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Abstract

We study the coupled complex Ginzburg—Landau (CGL) equations for traveling wave systems, and show that sources and
sinks are the important coherent structures that organize much of the dynamical properties of traveling wave systems. We
focus on the regime in which sources and sinks separate patches of left and right-traveling waves, i.e., the case that these modes
suppress each other. We present in detail the framework to analyze these coherent structures, and show that the theory predicts
a number of general properties which can be tested directly in experiments. Our counting arguments for the multiplicities
of these structures show that independently of the precise values of the coefficients in the equations, there generally exists
a symmetric stationary source solution, which sends out waves with a unique frequency and wave number. Sinks, on the
other hand, occur in two-parameter families, and play an essentially passive role, being sandwiched between the sources.
These simple but general results imply that sources are important in organizing the dynamics of the coupled CGL equations.
Simulations show that the consequences of the wavenumber selection by the sources is reminiscent of a similar selection by
spirals in the 2D complex Ginzburg—Landau equations; sources can send out stable waves, convectively unstable waves, or
absolutely unstable waves. We show that there exists an additional dynamical regime where both single- and bimodal states
are unstable; the ensuing chaotic states have no counterpart in single amplitude equations. A third dynamical mechanism is
associated with the fact that the width of the sources does not show simple scaling with the grosvthilistés related to the
fact that the standard coupled CGL equationsateiniform ine. In particular, when the group velocity term dominates over
the linear growth term, no stationary source can exist; however, sources displaying nontrivial dynamics can often survive here.
Our results for the existence, multiplicity, wavelength selection, dynamics and scaling of sources and sinks and the patterns
they generate are easily accessible by experiments. We therefore advocate a study of the sources and sinks as a means to probe
traveling wave systems and compare theory and experiment. In addition, they bring up a large number of new research issues
and open problems, which are listed explicitly in the concluding section. ©1999 Elsevier Science B.V. All rights reserved.

PACS:47.54.+r; 03.40.Kf; 47.20.Bp; 47.20.Ky

Keywords:Pattern formation; Coherent structures; Traveling waves; Sources

* Corresponding author.
E-mail addressmvhecke@nbi.dk (M.v. Hecke)

0167-2789/99/$ — see front matter ©1999 Elsevier Science B.V. All rights reserved.
PIl: S0167-2789(99)00068-8



2 M.van Hecke et al./Physica D 134 (1999) 1-47

1. Introduction

Many spatially extended systems display the formation of patterns when driven sufficiently far from equilibrium
[1-5]. Examples include convection [2], interfacial growth phenomena [6,7] like directional solidification [8] and
eutectic growth [9], chemical Turing patterns [2,5,10], the printer instability [11-13], patterns in liquid crystals [14],
and even biophysical systems [15]. In the typical setup, the homogeneous equilibrium state turns unstable when a
control parameter (such as the temperature difference between top and bottom in Rayleigh—Bénard convection) is
increased beyond a critical val&g. If the amplitude of the patterns grows continuously wiRda increased beyond
R¢, the bifurcation is called supercritical (forward), and a weakly nonlinear analysis can be performed around the
bifurcation point. A systematic expansion in the small dimensionless control parametgR — Rc)/Rc yields
amplitude equations that describe the slow, large-scale deformations of the basic patterns.

Because near threshold the form of the amplitude or envelope equation depends mainly on the symmetries and on
the nature of the primary bifurcation (stationary or Hopf, finite wavelength or not, etc.), the amplitude description
has become an important organizing principle of the theory of non-equilibrium pattern formation. Many qualitative
and quantitative predictions have been successfully confronted with experiments [2-5]. Even outside their range
of strict applicability, i.e., for finite values af, the amplitude equations are often the simplest nontrivial models
satisfying the symmetries of the underlying physical system. As such, they can be studied as general models of
nonequilibrium pattern formation.

The most detailed comparison between the predictions of an amplitude description and experiments has been made
[2] for the type of systems for which the theory was originally developed [1], hydrodynamic systems that bifurcate
to a stationary periodic pattern (critical wavenumbgr£ 0 and critical frequencwe. = 0). The corresponding
amplitude equation has real coefficients and takes the form of a Ginzburg—Landau equation; it is often referred
to as the real Ginzburg—Landau equation. The coefficients occurring in this equation set length and time scales
only, and for a theoretical analysis of an infinite system, they can be scaled away. Hence one equation describes a
variety of experimental situations and the theoretical predictions have been compared in detail with the experimental
observations in a number of cases [2-5].

For traveling wave systems (critical wavenumbers% 0 and critical frequencw: # 0), there are, however,
few examples of a direct confrontation between theory and experiment, since the qualitative dynamical behavior
dependstronglyon the various coefficients that enter the resulting amplitude equatidrre calculations of these
coefficients from the underlying equations of motion are rather involved and have only been carried out for a limited
number of systems [21-25], and in many experimental cases the values of these coefficients are not known. A
different problem generally arises when dealing with systems of counter-propagating waves, where in many cases
the standard coupled amplitude equations (2) and (3) are not uniformly valid hrerefore one has to be cautious
about the interpretation of results based on these equations [26—32]. We return to this issue in Section 1.2.2.

Itis the main goal of this paper to show that the theory, based on the standard coupled amplitude equations (2) and
(3), doespredict a number of generic properties of sources and sinks which can be directly tested experimentally.
In fact, as the results of [33] for traveling waves near a heated wire also shomesand sinktype solutions are
the ideal coherent structures to probe the applicability of the coupled amplitude equations to experimental systems.
The reason is that these coherent structures are, by their very nature, based on a competition between left and
right-traveling waves in the bulk, and, unlike wall or end effects, they do not depend sensitively on the experimental
details. Moreover, a study of their scaling properties not only yields experimentally testable predictions, but also
bears on the relation between the averaged amplitude equations and the standard amplitude equations (see Sections
1.2.2 and 4). Finally, as we shall discuss, one of our main points is consistent with something which is visible in

1n practice complications may also arise due to the presence of additional important slow variables [16—20].
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many experiments, namely that the sources determine the wavelength in the patches between sources and sinks, and
hence organize much of the dynamics.

Sources and sinks have been observed in a wide variety of experimental systems where oppositely traveling waves
suppress each other, especially in convection [26,33-42]. An example of a one-dimensional source in a chemical
system is given in [43]. To our knowledge, however, they havebeen explored systematically in most of these
systems. In fact, many experimentalists who study traveling wave systems focus on the single-mode case — by
perturbing the system or quenching the control parameieis in general possible to eliminate the sources and
sinks.

Theoretically, some properties of sources and sinks in coupled amplitude equations have been analyzed by many
workers [26—33,44-55]. We shall briefly review some of these results in Section 1.2. To our knowledge, however,
there have been very little systematic studies comparing theory and experiment, and we therefore advocate a study
of these coherent structures as a means to probe traveling wave systems. The two main objectives of this paper
are to expand the detailed analysis and reasoning underlying the arguments of [33], and to stimulate experimental
investigations along such lines for other systems as well.

1.1. The coupled complex Ginzburg—Landau equations

When both the critical wavenumbey and the critical frequenay. are nonzero at the pattern forming bifurcation,
the primary modes are traveling waves and the generic amplitude equations are complex Ginzburg—Landau (CGL)
equations. When these primary modes are essentially one-dimensional and the system possesses left—right reflection
symmetry, the weakly nonlinear patterns are of the form

physical fieldsox Age™@e/=4e¥) 4 A @7 1(@ef+ac9) | ¢ ¢ (1)

whereAr and A are the complex-valued amplitudes of the right and left-traveling waves. Following arguments
from general bifurcation theory, i.e., anticipating that these amplitudes are ofs3fdend that they vary on slow
temporal and spatial scales, one then finds that the appropriate amplitude equations for traveling wave systems with
left—right symmetry are the coupled CGL equations [2,5,26—29,56]

9 AR + 509y AR = AR + (L +ic1)92AR — (1 — ic3)|AR|?AR — g2(1 — ic2)| AL |2 AR, )
dAL — 509 AL = eAL + (L +ic1)d2AL — (L —ica)|ALIPAL — g2(1 — ic2)|ARI?AL. ®)

In these equations, we have used the freedom to choose appropriate units of length, time and of the amplitudes
to set various prefactors to unity. Our conventions are those of [2], except that we have, following [26], denoted
the coupling coefficient of the two modes py. Apart from the “control paramete#, there are five important
coefficients occurring in these equationsandcs determine the linear and nonlinear dispersion of a single mode,
¢ determines the dispersive effect of one mode on the othexpresses the mutual suppression of the modes and
so is thelinear group velocity of the traveling wave modesAs a function of all these different coefficients, many
different types of dynamics are found [2,57-59].

