinlet .

to regular patterns or even turbulent flows. In most cases, the transition is subcritical: already at the instability threshold
finite-amplitude flow patterns emerge, and there is a clear tendency to hysteretic effects. This implies that the nonlinear
flow states can be followed into a subcritical range of the control parameter (usually a rotation rate). Moreover, coherent
patterned states appear to be rather the exception than the rule—if they exist, they only do so in a small parameter range.
They quickly give way to elastic turbulence, noninertial turbulence driven by elastic effects. Moreover, once a nontrivial
flow exists, it is difficult to get rid of: both the instabilities and the turbulence tend to self-enhance—apparently, the
possibility of an elastic fluid to store elastic energy in highly sheared regions and to release this energy again in less
sheared regions has a strong tendency to give a positive feedback on the flow.

This strong tendency of elastic effects to give positive feedback makes it likely that parallel shear flows, like pipe
Poiseuille flow, also show a strong tendency to exhibit nonlinearly unstabilities to modulated states which are probably
weakly turbulent. This idea is simply a natural extension of the accepted argument that it is the combination of curved
streamlines and elastic effects that drives the linear instabilities in curved flow geometries. The extension of the
Pakdel–McKinley linear instability criterion to the nonlinear instabilities driven by finite amplitude modulations of
parallel shear flows fully confirms this simple intuitive idea as well. Moreover, it predicts that the threshold rapidly
decreases, as 1/Wi2, with increasing Weissenberg number, and that the instability threshold is independent of the
wavenumber k over a large range of wavenumbers. This latter finding is again strongly suggestive of a rapid transition
to fully developed turbulence, once a flow is perturbed beyond the instability threshold.

Unfortunately, there are to our knowledge at present no controlled experiments to test this subcritical transition
scenario convincingly in detail. In the next section we will discuss the recent theoretical and numerical evidence for
this scenario, as well as its experimental and theoretical implications.

4. Do visco-elastic flows in parallel shear geometries indeed exhibit a subcritical instability?

We presented in the previous section several arguments and circumstantial evidence that laminar visco-elastic flows
in parallel shear geometries, which are known to be linearly stable [39,40], will exhibit a nonlinear subcritical instability
of the type sketched in Fig. 13(b). In this section we will discuss some recent theoretical and numerical work aimed at
determining whether this scenario is indeed correct.

In the introduction and Fig. 1 we argued that it is useful to let one be guided in the research on visco-elastic fluids
by the scenarios and analogies in the fluid dynamics of regular Newtonian fluids. In this particular case, fluid dynamics
provides both a historical lesson and, possibly, a guiding principle. The unitiated reader may wonder why the issue
of the nonlinear stability of parallel shear flows has been dormant so long and why it is apparently so difficult to
settle it convincingly. For these readers, the historical lesson from fluid dynamics is that even there some of the most
important experimental and theoretical progress on the transition to turbulence in pipe flows was made in the last decades
[5,53], more than hundred years after the original experiments of Reynolds that already identified a coexistence and
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nonlinear competition between laminar flow and turbulence. Moreover, we do think that the recent developments in
fluid mechanics may well turn out to become the guiding principle for approaching the visco-elastic flow problem. We
will therefore start by briefly reviewing these developments before turning to visco-elastic flows.

4.1. The transition to turbulence in Newtonian flows: a guiding analogy

4.1.1. Is the presence or absence of a linear instability relevant?
One of the first lessons from studies of plane Couette and Poiseuille flow and Poiseuille flow in pipes is that it is in

fact quite irrelevant that plane Poiseuille flow becomes linearly unstable at Re = 5772 while plane Couette flow and
pipe Poiseuille flow are linearly stable for all Re, since under usual circumstances plane and pipe Poiseuille flow exhibit
a transition to turbulence at Re � 1000 and 2000, respectively; plane Couette flow usually becomes turbulent around
Re = 350. Thus, formally the bifurcation diagram of plane Poiseuille flow corresponds to the situation of Fig. 14(b)
while plane Couette and pipe Poiseuille flow correspond to the “bifurcation from infinity” diagram of Fig. 14(c).
But in practical situations when the transition occurs at much lower Reynolds numbers this difference is hardly
of relevance.