It is important to stress, following [26—32], that one has to be cautious about the range of validity of the coupled
amplitude equations ((2) and (3)). When the linear group velegiiy of order,/¢, as happens near a co-dimension
two point in binary mixtures [26] or lasers [60,61], therwan be removed from the equations by an appropriate
rescaling of space and time and the amplitude equations are valid uniformki@wever, in most realistic traveling

2|t should be noted that by a rescaling one can either fikso. Sincees can be varied experimentally, we usually kegat a fixed value and
vary e.
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wave systemsy is of order unity, the amplitude equations do not scale uniformly with6], and their validity is
not guaranteed. In practice, the attitude towards this issue has often been (either implicitly or explicitly [62]) that
as they respect the proper symmetries, the equations may well yield good descriptions of physical systems outside
their proper range of validity.

Note in this regard that in a single patch of a left or right traveling wave a single amplitude equatigndor
suffices; in this case, the linear group velocity tega Ar or sgd, AL can be removed by a Galilean transformation.
The issue of validity of the amplitude equations does not arise then (see the discussion in Section 5.3.2), and many
theoretical studies have focused on this single CGL equation [63—65].

1.2. Historical perspective

In this section we will give a brief overview of earlier theoretical work on sources, sinks and coupled amplitude
equations in as far as these pertain to our work. It should be noted that grain boundaries for 2D traveling waves,
under the assumption of lateral translational symmetry, can be described as 1D sources and sinks [49,51]; hence
some results relevant to the work here can be found in papers focusing on the 2D case. This explains the frequent
references to early work on grain boundaries in 2D standing wave patterns [55]. Earlier experimental work will be
discussed in the section on experimental relevance.

1.2.1. Earlier work on sources and sinks

Early examples of sources and sinks in the literature can be found in the work by Joets and Ribotta (see [44—46]
and references therein), who studied these structures both in experiments on electroconvection in a nematic liquid
crystal, and in simulations of coupled Ginzburg—Landau equations. They focus mainly on nucleation of sources and
sinks, and multiplication processes. Sources and sinks have also been observed and studied in traveling waves in
binary mixtures [37-39,41,42]. In this system, however, the transition is weakly subcritical. We will compare some
of the results of these experiments with some of our findings in Section 6.2.2.

Theoretically, some properties of sources and sinks in coupled amplitude equations have also been analyzed by
Cross [26,27], Coullet et al. [47,48], Malomed [49,50], Aranson and Tsimring [51] and others [33,52,53].

Coullet et al. [47] consider sources and sinks occurring in one- and two-dimensional coupled CGL equations
from both a topological and numerical point of view. In particular, they observe numerically that patterns in which
sources and sinks are present typically select a unique wavenumber, a feature which plays a central role in our
discussion.

A particular important prediction of Coullet et al. [48] was that sources typically exist only a finite distance above
threshold, foe > £3° > 0. The authors remark that below this threshold, the sources become very sensitive to noise,
and an addition of noise to the coupled CGL equations was found to inhibit the divergence of sources in this case.
Moreover, they predict that the width of sinks diverges &sith contrast to what was asserted in [26,27] or what was
found perturbatively in the limitg — 0, ¢ finite [49]. There appears to have been neither a systematic numerical
check of these predictions nor a comparison with experiments. In this paper we shall recover the existence of a
critical valueeZ° from a slightly different angle, and show thef is only the critical value above whidtationary
source solutions exist. Belogg® source-type structuresan exist, but they are intrinsically dynamical and very
large. We will refer to these structures ren-stationarysources, as opposed to the stationary ones we encounter
abovesZ°. As we will discuss in Section 1.2.2, the prediction offiaite critical valueeg° for sources from the
lowest order amplitude equations is a priori questionable, but we shall argue that the existence of such a critical
value is quite robust for systems where the bifurcation to traveling waves is supercritical. For systems where the
bifurcation is subcritical, there need not be such a critical vafdeThis may be the reason that in experiments
on traveling waves in binary fluid convection [37], there does not appear to be evidence for the nonexistence of
stationary sources below a nonzero value3f
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Malomed [49] studied sources and sinks near the Real Ginzburg—Landau limit of the coupled CGL equations, and
also found wavenumber selection. Aranson and Tsimring [51] considered domain walls occurring in a 2D version
of the complex Swift-Hohenberg model. Assuming a translational invariance along this domain wall, one obtains as
amplitude equations the coupled 1D CGL equations ((2) and (3))syith 1, c1 — 00, c2 = ¢3 = 0 andgy = 2.

For that case, a unique source was found as well as a continuum of sinks. For the full 2D problem, a transverse
instability typically renders these solutions unstable. Finally, Rovinsky et al. [52] studied the effects of boundaries
and pinning on sinks and sources occurring in coupled CGL equations, and finally we note that some examples of
sources in periodically forced systems are discussed by Lega and Vince [54].

1.2.2. Validity of the coupled CGL equations

There is quite some discussion about under what conditions the standard coupled amplitude equations (2) and
(3) are valid for counter-propagating wave systems [28—32]. The essential observation is thag vehfamte, ¢
cannot be scaled out from the coupled amplitude equations (2) and (3).

Knobloch and De Luca [28,29] and Vega and Martel [30—32] found that under some conditions the amplitude
equations for finiteg reduce to

9 AR + 509y AR = AR + (L +ic1)32AR — (1 — ic3)|ARI?AR — g2(1 — ic2) (|ALI?) AR, @)
dAL — 500, AL = eAL + (L +ic)d2AL — (L—ica)|ALIPAL — g2(1 — ic2)(|ARI?) AL (5)

in the limite — 0, where(|A_ |2) and(|ARr|%) denote averages in the co-moving frames of the amplitdgeand

AL. Intuitively, the occurrence of the averages stems from the fact that the group vefdo#tgomes infinite after

scalinge out of the equations; in other words, when we follow one mode in the frame moving with the group velocity,

the other mode is swept by so quickly, that only its average value affects the slow dynamics. These equations have
been used in particular to study the effect of boundary conditions and finite size effects [28—-32], but for the study
of sources and sinks they appear less appropriate since they are effectively decoupled single-mode equations with a
renormalized linear growth term. Nevertheless, we shall see in Section 4 that in the §mélsources and sinks

often disappear from the dynamics, and if so, these equations may yield an appropriate description of the late-stage
regime.

1.2.3. Complex dynamics in coupled amplitude equations

In Section 5 we will discuss chaotic behavior that results from the source-induced wavenumber selection. Complex
and chaotic behavior in the coupled amplitude equations has, to the best of our knowledge, received very little
attention; notable exceptions are the papers by Sakaguchi [57,58], Amengual et al. [59] and van Hecke and Malomed
[66].

In the papers of Sakaguchi [57,58], the coupled CGL equations ((2) and (3)) were studied in the regime where
the cross-coupling coefficierp is close to 1. It was pointed out that the transition between single and bimodal
states in general shifts away frogp = 1 when the nonlinear waves show phase or defect chaos; in some cases
this transition can become hysteretic. Furthermore, periodic states and tightly bound sink/source pairs that we will
encounter in Section 5.2 were already obtained here.

In the recent work by Amengual et al. [59], two coupled CGL equations with group velgc#égual to zero
were studied. The dispersion coefficiemisand cz were chosen such that the uncoupled equations are in the
spatio-temporal intermittent regime [63—65,67]. Upon increasing the coupling coeffigiesihk/source patterns
were observed fog, > 1; in these patterns, no intermittency was observed. We will comment on this work in
Section 5.3.2, and in particular give a simple explanation of the disappearance of the intermittency.
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Fig. 1. Schematic representations of the various coherent structures that we will encounter in this paper. The amplitude of the left (right) travelin
waves is indicated by a thick (thin) curve, while the linear group velocity and total group velocity are denegeahby respectively, and their

direction is indicated by arrows. (a) and (b) are, in our definition, both sources, since the nonlinear groupsyptooityoutward; the majority

of cases that we will encounter will be of type (a). Similarly, (c) and (d) both represent sinks. Finally, one may in principal encounter structures
that are neither sources nor sinks. We never have observed a structure of the form shown in (e) in our simulations, but structures like shown in
(f) occur quite generally in the chaotic regimes. The dotted curve foAtheode indicates that we can have many different possibilities here,
including the case wergr = 0; in that case a description in terms of a single CGL equation suffices. Note that figure (f) does not exhaust all
possibilities which are essentially single-mode structures. E.g., in our simulations presented in Fig. 3, we encounter a case where in between a
source of type (a) and one of type (b) there is a single-mode sink, for whiomts inwards.

1.3. Outline

After discussing the definition of sources and sinks of related coherent structures in Section 2 (p. 6), we turn to
the counting analysis in Section 3 (p. 8). We focus in our presentation on the ingredients of the analysis and on the
main results, relegating all technical details of the analysis to Appendices A and B (p. 36 and p. 40, respectively).
The essential result is that one typically finds a unique symmetric source solution with zero velocity.

We discuss the scaling of the width of sources and sinksanittSection 4 (p. 12). The main result is that beyond
the critical values3° sources are intrinsically non-stationary.