Of course, the difference is relevant for the following: in accord with the fact that laminar pipe Poiseuille flow is
linearly stable for all Re, it turns out to be possible, by carefully machining the experimental setup so as to minimize
all perturbations, to avoid turbulence in pipes to Reynolds numbers of order 105. In plane Poiseuille flow, it will never
be possible to succeed the stability limit Re = 5772, of course. But the transition to turbulence at Re = O(1000) is not
affected by the presence or absence of an instability at much larger Re.

4.1.2. Scaling of the instability threshold for large Re
The discussion of the large-Re scaling of the amplitude necessary to drive the laminar flow unstable in the case of

pipe Poiseuille flow and plane Couette flow, has been a long-standing issue. There is general agreement on a power-law
scaling ∼ Re−� with ��1 [4], but different approaches give different values of the exponent (see, for example, [56,57]).
Recent experiments [53] clearly exhibit a scaling with � = 1 over at least a decade in Reynolds numbers. This Re−1

scaling indicates that the threshold is basically determined by the balance of the linear viscous decay terms and the
nonlinearities in the Navier–Stokes equations that drive the flow unstable.

The scaling of the stability boundary of the laminar base flow state has recently been studied in detail by Eckhardt
et al. [58], who not only recovered the overall Re−1 scaling of this boundary, but also found clear indications that on
a fine scale there is substructure. The existence of such a fine scale structure is in agreement with the interpretation
of weak turbulence in terms of a self-sustaining cycle between weakly unstable coherent structures, which we review
below in Section 4.1.4.

In comparison with the Newtonian case, the nature of the nonlinear terms in the visco-elastic constitutive equations
is very different: the inertial nonlinearity in the Navier–Stokes equation is quadratic, while the nonlinearity in the
UCM and Oldroyd-B models is bilinear in the velocity and stress. Also the physical mechanisms underlying the
nonlinear instabilities of parallel shear flows is very different. Hence it need not surprise us that the extension of
the Pakdel–McKinley condition, discussed in Section 3.5.3, predicts a decrease of the threshold as 1/Wi2, while the
threshold for the transition to turbulence in the Newtonian case falls of as 1/Re.

4.1.3. Nonnormality of the linear stability operator and the transient amplification of initial perturbations
Both in the Newtonian case and in the visco-elastic case, the linear stability operator of these parallel base flows is

strongly nonHermitian. It has become realized [59] in the past decades that since the eigenvectors in such cases are
non-normal, a typical initial disturbance will first get transiently amplified according to the linearized equations, before
it will eventually, at long times, decay. In the Newtonian problem the amplification is typically a factor Re, so it will be
enormous at high Reynolds numbers. For the visco-elastic problem the amplification will be of order Wi [60]; hence
the effect does exist in the visco-elastic case too, but it is less dramatic in the range 1–10 where the first transitions
typically take place.

Transient amplification of initial disturbances is a well-established effect, which in the Newtonian case of the
transition to turbulence may well be relate to the Re−1 scaling [53] of the threshold amplitude to drive the flow
unstable. Nevertheless, the subcritical transition to turbulence is a genuine nonlinear effect, so as long as it has not
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Fig. 18. Phase diagram showing the amplitude Ax of the nonlinear traveling wave solutions of Newtonian plane Couette and planar Poiseuille flow
in the low-mode approximation of Waleffe [61] as a function of Reynolds number Re. When compared to the exact full nonlinear traveling wave
solutions, this approximation is found to be very accurate. Reprinted with permission from Physics of Fluids. Copyright [1997], American Institute
of Physics.

been combined with a proper nonlinear analysis it remains a general scenario without, at the moment, much predictive
power for the ensuing turbulence.

4.1.4. The self-sustaining cycle scenario for weak turbulence
In the last 10 years, a scenario which is both conceptually important and predictive was developed by Waleffe [62]

for the weak Newtonian turbulence in the range where the Reynolds numbers are just large enough that turbulence
becomes self-sustained. It has been known since long that in the region just above onset, the weakly turbulent regime
has a strong tendency to form so-called streaks, thin filamentary regions oriented along the streamwise direction where
the streamwise flow is larger or smaller than the average flow at that cross-section.

Moreover, in 1990 Nagata [63] showed, by numerically continuing from the Taylor–Couette flow geometry by
increasing the radius of curvature of the cylinders, that there exists a class of exact nonlinear wavy traveling wave
solutions of plane Couette flow—these solutions are the analogs of the so-called wavy vortex states of Taylor–Couette
flow, Taylor vortices which are modulated (“wavy”) in the azymuthal direction. Fig. 18 shows the amplitude of these
modes as a function of Reynolds number Re in a low-mode approximation [61], for both plane Couette and Poiseuillle
flow. Note that these solutions are exact subcritical traveling wave solutions which do not bifurcate off the laminar
base solutions of plane Couette flow or pipe Poiseuille flow through a linear instability, since these flows are linearly
stable for all Re.11

In the Taylor–Couette geometry, these wavy vortex states are stable in some parameter-range. For plane Couette flow,
these states turn out to be linearly unstable, but Waleffe [62] argued that these weakly unstable coherent structures are
nevertheless important building blocks of weakly turbulent plane Couette and pipe flow (as well as for wall turbulence).
Waleffe argued that the instability of these solutions generates what he termed a self-sustaining cycle of three basic
types of flow structures: the instability of the nonlinear traveling waves pumps energy into streamwise vortices, a
vortex type flow pattern that you see in the normal velocity if you look head on to the flow—see Fig. 19(a). In turn,
these streamwise type vortices strongly drive the streaks introduced above, as indicated in Fig. 19(b). And finally a
Kelvin–Helmholtz-type instability of the streaks illustrated in Fig. 19(c) drives energy back into the nonlinear traveling
coherent wave solutions. This self-sustaining cycle is illustrated in Fig. 20(a). In essence, in this picture self-sustained

11 These solutions do bifurcate off the laminar flow if an appropriate driving force is added to the Navier–Stokes [61,62]. This is actually used
to construct these solutions using continuation methods.



136 A.N. Morozov, W. van Saarloos / Physics Reports 447 (2007) 112–143

Fig. 19. Illustration of the steps in the self-sustained cycle of Waleffe: streamwise vortices (a) generate streak-like modulations (b). (c) Illustration
of the fact that since the streaks generate shear gradients, they experience a finite-wavelength instability similar to the Kelvin–Helmholtz instability
of shear layers. Courtesy of J.-W. van de Meent.
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Fig. 20. (a) The “self-sustaining cycle” which according to the theory of Waleffe [62] is responsible for weak turbulence in Newtonian Couette
and Poiseuille flows. In a low-mode approximation, the interaction of the various modes reflects the various arrows. (b) Recent experiments and
simulations show that weak turbulence in Newtonian pipe flow is exactly due to the interplay of the building blocks identified in (a). Upper row:
experimentally measured flow velocities in weakly turbulent pipe flow at R = 2000 (A), 2500 (C), 5300 (E); the color coding gives the local speed
in the flow direction, with red and blue signifying flow faster or slower than the mean parabolic profile. Thus the colored blobs correspond to the
so-called “streaks”. The flow in the direction normal to the average flow is indicated by arrows; on close inspection, a vortex-type motion between
streaks can be seen. Lower row: corresponding flow states in numerical simulations of the Navier–Stokes equation at R = 1250 (B), 1360 (D) and
2900 (F), showing the features found in the experiments and predicted by Waleffe. From Hof et al. [5]. Reprinted with permission from AAAS.
Color online.

turbulence occurs when the effective pumping of energy through one cycle exceeds the viscous losses and loss of
energy to other modes.