In Section 5 (p. 19), we discuss the stability of the waves sent out by the source solutions, and identify three
different mechanisms that may lead to chaotic behavior. Furthermore we explore numerically some of the richness
found in the coupled amplitude equations. We find a plethora of structures and possible dynamical regimes.

Finally, in Section 6 (p. 29), we close our paper by putting some of our results in perspective, also in relation to
the experiments, and by discussing some open problems.

2. Definition of sources and sinks

Sources and sinks arise when the coupling coeffigjeid sufficiently large that one mode suppresses the other.
Then the system tends to form domains of either left-moving or right-moving waves, separated by domain walls or
shocks. The distinction betweesourcer sinksaccording to whether the nonlinear group velocity pointé the
asymptotic plane waves pointsutwardsor inwards(see Fig. 1) is crucial here. From a physical point of view, the
group velocity determines the propagation of small perturbations. In our definition, a source is an “active” coherent
structure which sends out waves to both sides, while a sink is sandwiched between traveling wave states with the
group velocity pointing inwards; perturbations travel away from sources and into sinks. Mathematically, it will turn
out that the distinction between sources and sinks in terms of the group velagiayso precisely the one that is
natural in the context of the counting arguments.
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In an actual experiment concerning traveling waves, when one measures an order parameter and produces
space—time plots of its time evolution, lines of constant intensity indicate lines of constant phase of the travel-
ing waves (see for example [33,37-39]). The direction ofghase velocityp, of the waves in each single-mode
domain is then immediately clear. Sincandvph do not have to have the same sign, one cannot distinguish sources
and sinks based on this data alone. In passing, we note that it was found by Alvarez et al. [33], and it is also clear
from Fig. 11 of [36], thabpn ands are parallel in these heated wire experiments, so that the structures which to the
eye look like sources, aiadeedsources according to our definition.

In the coupled CGL equations ((2) and (3),is thelinear group velocity, i.e., the group velocity of the fast
modes . It is important to realize [68,69] that for positive the group velocity is differentfrom sq. To see this,
note that the coupled CGL equations admit single mode traveling waves of the form

AR = ae '@RI—1Y) 4 =0, (6)
or
AL = qe  (@L1=4) Ar =0. 7

Substitution of these wave solutions in the amplitude equations ((2) and (3)) yields the nonlinear dispersion
relation

wr L = £s0g + (c1 + c3)g?, (8)
so that the group velocity = dw/dq of these traveling waves becomes

SR = So.R + 2(c1 +c3)g, Withsor = so, )

SL = soL + 2(c1+¢c3)q, Withspr = —so. (10)

Whene | 0, the band of the allowegl values shrinks to zero, arcapproaches the linear group velocityg, as
it should. The term @1 + ¢3)g accounts for the change in the group velocity away from threshold where the total
wave humber may differ from the critical valge. This term involves both the linear and the nonlinear dispersion
coefficient, and its importance increases with increasinge will therefore sometimes refer taas thenonlinear
or total group velocity, to emphasize the difference betwegands.

Clearly it is possible, thafy ands have opposite signs. Since the labels R and Agfand A refer to the signs
of linear group velocityso, if this occurs, the moddr corresponds to a wave whose total group velogity to
the left! The various possibilities concerning sources and sinks are illustrated in Fig. 1.

It is important to stress that our analysis focuses on sources and sinks near the primary supercritical Hopf
bifurcation from a homogeneous state to traveling waves. Experimentally, sources and sinks have been studied in
detail by Kolodner [37] in his experiments on traveling waves in binary mixtures. Unfortunately, for this system a
direct comparison between theory and experiments is hindered by the fact that the transition to traveling waves is
subcritical not supercritical.

3 We stress that the indices R and L of the amplitudgsand A, are associated with the sign of tieear group velocityyo. In writing Eq. (1)
with gc andw, positive, we have also associated a wave whose phase velggityto the right withAg, and one whosepy is to the left with
AL, but this choice is completely arbitrary: At the level of the amplitude equations, the sign of the phase velocity of the critical mode plays no
role.
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3. Coherent structures; counting arguments for sources and sinks
3.1. Counting arguments: general formulations and summary of results

Many patterns that occur in experiments on traveling wave systems or numerical simulations of the single and
coupled CGL equations (2) and (3) exhibit local structures that have an essentially time-independent shape and
propagate with a constant velocity For these so-calledoherentstructures, the spatial and temporal degrees of
freedom are notindependent: apart from a phase factor, they are stationary in the co-moviggframevz. Since
the appropriate functions that describe the profiles of these coherent structures depend only on the single variable
&, these functions can be determined by ordinary differential equations (ODE’s). These are obtained by substitution
of the appropriate Ansatz in the original CGL equations, which of course are partial differential equations. Since
the ODE’s can themselves be written as a set of first order flow equations in a simple phase space, the coherent
structures of the amplitude equations correspond to certain orbits of these ODE’s. Please note that plane waves,
since they have constant profiles, are trivial examples of coherent structures; in the flow equations they correspond to
fixed points. Sources and sinks connect, asymptotically, plane waves, and so the corresponding orbits in the ODE’s
connect fixed points. Many different coherent structures have been identified within this framework [67—72].

The counting arguments that give the multiplicity of such solutions are essentially based on determining the
dimensions ofthe stable and unstable manifolds near the fixed points. These dimensions, together with the parameters
of the Ansatz such as, determine for a certain orbit the number of constraints and the number of free parameters
that can be varied to fullfill these constraints. We may illustrate the theoretical importance of counting arguments by
recalling that for the single CGL equation a continuous family of hole solutions has been known to exist for some
time [70]. Later, however, counting arguments showed that these source type solutions were on general grounds
expected to come as discrete sets, not as a continuous one-parameter family [68,69]. This suggested that there
is some accidental degeneracy or hidden symmetry in the single CGL equation, so that by adding a seemingly
innocuous perturbation to the CGL equation, the family of hole solutions should collapse to a discrete set. This was
indeed found to be the case [73,74]. For further details of the results and implications of these counting arguments
for coherent structures in the single CGL equation, we refer to [68,69].

It should be stressed that counting arguments cannot prove the existence of certain coherent structures, nor can
they establish the dynamical relevance of the solutions. They can only establish the multiplicity of the solutions,
assuming that the equations have no hidden symmetries. Imagine that we know — either by an explicit construction or
from numerical experiments — that a certain type of coherent structure solution does exist. The counting arguments
then establish whether this should be an isolated or discrete solution (at most a member of a discrete set of them),
or a member of a one-parameter family of solutions, etc. In the case of an isolated solution, there are no nearby
solutions if we change one of the parameters (like the veloggpmewhat. For a one-parameter family, the counting
argument implies that when we start from a known solution and change the velocity, we have enough other free
parameters available to make sure that there is a perturbed trajectory that flows into the proper fixed peinkas

For the two coupled CGL equations (2) and (3) the counting can be performed by a straightforward extension of
the counting for the single CGL equation [68,69]. The Ansatz for coherent structures of the coupled CGL equations
(2) and (3) is the following generalization of the Ansatz for the single CGL equation

AL(x, 1) = €A (x —vr),  AR(x, 1) = € RLAR(x — vi). (11)

Note that we take the velocities of the structures in the left and right mode equal, while the frequeareiedowed

to be different. This is due to the form of the coupling of the left-and right-traveling modes, which is through the
moduli of the amplitudes. It obviously does not make sense to choose the velocitiesdpf #mel Ar differently:

for large times the cores of the structuresdipn and Ar would then get arbitrarily far apart, and at the technical
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level, this would be reflected by the fact that with different velocities we would not obtain simple ODE2s for

andAR. Since the phases dfi andAgr are not directly coupled, there is no a priori reason to take the frequencies

wL. andwg equal; in fact we will see that in numerical experiments they are not always equal (see for instance the

simulations presented in Fig. 3). Allowing # wr, the Ansatz (11) clearly has three free parametarsor and

V.
Substitution of the Ansatz (11) into the coupled CGL equations (2) and (3) yields the following set of ODE'’s:

dsaL = kLa, (12)
dezL = —z2 + 1+1ic1[_8 —iwL 4+ (L —icg)af + g2(1 —ic2)ag — (v + s0)zL], (13)
0:aR = KRAR, (14)
%z = —R+ o[ —lor + (L—lea)ag + g2l —ico)al — (v —s0)2R], (15)

where we have written

AL =a €%, AR = ag€?®. (16)
and wherey, « andz are defined as

q:=0:¢, Kk:=1/a)da, z:=0IN(A)=x+Iiq. (17)

Compared to the flow equations for the single CGL equation (see Appendix A), there are two important differences
that should be noted: (i) Instead of the veloaityve now have velocities =+ so; this is simply due to the fact that

the linear group velocity terms cannot be transformed away. (ii) The nonlinear coupling term in the CGL equations
shows up only in the flow equations for ths.

The fixed points of these flow equations, the points in phase space at which the right-hand sides of Egs. (12)—(15)
vanish, describe the asymptotic states&éfer +oo of the coherent structures. What are these fixed points? From
Eq. (12) we find that eithet; or « is equal to zero at a fixed point, and similarly, from Eq. (14) it follows that
eitherag or kR vanishes. For the sources and sinks of (2) and (3) that we wish to study, the asymptotic states are
left- and right-traveling waves. Therefore the fixed points of interest to us have eithesbatidxr or bothag
andx equal to zero, and we search for heteroclinic orbits connecting these two fixed points.

As explained before, with counting arguments one determines the multiplicity of the coherent structures from
(i) the dimensionD,,; of the outgoing (“unstable”) manifold of the fixed point describing the state on the left
(¢ = —o0), (i) the dimensiorD{,, of the outgoing manifold at the fixed point characterizing the state on the right
(¢ = o0) and (iii) the numbeNsee Of free parameters in the flow equations. Note that every flowline of the ODE’s
corresponds to a particular coherent solution, with a fully determined spatial profile but vetbitmary position;
if we would also specify the poigt = 0 on the flowline, the position of the coherent structure would be fixed. When
we refer to the multiplicity of the coherent solutions, however, we only care about the profile and not the position.
We therefore need to count the multiplicity of thebits. In terms of the quantities given above, one thus expects
aDg—1- Djut + Niree)-parameter family of solutions; the facterl is associated with the invariance of the
ODE’s with respect to a shift in the pseudo-tithevhich leaves the flowlines invariant. In terms of the coherent
structures, this symmetry is the translational invariance of the amplitude equations.

When the numbe(Dg .1 — Dg; + Miree) is zero, one expects a discrete set of solutions, while if this number
is negative, one expects there to be no solutions at all, generiPadlying the existence of solutions, within the
context of an analysis of this type, amounts to proving that the outgoing manifold &t=the co fixed point and
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the incoming manifold at thé = oo fixed point intersect. Such proofs are in practice far from trivial — if at all
possible — and will not be attempted here.

Conceptually, counting arguments are simple, since the dimerBjppandD},, are just determined by studying
the linear flow in the neighborhood of the fixed points. Technically, the analysis of the coupled equations is a
straightforward but somewhat involved extension of the earlier findings for the single CGL. We therefore prefer to
only quote the main result of the analysis, and to relegate all technicalities to Appendix B.

For sources and sinks, always one of the two modes vanishes at the relevant fixed points. We are especially
interested in the case in which the effective value,afefined as

L. 2 R . 2
eff = & — g2lar|”, Eoff = € — g2laL|”. (18)

is negativefor the mode which is suppressed. In this case small perturbations of the suppressed mode decay to zero
in each of the single-amplitude domains, so this situation is sitelle E.g., for a stable source configuration as
sketched in Fig. 2z;§ff should be negative on the left, aqﬁf should be negative on the right of the source. We will
focus on the results for this regime of full suppression of one mode by the other.
The basic result of our counting analysis for the multiplicity of source and sink solutions is thatwgher0 the
counting arguments fdnormal” sources and sinks (the linear group veloesiyand the nonlinear group velocity
s of the same sign), is simply that
e Sources occur in discrete sets. Within these sets, as a result of the left—right symmetey fyrwe expect a
stationary, symmetric source to occur.
e Sinks occur in a two-parameter family.
Notice that apart from the conditions formulated above, these findings are completely independent of the precise
values of the coefficients of the equations. This gives these results their predictive power. Essentially all of the
results of the remainder of this paper are based on the first finding that sources come in discrete sets, so that they
fix the properties of the states in the domains they separate.
As discussed in Appendix B the multiplicity acinomaloussources is the same as for normal sources and sinks
in large parts of parameter space, but larger multiplict@soccur. Likewise, sources witlys > 0 may occur as
a two-parameter family, although most of these are expected to be unstable (Section B.7). We shall see in Section
5 that in this case, which happens especially whgrs only slightly larger than 1, new nontrivial dynamics can
occur.

3.2. Comparison between shooting and direct simulations

Clearly, the coherent structure solutions are by construcsipecialsolutions of the original partial differential
equations. The question then arises whether these solutions are also dynamically relevant, in other words, whether
they emerge naturally in the long time dynamics of the CGL equation or as “nearby” transient solutions in nontrivial
dynamical regimes. For the single CGL equation, this has indeed been found to be the case [67-69,75-80]. To check
that this is also the case here, we have performed simulations of the coupled CGL equations and compared the sinks
and sources that are found there to the ones obtained from the ODE’s (12)—(15). Direct integration of the coupled
CGL equations was done using a pseudo-spectral code. The profiles of uniformly translating coherent structures
were obtained by direct integration of the ODE's (12)—(15), shooting from both thet-oco andé = —oo fixed
points and matching in the middle.

In Fig. 2(a), we show a space—time plot of the evolution towards sources and sinks, starting from random initial
conditions. The grey shading is such that patchedapfmode are light andi| mode are dark. Clearly, after a
quite short transient regime, a stationary sink/source pattern emerges. In Fig. 2(b) we show the amplitude profiles
of |ARr| (thin curve) and A| | (thick curve) in the final state of the simulations that are shown in Fig. 2(a). In
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Fig. 2. (a) Space-time plot showing the evolution of the amplitydesand|ARr| in the CGL equations starting from random initial conditions.

The coefficients were chosenas= 0.6, c = 0.0, c3 = 0.4, s = 0.4, g2 = 2 ande = 1. The grey shading is such that patchegiafmode

are light and thet,. mode are dark. (b) Amplitude profiles of the final state of (a), showing a typical sink/source pattern. (c) Comparison between
the source obtained from direct simulations of the CGL equations as shown in (b) (squares) and profiles obtained by shooting in the ODE's
(12)—(15) (full curves). (d) Similar comparison, now for the wavenumber profiles. In (c) and (d), the thick (thin) curves correspond to the left
(right) traveling mode.

Fig. 2(c) and (d) we compare the amplitude and wavenumber profile of the source obtained from the CGL equations
aroundx = 440 (boxes) to the source that is obtained from the ODE’s (12)—(15) (full lines). The fit is excellent,
which illustrates our finding that sources are stable and stationary in large regions of parameter space and that their
profile is completely determined by the ODE’s associated with the Ansatz (11).

However, the CGL equations posses a large number of coefficients that can be varied, and it will turn out that
there are several mechanisms that can render sources and source/sink patterns unstable. We will encounter these
scenarios in Sections 4 and 5.

3.3. Multiple discrete sources

As we already pointed out before, the fact that sources come in a discrete set does not imply that there exists
only one unique source solution. There could in principle be more solutions, since the counting only tells us that
infinitesimally close to any given solution, there will not be another one.

Fig. 3 shows an example of the occurrence of two different isolated source solutions. The figure is a space—-time
plot of a simulation where we obtained two different sources, one of which is an anomalowsadey(of opposite
sign). One clearly sees the different wavenumbers emitted by the two structures, and sandwiched in between these
two sources is a single amplitude sink, whose velocity is determined by the difference in incoming wavenumbers.
We have checked that the wavenumber selected by the anomalous source is such that the counting still yields a
discrete set. If we follow the spatio-temporal evolution of this particular configuration, we find highly nontrivial
behavior which we do not fully understand as of yet (not shown in Fig. 3).

These findings illustrate our belief that the “normal” sources and sinks are the most relevant structures one expects
to encounter. It therefore appears to be safe to ignore the possible dynamical consequences of the more esoteric
structures, which one a priori cannot rule out. The main complication of the possible occurrence of multiple discrete
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Fig. 3. (a,b) Space-time plots showingir| (a) and|AL| (b) in a situation in which there are two different sources present. Coefficients in

this simulation arey = 3.0, ¢ = 0,¢3 = 0.75, g2 = 2.0, 50 = 0.2 ande = 1.0. Initial conditions were chosen such that a well-separated
source-source pair emerges, and a short transient has been removed. The sourcé3@ is anomalous, i.e., its linear and nonlinear group
velocity sg ands have opposite signs. Sandwiched between the sources is a single-mode sink, traveling in the direction of the anomalous source;
this sink is visible in (b). (c) Snapshot of the amplitude profiles of the two sources and the single mode sink at the end of the simulation shown
in (a-b). (d) The wavenumber profiles of the two sources in their final state. Note that when the modulus goes to zero, the wavenumber is no
longer well-defined; we can only obtajrup to a finite distance from the sources. The selected wavenumber emitted by the anomalous source is
gsel = 0.387, while the wavenumber emitted by the ordinary sourgeds= 0.341. The velocity of the sink in between agrees with the velocity

that follows from a phase-matching rule, i.e., the requirement that the phase difference across the sink remains constant. In (c) and (d), thick
(thin) curves correspond to left (right) traveling modes.

sources, as in Fig. 3, is that single amplitude sinks can arise in the patches separating them. The motion of these
sinks can dominate the dynamics for an appreciable time.