This scenario has been developed in detail by Waleffe [62] by studying the basic features and instabilities of each
of these three basic flow structures. Fig. 18 shows the branch of the above-mentioned nonlinear wavy traveling wave
states obtained in a Fourier-mode expansion scheme. The mechanism can be worked out explicitly in terms of a simple
low-mode expansion which yields a description of weak turbulence in terms of these structures. The coupling of
these modes is largely determined by their symmetry and the symmetries of the nonlinear terms in the Navier–Stokes
equation, and is summarized by Fig. 20(a). Detailed studies of the various low-mode truncations for weak-turbulence
as developed by Waleffe [62] and Moehlis et al. [58] yield explicit predictions for the spectra and various average
quantities measured in the weak turbulence.

Very recently, both this qualitative scenario and these quantitative predictions have been confirmed explicitly by
experiments [5] and numerical studies [64–66], see Figs. 18 and 19—both in experiments and in simulations, exactly
all the ingredients identified by Waleffe’s theory are found! It has thus become clear that weak turbulence in parallel shear
flows is organized by weakly unstable coherent structures, which regenerate themselves through nonlinear interactions.
This in essence dynamical systems scenario, which has some similarities with the mechanism of weakly chaotic behavior
in other more simple model systems [52,67], opens up the way to study various other properties, like the stochastic
hopping between states with different numbers of streaks, and the boundary of the turbulent attractor [68,64]. That it
is a very robust mechanism is also clear from studies of highly compressible flows [69].
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Fig. 21. Subcritical bifurcation diagram for visco-elastic plane Couette flow in the UCM (Upper Convected Maxwell) model as determined by our
nonlinear amplitude expansion for periodic traveling-wave type solutions. From left to right, the successive lines show the result up to 5th, 7th, 9th
and 11th order for k = 1/d and q = 1/d with 2d the distance between the plates. Note that the curves appear to converge to a subcritical transition
at Wisn ≈ 2.85.

4.2. Theoretical prediction of a subcritical instability of parallel visco-elastic flows

The arguments presented in Section 3 in favor of the existence of a subcritical nonlinear instability in visco-elastic
parallel shear flows have led us to study the nonlinear stability of plane Couette and pipe Poiseuille flow for the Upper
Convected Maxwell model (see Section 2.2) using a nonlinear amplitude expansion [18,20]. This amounts to performing
an expansion of periodic nonlinear traveling wave states in powers of the amplitude, and probing the stability of these
periodic states in successive approximations. Of course, there is no a priori guarantee that such an expansion will
work, as subcritical bifurcations are notoriously hard to capture perturbatively. Nevertheless, our expectation that the
threshold of the nonlinear instability would be sufficiently small at high enough Wi gave us enough hope for success
to try such an expansion.

Our results [20] are shown for the Couette flow geometry in Fig. 21. Along the vertical axis, the stationary amplitude
Ashear of the traveling wave solution is shown. Our normalization is precisely the one introduced in Section 3.5.3:
Ashear is the maximum value of the periodic modulation of the shear rate at the wall of this mode, divided by the shear
rate at the wall of the laminar solution. As is indicated by the arrows, these expansion results completely corroborate
our expectation: for the wavenumber shown, periodic modulations are unstable (grow) above some critical values
Ac

shear � 0.11 when Wica2 in the case of plane Couette flow and when Wia3 in the case of plane Poiseuille flow
[70]. Moreover, as the various dashed curves show, although the results do shift to higher Weissenberg numbers when
higher order terms are included in the expansion, the shift of the saddle-node point becomes a factor 2 smaller each
time a higher order term is included. The series thus seems to converge. The is especially true for the lower branch,
which marks the critical amplitude: These results are very robust as the shift with each successive approximation is
small. To our knowledge, the most solid theoretical evidence there is to date for the existence of a subcritical nonlinear
instability of the parallel shear flows: a periodic modulation with shear perturbation at the wall of about 11% of that
of the base flow is predicted to drive these flows unstable for Wi larger than about 2 in plane Couette flow, about 3 in
plane Poiseuille flow, and about 5 in pipe flow.

Note that a critical Wi-value of about 5 for pipe flow is remarkably close to the value where melt fracture type
phenomena normally set in, as we discussed in Section 3.6, even though further study is necessary to establish whether
this instability is indeed the root cause of most melt fracture type phenomena.

Note that the upper branch of these periodic traveling wave solutions quickly diverges beyond the saddle-node point.
We had originally thought that the most likely interpretation of this finding was that our amplitude expansion breaks
down at larger amplitudes, as illustrated by the cross-hatched region in the inset of Fig. 21(a). It could also be that this
branch of solutions ceases to exist at larger Wi, but it is impossible to assess this within the context of our perturbative
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Fig. 22. The critical amplitude Ac
shear as a function of the wavenumber k of the periodic perturbation of Couette flow, for Wi = 3.0 (solid line), 3.5

(dotted line), and 4.0 (dashed line).

approach. As we shall see below, the numerical studies of flow do give some indications that the periodic modulations
never saturate at a finite amplitude.

We recall that the extension (16) of the Pakdel–McKinley condition discussed in Section 3.5.3 gives a threshold
amplitude Ac

shear which for fixed wavenumber k should fall off as 1/Wi2. The decay of the threshold amplitude is not
very well visible from Fig. 21, but a detailed fit of the threshold amplitude away from the saddle node point is consistent
with a power law decay with an exponent somewhat larger than 2 [54]. Fig. 22 shows the critical amplitude Ac

shear as
a function of k for Wi = 3.0, 3.5, and 4.0 as determined from the amplitude expansion [20]. In agreement with the
extension of the Pakdel–McKinley condition, the threshold amplitude is found to be k-independent.

Taken literally, the extended Pakdel–McKinley condition (16) would suggest that there is a finite threshold for every
nonzero Wi; this would suggest naievely that the branch of stationary solutions would extend to arbitrarily small Wi,
instead of ending in a saddle-node point in Fig. 21. However, as we already indicated in Sections 3.2 and 3.5.3, we
consider it most likely that this condition is realistic only for sufficiently large Wi. Indeed, in the Newtonian case it
was found that the periodic traveling wave solutions bifurcate from a saddle-node point upon increasing Re, and this
suggest that also in the visco-elastic case there is a true saddle-node bifurcation point, as in Fig. 21.

In fact, the branch of periodic traveling wave solutions that we have determined perturbatively in Fig. 21 is in-
deed essentially the visco-elastic analog of the period traveling wave solutions that Nagata had determined [63] for
Newtonian plane Couette flow by continuation methods—compare Fig. 18(a). We have seen that these latter solutions
are one of the important building blocks of the self-sustaining cycle scenario for weak Newtonian turbulence. The
existence of a similar branch of solutions in the visco-elastic case gives us hope that it may in the near future be
possible to develop a similar self-sustaining cycle type scenario for weakly turbulent elastic shear flows.12 One may
well uncover new insight on visco-elastic flows along the way—note in this regard that studies the perturbations of
polymers additives to the self-sustaining cycle uncovered the importance of elongational flow in reducing the turbulent
drag [71].

We finally note that Doering et al. [60] have recently shown that in plane Couette flow of the UCM model there
is no absolute stability for Wi > 0.5 and maybe even less. They considered a special initial condition which con-
sisted of the laminar velocity profile and a constant stress tensor which, however, differed from its laminar values,
and showed that for Wi > 0.5 this initial condition exhibits transient growth (see Section 4.1.3). If the perturba-
tion grows strong enough, it could start pumping energy into nontrivial flow modes and lead to turbulence.
Although this result is not strong enough to show that parallel visco-elastic shear flows will be nonlinearly unstable at
some point, it is consistent with the general subcritical nonlinear instability scenario that we advance for sufficiently
large Wi.