4. Scaling properties of sources and sinks for small

In this section we study the scaling properties and dynamical behavior of sources and sinks in the limitisshere
small. This is a nontrivial issue, since due to the presence of the linear group vejottity coupled CGL equations
do not scale uniformly witte. We focus in particular on the width of the sources and sinks. The results we obtain
are open for experimental testing, since the control paranaetan usually be varied quite easily. The behavior
of the sources is the most interesting, and we will discuss this in Sections 4.1 and 4.2. Using arguments from the
theory of front propagation, we recover the result from Coullet et al. [48] that there is a finite threshold value for
¢, below which nacoherentsources exist (Section 4.1). Fobelow this critical value, there are, depending on the
initial conditions, roughly two different possibilities. For well-separated sink/source patterns, wefirglationary
sources whose average width scales/as(ih possible agreement with the experiments of Vince and Dubois [35];
see Section 6.2.1). These sources can exist for arbitrarily small values-of patterns with less-well separated
sources and sinks, we typically find that the sources and sinks annihilate each other and disappear altogether. The
system evolves then to a single mode state, as described by the averaged amplitude equations (4) and (5). These
scenarios are discussed in Section 4.2. By some simple analytical arguments we obtain that the width of coherent
sinks diverges as/%; typically these structures remain stationary (see Section 4.3).
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Fig. 4. (a) Sketch of a wide source, indicating the competition between the linear group vejoaitd the front velocityw*. (b) Width of
coherent sources as obtained by shooting¢foe c3 = 0.5, ¢ = 0, g2 = 2 andsp = 1. (c) Example of dynamical source for same values of
the coefficients and = 0.15. The order parameter shown here is the sum of the amplitddéand| Ar|, and the total time shown here is 1000.
(d) Average inverse width of sources for the same coefficients as (b) as a functioflha thick curve corresponds to the coherent sources as
shown in (b). For close to and below:° = 0.2, there is a crossover to dynamical behavior. The inset shows the region areufidwhere

the average width roughly scalesss.

4.1. Coherent sources: analytical arguments

By balancing the linear group velocity term with the second order spatial derivative terms, we see that the coupled
amplitude equations (2) and (3) may contain solutions whose widths approach a finite value of @ydse 1> 0.

As pointed out in particular by Cross [26,27], this behavior might be expected near end walls in finite systems;
in principle, it could also occur for coherent structures such as sources and sinks which connect two oppositely
traveling waves. Solutions of this type aret consistent with the usual assumption of separation of scales (length
scale~ ¢~1/2) which underlies the derivation of amplitude equations. One should interpret the results for such
solutions with caution.

As we shall discuss, the existence of stationary, coherent sources is governed by a finite criticeg°véihse
identified by Coullet et al. [48]. Since the coupled amplitude equations (2) and (3) are only valid to lowest order in
&, the question then arises whether the existence of this finite critical vegiessa peculiarity of the lowest order
amplitude equations. Since this threshold is determined by the interplay of the linear group velocity and a front
velocity, which are both defined for arbitratywe will argue that the existence of a threshold is a robust property
indeed.

We now proceed by deriving this critical valeg’ from a slightly different perspective than the one that underlies
the analysis of Coullet et al. [48], by viewing wide sources as weakly bound states of two widely separated fronts.
Indeed, consider a sufficiently wide source like the one sketched in Fig. 4(a) in which there is quite a large interval
where both amplitudes are close to z&rdntuitively, we can view such a source as a weakly bound state of two
fronts, since in the region where one of the amplitudes crosses over from nearly zero to some value of order unity,

41t is not completely obvious that wide sources necessarily have such a large zero patch, but this is what we have found from numerical
simulations. Wide sinks actually will turn out not to have this property.
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the other mode is nearly zero. Hence as a first approximation in describing the fronts that build up the wide source of
the type sketched in Fig. 4(a), we can neglect the coupling term proportiogairidhe core-region. The resulting
fronts will now be analyzed in the context of the single CGL equation.
Let us look at the motion of thag front on the right (by symmetry thé, front travels in the opposite direction).
As argued above, its motion is governed by the single CGL equation in a frame moving with vegocity

(0; + 500,)AR = £AR + (L +ic1)0?AR — (1 — ic3)|ARI?AR. (19)

The front that we are interested in here corresponds to a front propagating “upstream”, i.e., to the left, into the
unstableAr = O state. Such fronts have been studied in detail [68,69], both in general and for the single CGL
equation specifically.

Fronts propagating into unstable states come in two classes, depending on the nonlinearities involved. Typically,
when the nonlinearities are saturating, as in the cubic CGL equation (19), the asymptotic front welpeguals
the linear spreading velocity*. This v* is the velocity at which a small perturbation around the unstable state
grows and spreads according to timearizedequations. For Eq. (19), the velocity of the front, propagating into
the unstabled = O state, is given by [68,69]

v* =s0—2,/8(1+c%). (20)

The parameter regime in which the selected front velocity is often referred to as the “linear marginal stability”
[81-85] or “pulled fronts” [86—89] regime, as in this regime the front is “pulled along” by the growing and spreading
of linear perturbations in the tip of the front.

For smalle, the velocityv* = vgont IS positive, implying that the front moves to the right, while for lasge™* is
negative so that the front moves to the left. Intuitively, it is quite clear that the valaevberev* = 0 will be an
important critical value for the dynamics, since for largehe two fronts sketched in Fig. 4(a) will move towards
each other, and some kind of source structure is bound to emerge <Feg° however, there is a possibility that
a source splits up into two retracting fronts. Hence the critical valueisfdefined through*(eg° = 0, which,
according to Eqg. (20) yields

3% =s5§/(4+ 4c). (21)

We will indeed find that the width ofoherentsources diverges for this value ef however, the sources will
not disappear altogether, but are replacechbg-stationarysources which cannot be described by the coherent
structures Ansatz (11).

4.2. Sources: numerical simulations

By using the shooting method, i.e., numerical integration of the ODE’s (12)—(15), to obtain coherent sources, we
have studied the width of the coherent sources as a functienidfe width is defined here as the distance between
the two points where the left and right traveling amplitudes reach 50% of their respective asymptotic values. In
Fig. 4(b), we show how the width of coherent sources varies witfor the particular choice of coefficients here
(c1=¢3=05,¢c2=0, g2 =2andsp = 1),¢3° = 0.2, and it is clear from this figure, that the width of stationary
source solutions of Eq. (19) diverges at this critical v&lue

In dynamical simulations of the full coupled CGL equations however, this divergence is cut off by a crossover
to the dynamical regime characteristic of the: ¢3° behavior. Fig. 4(c) is a space—time plot|df | + |Ar| that

5 Note that by a rescaling of the CGL equations, one casgset1 without loss of generality.
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illustrates the incoherent dynamics we observesfer ¢3°. The initial condition here is source-like, albeit with a

very small width. In the simulation shown, we see the initial source flank diverge as we would expegj since

As time progresses, right ahead of the front a small ‘bump’ appears: as we mentioned before, both amplitudes are
to a very good approximation zero in that region, so the state there is unstable (remember that thoughissmall,

still nonzero). This bump will therefore start to grow, and will be advected in the direction of the flank. The flank
and bump then merge and the flank jumps forward. The average front velocity is thus enhanced. The front then
slowly retracts again, and the process is repeated, resulting in a “breathing” type of motion. For longer times these
oscillations become very, very small. For this particular choice of parameters, they become almost invisible after
times of the order 3000; however, a close inspection of the data yields that the sources never become stationary but
keep performing irregular oscillations. Since these fluctuations are so small, itis very likely that to an experimentalist
such sources appear to be completely stationary.

From the point of view of the stability of sources, we can think of the change of behavior of the sources as a
core-instability. This instability is basically triggered by the fact that wide sources have a large core whetg both
and AR are small, and since the neutral state is unstable, this renders the sources unstable. The difference between
the critical value ot where the instability sets in arfl°is minute, and we will not dwell on the distinction between
the two® . Although all our numerical results are in accord with this scenario, one should be aware, however, that
it is not excluded that other types of core-instabilities exist in some regions of parametef spadermore, it
should be pointed out that wheris belowsZ°, there isno stationary albeit unstable source! The dynamical sources
can thamotbe viewed as oscillating around an unstable stationary source.

The weak fluctuations of the source flanks are very similar to the fluctuations of domain walls between single
and bimodal states in inhomogeneously coupled CGL equations as studied in [66]. Completely analogous to what
is found here, there is a threshold given in termg ahdsg for the existence of stationary domain walls, which
we understand now to result from a similar competition between fronts and linear group velocities. Beyond the
threshold, dynamical behavior was shown to set in, which, depending on the coefficients, can take qualitatively
different forms; similar scenarios can be obtained for the sources here.