12 One note of caution: the fact that we find the transition amplitude to be k-independent away from the saddle-node point, and that the upper
branch in Fig. 21 diverges only slightly beyond the saddle-node point, may be an indication that the self-sustained cycle scenario only applies in a
rather small range of Weissenberg numbers.



A.N. Morozov, W. van Saarloos / Physics Reports 447 (2007) 112–143 139

4.3. Numerical evidence for a nonlinear instability

Since for a long time it had not been fully realized that the question of the nonlinear stability of parallel visco-elastic
shear flows was a basic open issue, there have not been too many direct studies of such flows. In 2002 Atalik and
Keunings [72] have done an extensive study of plane channel flow and plane Couette flow using the Oldroyd-B model
and the Giesekus model, with a diffusive term added to the constitutive equation so to enhance numerical stability.
In plane Couette flow, they observed stable laminar flow up to Wi = 2; at larger Weissenberg numbers, instabilities
developed, but these were attributed to numerical instabilities13 —compare the remarks at the end of Section 2.2.
For plane Poiseuille flow, Atalik and Keunings did observe self-sustained quasi-periodic traveling wave type states,
although these persisted to unrealistically small Weissenberg numbers (Wi � 0.1). The precise status of these results
therefore does remain unclear.

Recently, Sadanandan and Sureshkumar [73,54] have done a series of precise numerical studies of two-dimensional
plane Poiseuille flow in the Oldroyd-B model. These authors did precisely what is necessary to test the subcritical
bifurcation scenario: they perturbed the laminar flow with an perturbation proportional to a stable eigenfunction of the
linear stability operator, and varied the proportionality factor, the amplitude A of this perturbation. These simulations
provide strong support for the subcritical instability scenario that we have advanced: for small A the perturbations
decay to zero, in accord with the linear stability of visco-elastic plane Poiseuille flow at small Re. However, beyond
some critical value the amplitude of the flow perturbations grows rather than decays in time. Fig. 23 illustrates a case
at Wi = 5 where the initial disturbance is larger than the critical value. The development in time is in accord with the
intuitive idea that once the perturbation is large enough, streamlines are sufficiently perturbed to drive the flow unstable,
in accord with the curvature plus normal stress effects cause instability picture.

One important finding of these simulations is that when the initial perturbation amplitude is larger than the critical
value, the modulation amplitude quickly grows. This is already viable in Fig. 23. It is found, however, that the instability
does not saturate: In the numerics, a blow-up in finite time is found. Clearly, there is at present no detailed understanding
of this blow-up behavior. Maybe there is indeed no stable finite-amplitude branch of modulated solutions. Note in this
regard that our own amplitude expansion results shown in Fig. 21 indeed show the existence of an upper branch of stable
modulated solutions only over a small range of Weissenberg numbers just beyond the saddle-node point. However,
not too much significance should be attached to this observation, as it could well be that the underlying amplitude
expansion simply breaks down at too large amplitudes. If indeed there is no branch of stable traveling wave solutions
in two-dimensional plane Poiseuille flow, it may well be that in real three-dimensional simulations, the modulations
saturate due to genuine three-dimensional instabilities. For further discussion we refer the reader to [73,54,70].