The main ingredient that generates the dynamics seems to be the following. For a very wide source, we can think
of the flank of the source as an isolated front. Howevertiphef this front will always feel the other mode, and itis
precisely this tip which plays an essential role in the propagation of “pulled” fronts [81-83,86—89]! Close inspection
of the numerics shows that near the crossover between the front regime and the interaction regime, oscillations,
phase slips or kinks are generated, which are subsequently advected in the direction of the flank. These perturbations
are adeterministicsource of perturbations, and it is these perturbations that make the flank jump forward, effectively
narrowing down the source.

The jumping forward of the flank of the source fojust belowss° is reminiscent to the mechanism through
which traveling pulses were found to acquire incoherent dynamical behavior, if their velocity was different from the
linear group velocity [93]. In extensions of the CGL equation, it was found that if a pulse would travel slower than
the linear spreading speed, fluctuations in the region just ahead of the pulse could grow out and make the pulse
at one point “jump ahead”. In much the same way the fronts can be viewed to “jump ahead” in the wide source-type
structures belowZ® when the fluctuations ahead of it grow sufficiently large.

6 For a similar scenario in the context of non-homogeneously coupled CGL equations, see [66].

7 An example of a similar scenario is provided by pulses in the single quintic CGL equation. Pulses are structures consisting of localized regions
where|A| # 0. The existence and stability of pulse solutions can, to a large extent, be understood by thinking of a pulse as a bound state of
two fronts [68,69]. However, recent perturbative calculations near the non-dissipative (Schrddinger-like) limit [90—92] have shown that in some
parameter regimes a pulse can become unstable against a localized mode. This particular instability can not simply be understood by viewing a
pulse as a bound state of two fronts.
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In passing, we point out that we believe these various types of “breathing dynamics” to be a general feature of the
interaction between local structures and fronts. Apart from the examples mentioned above, a well known example
of incoherent local structures are the oscillating pulses observed by Brand and Deissler in the quintic CGL [94,95].
Also in this case we have found that these oscillations are due to the interaction with a front, but instead of a pulled
front it is apushedront that drives the oscillations here [96].

Returning to the discussion of the behavior of the wide non-stationary sources, we show in Fig. 4(d) the (inverse)
average width of the dynamical sources for sneallhese simulations were done in a large system (size 2048),
with just one source and, due to the periodic boundary conditions, one sink. If one slowly deereasefinds
that the average width of the sources diverges roughly agsee the inset of Fig. 4(d)). However, if one does
not take such a large system, i.e., sources and sinks are not so well separated, we often observed that, after a few
oscillations of the sources, they interact with the sinks and annihilate. In many cases, especially for small enough
¢, all sources and sinks disappear from the system, and one ends up with a state of only right or left traveling wave.
Since no sources or sinks can occur in the average equations (4) and (5), this behavior seems precisely to be what
these average equations predict. In a sense, this regime without sources and sinks follow nicely from the ordinary
CGL equations when | 0.

In conclusion, we arrive at the following scenario:

e Fore > £2° sources arstationaryand stable, provided that the waves they send out are stable. The structure
of these stationary source solutions is given by the ODE’s (12)—(15), and their multiplicity is determined by the
counting arguments.

e Whene | 2°, the source width rapidly increases, anddet ¢Z°, the size of the coherent sources (i.e., solutions
of the ODE’s (12)—(15)) diverges, in agreement with the picture of a source consisting of two weakly bound
fronts. For a value of just abovesZ°, the sources have a wide core where héghand Ar are close to zero,
and these sources turn unstable. Our scenario is that in this regime a source consists essentially of two of the
“nonlinear global modes” of Couairon and Chomaz [97]. Possibly, their analysis can be extended to study the
divergence of the source width ag, ¢Z°.

e Fore < &2° wide non-stationarysources can exist. Their dynamical behavior is governed by the continuous
emergence and growth of fluctuations in the region where both amplitudes are small, resulting in an incoherent
“breathing” appearance of the source. For long times, these oscillations may become very mild, especially when
¢ is not very far belowZ°.

o Inthelimitfore | 0, there are, depending on the initial conditions, two possibilities. For random initial conditions,
pairs of sources and sinks annihilate and the system often ends up in a single mode state, which is consistent
with the 'averaged equation’ picture discussed in Section 1.2.2. This happens in particular in sufficiently small
systems. Alternatively, in large systems, one may generate well-separated sources and sinks. In this case the
average width of the incoherent sources diverges/asith apparent agreement with the experiments of Vince
and Dubois [35] (see Section 6.2.1 for further discussion of this point).

We finally note that our discussion above was based on the fact that near a supercritical bifurcation, fronts
propagating into an unstable state are “pulled” [86—89] or “linear marginal stability” [81-85] frapig: = v*.

It is well-known that when some of the nonlinear terms tend to enhance the growth of the amplitude, the front

velocity can be highemsont > v* [81-89]. These fronts, which occur in particular near a subcritical bifurcation,

are sometimes called “pushed” [86—89] or “nonlinearly marginal stability” [68,69,85] fronts. In this case it can

happen that the front velocity remains large enough for stable stationary sources to exist all the waysdewh to

We believe that this is probably the reason that Kolodner [38] does not appear to have seen any evidence for the

existence of a criticad3® in his experiments on traveling waves in binary mixtures, as in this system the transition

is weakly subcritical [21,98].
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4.3. Sinks

As we have seen in Section B.2, counting arguments show that there generically exists a two-parameter family of
uniformly translating sink solutions. The scaling of their width as a functiafnisefnot completely obvious, since
the figures of Cross [26] indicate that their width approaches a finite value gs0, while Coullet et al. found a
class of sink solutions whose width diverges:as for ¢ | 0.
In Appendix C we demonstrate, by examining the ODE’s (12)—(15) i thé® limit, that the asymptotic scaling
of the width of sinks as ! follows naturally.
If we now focus again on uniformly translating sink structures of the form

AR = € RU AR (£), (22)

and explicitly carry out this scaling by introducing the scaled variables

= - WR,L = A
= &, =" ARL = —=—, 23
=6, @RL . RL= "7 (23)
We find that,if the limite — 0 is regular we can (to lowest order ¢, approximate the ODE’s (12)—(15) by the
following reduced set of equations

(=i + s09z) AR = AR — (1 — ic3)| Ar[?AR — g2(1 — ic2)|AL [P AR, (24)
(—i@ — 500g) AL = AL — (1 — ica)|AL[PAL — g2(1 — ic2)|AR|®AL, (25)

where we have séir = @ = w andv = 0, to study symmetric, stationary sinks. As one can see by comparing
Egs. (24) and (25) with the original Egs. (12)—(15), the taking otthe O limit effectively amounts to the removal
of the diffusive termwx 852. One coulda priori wonder whether this procedure is justified, since we are removing the
highest order derivative from the equations, which could very well constitute a singular perturbation. This matter
will be resolved with the aid of our counting argument.

Egs. (24) and (25) admit an exact solution for the sink profile, first obtained by Coullet et al. When we substitute

ApL =aL€®t,  GrL = 0:drL. (26)

the explicit solution is given by

_ € _ a2

aR(x) = \/ 11 @& Denyjso  VE T 27)

The width of these solutions is easily seen to indeed diverge AsSince we can still vary continuously to
give various values for the asymptotic wavenumber, which is for solutions of the type (27) given by

1 - -1 _
gr= —(@w+c3)foré = —oco and g = — (o + ¢3) for & = o0, (28)
S0 S0

we see that we still have a one-parameter family e 0 sinks. Since this is in accord with the full counting
argument, the limit | 0 is indeed regular.

In passing we note that source solutions of finite width are completely absent in the scaled Egs. (24) and (25).
This is because the only orbit that starts from #e = 0 single mode fixed point and flows to tiae¢ = 0 single

8 The work of Cross was motivated by experiments on traveling waves in binary mixtures. In such systems, the bifurcation is weakly subcritical;
experimentally, the sinks width is then expected to be finite for small
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Fig. 5. The width of stationary sinks obtained from the ODE’s Eqgs. (12) and (15) as a functipfoot; = 0.6, c3 = 0.4,¢2 = 0,50 = 0.4,

go = 1 andg, = 2. (a) Example of the stationary sink which has an incoming wavenumber corresponding to the wavenumber that is selected
by the sources, far = 0.5. (b) Idem now fore = 0.05. Notice the differences in scale between (a) and (b). These two sinks are not related by
simple scale transformations; this illustrates again the absence of unrifraling of the coupled CGL equations. (c) Ais decreased, the sink

width initially roughly increases as /2. Whene becomes sufficiently small, the group-velocity terms dominate over the diffusive/dispersive
terms, and the sink-width is seen to obey an asymptoticscaling (see (d) for a blowup arouad= 0. The straight line indicates the analytic

result for the 50% width as obtained from Eq. (27), i.e. width= 5¢/(2In 3).

mode fixed point passes through the = Ar = 0 fixed point, and therefore takes an infinite pseudo-time
such a source has an infinitely wide core regime whgr@and Ar are both zero. This also agrees with our earlier
observations, since the coherent sources already diverge atfhite

In Fig. 5 we plot the sink width versusfor the full set of ODE’s, as obtained from our shooting. It is clear that
the sink indeed diverges at= 0, and that it asymptotically approaches the theoretical prediction from the above
analysis.

4.4. The limitsg — 0

In this paper, we focus mainly on the experimentally most relevant kgniinite, ¢ small For completeness,
we also mention that Malomed [49] has also investigated the limit whésenonzero andg — 0,¢; — O,
perturbatively. In this limit, which is relevant for some laser systems [60,61], sinks are foundwm®ethan
sources. This finding can easily be recovered from the results of our appendix: from (A.12) it follows that to first
order insg the change in the exponential growth ratef the suppressed mode away from zero is

(SK,_i = —50/2, 8/(% = 50/2. (29)

where according to our convention of the Appendieescorresponds to the negative root of (A.12), arfdto the

positive one. For a sink, the left traveling mode is suppressed on the left of the structure, and so this mode grows as
exp(/cfg), while on the right of the sink the right-traveling mode decays to zero agg%p. For the sources, the

right and left traveling modes are interchanged. According to (29), upon incregsihg relevant rate of spatial

growth and decay decreases for sinks and increases for sources. Hence in this limit, somewhat counter-intuitively,
sinks are wider than sources. For a further discussion of the gmit> 0, we refer to the paper by Malomed

[49].
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Table 1

Overview of disordered and chaotic states

Type Section Figure Parameters

Core-instabilities 4.1and4.2 4 e < e =s2/(4+4c?)

Absolute instabilities 51 7and8 vge >0

Bimodal chaos 5.2 9 X g2 < ¢/(e — gsel
Defects+Bimodal 5.3.2 10 g2 just above 1
Intermittent+Bimodal 5.3.3 11 g2 just above 1

Periodic patterns 5.34 7,8 and 12 c¢2,c3: opposite signs and not small

5. Dynamical properties of source/sink patterns

Apart from the instability of the sources that occurs whea &Z°, there are at least two other mechanisms that

lead to nontrivial dynamics of source/sink patterns, and this section is devoted to a description of such states. Due

to the high dimensionality of the parameter space (one has to consider, in principle, the coefficientss, g2

ande or sg), we aim at presenting some typical examples and uncovering general mechanisms, rather than aiming

at a complete overview. Several of the scenario’s we lay out deserve further detailed investigation in the future.
The starting point of our analysis here is the discrete nature of the sources (see Section B.2) which implies that

the wavenumber of the laminar patches is often uniquely determined [47,49,51]. A stability analysis of these waves
yields the two following instability mechanisms:

e Benjamin—Feir instability. When the waves emitted by the sources are unstable to long wavelength modes, it
is the nature of this instability, i.e., whether itésnvectiveor absolute that determines the global dynamical
behavior. The dynamical states that occur in this case are discussed in Section 5.1.

e Bimodal instabilities. The selected wavenumber can also lead to an instability resulting from the competition
between the left and right traveling modes. The essential observation is that for a selected wavegythbes
exists arange k g» < ¢/(e — qszep for which bothsingle and bimodal states are unstable. Provided that there
are sources in the system, we find then a regimsoafce-induced bimodahaos (see Section 5.2).

Furthermore, both of these instabilities can occur simultaneously, as seems to be the case in experiments of

the Saclay group [40], and can be combined with the smaiktability of the sources, discussed in Section 4.

This leads to quite a rich palette of dynamical and chaotic states (Section 5.3). We have summarized the various

disordered states that are typical for the coupled amplitude equations in Table 1. The first three types of dynamics

are source-driven. Sources are not essential for the last three types of dynamics, which are driven by the coupling
between thed| andAr modes.

5.1. Convective and absolute sideband-instabilities

Plane waves in the single CGL equation with wavenungbexhibit sideband instabilities when [2]

1_
2 e(1—cic3)

_ 30
3—cic3+ 26% ( )

q

9 When both nominator and denominator are negative, as may occur forlarés equation seems to suggest that one might have a stable
band of wavenumbers. However, wher-k1c3 is negative, no waves are stable; the flipping of the sign of the denominator forlabgars
no physical relevance, but is due to a long-wavelength expansion performed to obtain Eq. (30). Note that the denominator is always positive as
long as 1— cjc3 is positive.
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and when the curve;cz = 1 is crossed, all plane waves become unstable, and one encounters various types of
spatio-temporal chaos [2,63—65]. For the coupled CGL equations under consideration here, the condition for linear
stability of a single mode is still given by Eq. (30), since the mode which is suppressed is coupled quadratically to
the one which is nonzero. Since the sources in general select a wavenumber unequal to zero, the relevant stability
boundary for the plane waves in source/sink patterns typically lies below¢dhe= 1 curve.

Consider now a linearly unstable plane wave. Perturbations of this wave grow, spread and are advected by the
group velocity. The instability of the wave is called convective when the perturbations are advected away faster
than they grow and spread; when monitored at a fixed position, all perturbations eventually decay. In the case
of absolute instability, the perturbations spread faster than they are advected; such an instability often results in
persistent dynamics. To distinguish between these two cases one has to compare, therefore, the group velocity
and the spreading velocity of perturbations. For a general introduction to the concepts of convective and absolute
instabilities, see e.g. [99,100].

Numerical simulations of the coupled CGL equations presented show that the distinction between the two types
of instabilities is important for the dynamical behavior of the source/sink patterns. When the waves that are selected
by the sources are convectively unstable, we find that, after transients have died out, the pattern typically “freezes”
in an irregular juxtaposition of stationary sources and sinks. When the waves are absolutely dhstaiviever,
persistent chaos occurs.

The wavenumber selection and instability scenario sketched above for the coupled CGL equations is essentially
the one-dimensional analogue to the “vortex-glass” and defect chaos states in the 2D CGL equation [101-104]; in
that case the wavenumber is selected by so-called spiral or vortex solutions. As we shall discuss, there are, however,
also some differences between these cases.

We will briefly indicate how the threshold between absolute and convective instabilities is calculated (see also
[104]). The advection of a small perturbation is given by the nonlinear group velosgityw/dg which is the sum
of the linear group velocityp and the nonlinear term, = 2g(c1 + c3):

sL. = —so+2gL(c1+c3), SR =S50+ 2qr(c1+c3). (31)

The spreading velocity of perturbations is conveniently calculated in the linear marginal stability/pulled front
framework [81-84,88,89] once one has obtained a dispersion relation for these perturbations. Since we consider
single mode patches, we are allowed to restrict ourselves to a single CGL equation, in which the linear group velocity
term-+sod, A is easily incorporated, as it just gives a constant boost. Considering a perturbed plane wave of the form
A = (a +u)expi(gx — wt), whereu is a small complex-valued perturbatienexp i(kx — or) anda® = ¢ — ¢°.

Upon substituting this Ansatz into a single CGL equation, linearizing and going to a Fourier representation, one
obtains a dispersion relatien(k) [105]. From this relation one then finally calculates the spreading velogityf
the Benjamin—Feir perturbations in the linear marginal stability or saddle-point framework [81-84].

Since in general we can only calculate the selected wavenuptiyea shooting procedure of the ODE’s (12)—(15)
for a source, obtaining a full overview of the stability of the plane waves as a function of the coefficients necessarily
involves extensive numerical calculations. Therefore, we will focus now on a single swegg-of reasons to be
made clear below, we choose= 1, ¢; = ¢3 = 0.9, sg = 0.1 andg> = 2. Since we fix all coefficients bup, the
stability boundary Eq. (30) is fixed. By sweeping the selected wavenumber varies over a range of order 1, and
one encounters both convective and absolute instabilities.

101t should be noted that the criterion for absolute instability concerns the propagation of perturbations in an ideal, homogeneous background.
For typical source/sink patterns, one has finite patches; the criterion can also not determine when perturbations are strong enough to really affect
the core of the sources. Analogous to the 2D case, we have found that persistent dynamics sets atbalighitly threshold between convective

and absolute instabilities.
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Fig. 6. Frequency, corresponding selected wavenumiagrand perturbation velocitys - as afunctionof,, fore = 1,¢; = c3 =0.9,50 = 0.1
andgz = 2. Forc, < —0.25,vi: < 0, and perturbations in the right-flank of the source propagate to the left, so that the waves are absolutely
unstable.

We have found that after a transient, patterns in the stable or convectively unstable case are indistingbishable
When there is no inherent source of noise or perturbations, there is nothing that can be amplified, and the convective
instability is rendered powerless (see however, Section 5.3).