Recently, Fielding [54,74] has studied the onset of a nonlinear instability in Couette flow using direct numerical
simulations with a finite-difference scheme. Her results do confirm, by and large, the existence of a nonlinear instability
threshold. However, at the same time they bring up a number of issues which have to be studied in more detail in the
future: (i) The nonlinear instability extends to much smaller values (even of order Wi ≈ 0.5) than one might expect
from the results of our amplitude expansion shown in Fig. 21, on the basis of which we would expect to see no instability
below Wi ≈ 2.85. This does not necessarily imply a discrepancy, since it is not at all excluded (it is even likely) that
there are localized (nonperiodic) perturbations which are different from the periodic ones studied in [20], which can
drive the instability.14 In fact, there are some indications for this, as at least in some cases Fielding finds that there is
first a strong transfer of energy from long wavelengths to short wavelength modes, before the eventual instability sets
in. Such a mechanism can not be captured by an amplitude expansion which is based on the adiabatic elimination of
the short wavelength modes. (ii) In these finite difference simulations, a diffusion type term L2∇2�p is added to the
constitutive equations. The inclusion of such a term is common practice in numerical simulations and is motivated
by the idea that the polymer length should provide a short scale cutoff to the constitutive equation. However, both
Fielding’s numerical studies and the amplitude expansion show that the nonlinear instability threshold when measured
in terms of the shear rate modulation at the wall, is strongly increased for values of L larger than about 5 × 10−3.

13 It is intriguing to note that according to our expansion results the saddle-node bifurcation point that controls the subcritical instability is at
Wi � 2.5—see Fig. 21. Whether the observations of Atalik and Keunings could be a mixed numerical/physical instability has not been investigated.

14 Moreover, note in this regard that as we have pointed out repeatedly, the extension (16) of the Pakdel–McKinley condition, yields no lower
threshold on the nonlinear instability. But as we discussed in Sections 3.2 and 3.5.3, we think it is likely that the condition does not apply for too
small Wi. For small Wi, the changes in the normal forces, induced by the flow, have to be taken into account as well.
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Fig. 23. Simulation of purely elastic two-dimensional plane Poiseuille flow at Wi = 5 by Sadanandan and Sureshkumar [73,54]. The initial finite
amplitude perturbation at t = 0 grows quickly in size, while it is being advected. Time is measured in units of H/U where H is the distance between
the plates and U the mean velocity.

(iii) At small Wi, Fielding finds that the data for all values of L in the range she studied, do fall on a single line when
the modulation amplitude is measured in terms of the stress modulation rather than the shear rate modulation. In terms
of the stress, the modulation threshold appears to go down as 1/Wi. We refer for a further discussion of this to [54].

4.4. The need for controlled experiments: opportunities for micro-rheology

As we mentioned in Section 3.6, there is a lot of circumstantial evidence from observations on melt fracture that low
Reynolds number flow in a pipe or through a slit does exhibit a subcritical flow instability. However, in the vast majority
of melt fracture experiments the extrudate is observed, not the rheology in the extruder before it flows freely outside.
We hope that this article will stimulate new controlled experiments on the nonlinear stability of parallel visco-elastic
shear flows.

Experiments near a supercritical bifurcation (see Fig. 14(a)) are normally conceptually straightforward: Since the base
flow becomes linearly unstable, and since the branch of nontrivial pattern solutions only exists beyond the bifurcation
point, it is difficult to miss the transition—in principle following what happens if one slowly turns up the control
parameter is sufficient. Probing a subcritical transition, especially a “bifurcation from infinity” like in Fig. 14(c), is
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less trivial, since one needs to apply controlled perturbations to probe it—one may completely miss it if one just
waits to see whether anything happens if one turns up the control parameter, since the base state is linearly stable.
Again the transition to turbulence in Newtonian pipe flows provides a nice illustration of this and of how to proceed
in practice. As we mentioned before, in well-controlled experiments one may continue to observe stable laminar
flow up to Re = O(105) or larger, even though if the inlet flow is not carefully controlled turbulence sets in around
Re=O(103). So, in order to study the transition to turbulence and the scaling of the threshold with Re, one has to make
sure to design a setup where inlet instabilities are suppressed, and which allows to apply controlled and reproducible
perturbations in the bulk [53]. The same will be necessary to explore the nonlinear stability of visco-elastic parallel
shear flows.

It is clear that micro-rheology provides exciting new opportunities do these experiments: in micro-rheology the
Reynolds number is naturally very small, visualization is simple, and many new techniques have been developed to
perturb flows in a controlled way. We therefore hope that the micro-rheology expertise will be brought to bear on this
important issue in the near future. Moreover, if the instability is observed in such channel flows, data on the development
of the spectra with flow rate would be most welcome.

5. Implications and outlook

The main theme of this paper is that while visco-elastic fluids may exhibit nontrivial but coherent patterns in a small
range of Weissenberg numbers, the rheology of these fluids has a strong tendency to rapidly become turbulent. If we
compare this in the spirit of Fig. 1 with the behavior of Newtonian fluids as a function of Reynolds number, the most
striking differences appear to be that the range of coherent flows appears to be smaller in visco-elastic fluids than in
regular fluids, and that visco-elastic fluids show an even stronger tendency to subcritical behavior. We conclude from
this that the possibility of polymers to load energy through stretching in regions of high shear, and to give off this
energy in regions of lesser shear, tends to be a self-enhancing effect that drives incoherent flow.

Till recently the most solid evidence for this picture came from a series of well-controlled experiments performed
over the last couple of years. But, as we have discussed, very recent theoretical and numerical investigations do support
the proposed scenario that parallel shear flows also exhibit a nonlinear subcritical instability, even though a number of
details still remain to be sorted out. Moreover, the idea of a subcritical instability in these flows is completely in line
with the accepted idea that curved streamlines together with normal stress effects tend to give linear instabilities. Even
if there is a true linear instability in laminar flows due to the curvature of the streamlines, the instability tends to be
subcritical, i.e., to be enhanced by the nonlinear pumping. If the streamlines of the base flow are straight, there is no
linear instability, but the nonlinear pumping will typically still cause a nonlinear instability: Once the flow is perturbed
by a sufficiently large finite amount, the perturbed streamlines are curved, and hence unstable. The extension of the
original linear instability criterion of Pakdel and McKinley to these subcritical nonlinear instabilities, implements this
idea. The extended criterion is fully supported by the amplitude expansion calculations, and strongly suggests that
high Weissenberg number flows show a strong tendency to become turbulence [54], since the threshold is predicted to
rapidly go down as 1/Wi2.

The above conclusion has many implications. The good news is that studies of visco-elastic turbulence becomes all
the more relevant, and theories of visco-elastic turbulence ([48] and references therein) may have quite a large range
of applicability. The bad news, unfortunately is, that while the equations describing the rheology of visco-elastic fluids
are already quite difficult to handle, the implication from the above is that linear stability analysis and weakly nonlinear
methods like amplitude expansions, are likely to be of very limited use.

From a more general perspective, this conclusion may also have important implications for our understanding of
shear banding, the fact that sheared complex fluids may tend to break up into zones with very different shear rates
[75,76]. Almost all of our theoretical understanding of shear banding is based on the assumption that the flow within
each of these zones remains laminar. If, however, nonlinear flow instabilities occur in these zones, we expect these to
couple strongly to the shear banding itself [77,78]. There are already experimental indications for this [79].

A second important indirect implication of our general conclusion is for numerical simulations. As we discussed
briefly in Section 2.2, simulations of visco-elastic flows are prone to numerical instabilities, the so-called High Weis-
senberg Number Problem. These problems already tend to show up in simulations of coherent but laminar flow profiles.
However, if the fluid itself can also show sudden strong instabilities to nontrivial flows with strongly sheared regions,
it will not be easy to disentangle these from true physical instabilities. Maybe in some cases a true physical instability
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drives what appears to be a numerical instability. But even when there are true numerical instabilities, the occurrence
of additional physical instabilities will certainly exacerbate the problem.

Finally, as we mentioned, the field of micro-fluidics seems to bring new opportunities to test some of these nonlinear
instabilities. At the same time, the strong tendency of visco-elastic fluids to become turbulent at small Reynolds numbers
may help solve the mixing problem in micro-fluidics.
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