Although the transition between stable and convectively unstable waves is not very relevant for the source/sinks
patterns here, the transition between convectively and absolutely unstable waves is interesting. To obtain an absolute
instability one needs to carefully choose the parameters; wheareases, the contribution to the group velocity
of the nonlinear term, increases, and we have to takeandcs quite close to the;cz = 1 curve to find absolute
instabilities. This is the reason for our choice of coefficients. In Fig. 6 we have plotted the selected frequency
(obtained by shooting), corresponding wavenumber and propagation velggitf the mode to the right of the
source, as a function @b. For this choice of coefficients the single mode waves turn Benjamin—Feir convectively
unstable when, accordingly to Eq. (3@) > 0.223, which is the case for all values @f shown in Fig. 6. The
waves turn absolutely unstable whign > 0.553, and this yields that the waves become absolutely unstable for
c2 < —0.25.

When the selected waves becomes absolutely unstable, the sources may be destroyed since perturbations can no
longer be advected away from them; the system typically ends up in a chaotic state. In Fig. 7 we show what happens
when we choose the coefficients as in Fig. 6, and decreateeper and deeper into the absolutely unstable regime.

All runs start from random initial conditions, and a transient ef 10* was deleted. Although the left- and right
traveling waves do not totally suppress each other, it was found that picturégs|aind|AR| are, to within good
approximation, each others negative (see also the final states in Fig. 8). In accordance with this, we choose our
greyscale coding to correspond|tbr|, such that light areas correspond to right-traveling waves and dark ones to
left-traveling waves.

In Fig. 7(a),c2 = —0.3 and the waves have just turned absolutely unstable, but the only nontrivial dynamics
is a very slow drift of some of the sources and sinks. Note that this does not invalidate our counting results that
isolated sources are typically stationary, because the drifting occurs only for structures that are close together. When
c2 is lowered to—0.4 (Fig. 7(b)), one can see now the Benjamin—Feir perturbations spreading out in the opposite
direction of the group velocity, eventually affecting the sources (for example aroen@30, ¢+ = 2700). Some of
the sinks become very irregular. Whenis decreased even further+®.6 (Fig. 7(c)), the sources and sinks show a
tendency to form periodic states [57,58] (see also Fig. 8). These states seem at most weakly unstable since only some
very mild oscillations are observed. The two sinks with the largest patches around them show most dynamics, and
one sees the irregular creation and annihilation of small source/sink pairs here (areud20 and 440). Finally,

11 Except, of course, when we prepare a very large system with widely separated sources and sinks.
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Fig. 7. Source/sink patterns with absolutely unstable selected wavenumbers for the same coefficients as in Fig. 6 and various védyies of
c2 = —0.3, (b)c2 = —0.4, (c)c2 = —0.6, (d) c2 = —0.8. For more information see text.
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Fig. 8. Two more examples of nontrivial dynamics in the absolutely unstable case. Bothrgases: = 0.9, c, = —2.6, g2 = 2, and atransient

of 10* is deleted. (a-b)o = 0.1. Here the periodic states are quite dominant. It appears that these states themselves are prone to drifting and slow
dynamics. (b) Snapshots pf| | (thick curve) and Ar| (thin curve) in the final state. Obviously, the two modes, although disordered, suppress
each other completely. (c—d) Here we have increaged 0.2. The plane waves are still absolutely unstable, and the dynamics is disordered,

but much less than in case (a-b).

whenc; is decreased te-0.8 (Fig. 7(d)) the state becomes more and more disordered; the irregular “jumping” sink
atx ~ 230 is worth noting here.

Itis interesting to note that, in particular for large negativelosely bound, uniformly drifting sink-source pairs
are formed (see for instance aroune= 430, ¢+ = 700 in Fig. 7(d)). Another frequently occurring type of solution
are periodic states, corresponding to an array of alternating patchés afd Ar mode (see also Fig. 8). The
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source/sink pairs and in particular the periodic states occur over a quite wide range of coefficients; their existence

has been reported before by Sakaguchi [57,58]. In a coherent structures framework, periodic states correspond to
limit cycles of the ODE’s (12)—(15). In many cases they can be seen as strongly nonlinear standing waves, and they
show an interesting destabilization route to chaos (see Section 5.3.4).

Apart from the similarities between the mechanisms here and the spiral chaos of the 2D CGL equation, it is also
enlightening to notice the differences. The first difference is that our sources, in contrast to the spirals in 2D, are not
topologically stable. In the states we have shown so far this does not play a role; in the following section we will
see examples where instabilities of the sources themselves play a role. While in the 2D case the spiral cores that
play the role of a source are created and annihilated in pairs, it is here only the sources and sinks that are created
or annihilated in pairs. Furthermore, in the spiral case, the linear analysis that determines whether the waves are
absolutely of convectively unstable is performed for plane waves. This means one neglects curvature corrections of
the order Xr, wherer is the distance to the core of the source. Here, the only correction comes from the asymptotic,
exponential approach of the wave to a plane wave; this exponential decay rate is given by the decgeeatke
Appendix). Finally, in the spiral case, for fixeg andcs, both the group velocity and the selected wavenumber are
fixed, while here the selected wavenumber can be tuned,byithout influencing the stability boundaries of the
single mode state. The group velocity can be tuneshbylthough the selected wavenumber influences the group
velocity, cf. Eq. (31), andp influences the selected wavenumber, this large number of coefficients gives us more
freedom to tune the instabilities.

5.2. Instability to bimodal states: source-induced bimodal chaos

The dynamics we study in this section is intrinsically due to a competition between the single source-selected
waves and bimodal states. Therefore, this state is in an essential way different from what can be found in a single
CGL equation framework.

The wavenumber selection by the sources is of importance to understand the competition between single mode
and bimodal states. In the usual stability analysis of the single mode and bimodal states, itis assumed thatboth the
andAr modes have equal wavenumber [56]. Therefore, this analysis does not apply to the case of a single mode, say
the right-traveling mode, with nonzero wavenumber. The left-traveling mode is then in the zero amplitude state and
has no well-defined wavenumber; one should consider therefore its fastest growing mode, i.e., awavenumber of zero.
The following, limited analysis, already shows thatgejust above 1, instabilities are expected to occur. Restricting
ourselves to long wavelength instabilities, the analysis is simply as follows. Write the left- and right-traveling waves
as the product of a time dependent amplitude and a plane wave solution:

AL =a (e AR = ap(t)d IRV TORD, (32)
and substitute this Ansatz in the coupled CGL equations. One obtains then the following set of ODE’s
oraL = (g — qE - aE — gga%)m_, orar = (¢ — q,% — a% - gzaE)aR. (33)

Consider the single mode state with £ 0, ai. = 0 and takey. = 0. The maximum linear growth rate of now
follows from Eq. (33) to be the one with = 0; this mode has a growth rate givendy gza,% =¢e—go(e— qF%).
From this it follows that a single mode state with wavenumjgeis unstable wheg, < ¢/(e — ¢3). In source/sink
patterns, the selected wavenumber is as larggea8 at the edge of the stability band for= c3 = 0; itis as large
as 06./¢ in Fig. 6. In extreme cases, the valuegafnecessary to stabilize plane waves can be at least 50% larger
than the value 1 that one would expect naively.

On the other hand, the stability analysis of the bimodal states shows that they are certainly unsgabte for
A naive analysis for general andgr, based on Eq. (33) can be performed as follows. Solving the fixed point
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Fig. 9. Two examples of bimodal chaos. (a) and (c) show space time plots, and the grey shading is the same as before. Both simulations started
from random initial conditions, and a transientrof= 10* has been deleted from these pictures. For a detailed description, see text. Note that
the final states of runs (a) and (c), depicted in (b) and (d), clearly show that the two modes no longer suppress each other completely.

equations of Eq. (33) for the bimodal state (i«.,andar both unequal to zero), and linearizing around this fixed
point yields a 2x 2 matrix. From an inspection of the eigenvalues we find that the bimodal states turn unstable
whengy < ¢ — qf/(s — q22), whereq is the largest ang is the smallest of the wavenumbets gr. When both
wavenumbers are equal this critical valueggfis one; it is smaller in general.

It should be noted that this analysis does not capture sideband instabilities that may occur, and therefore waves
in a much wider range might be unstable. For sideband-instabilities of bimodal states, the reader may consult [56]
and [106]. However, our analysis shows already that there is certainly a regime ggogntiwhereboththe single
and bimodal states are unstable. This regime at least includes the rangg & /(s — qszel).

The distinction between convective and absolute instabilities becomes slightly blurred here. Suppose for instance
we inspect a single-mode state that turns unstable against bimodal perturbations. Initially, these perturbations will
be advected by the group velocity of the nonlinear mode, but as the perturbations grow, both modes will start
to play a role, and since they feel a group velocity of opposite sign, the perturbations are effectively slowed
down. Roughly speaking, the instability might be linearly convectively unstable but nonlinearly absolutely unstable
[99,100].

Without going into further details we will now show two examples of the bimodal chaos that occursgghen
is just above 1. For examples of similar dynamics, alsogfox 1, see [106]. In the first example (Fig. 9(a) and
(b)) we have takels = 1,¢1 = ¢3 = 0.5,¢c2 = —0.7,s0 = 1 andg> = 1.1. The selected wavenumber is almost
independent of the value g and approximately equal to¥b, which yields a critical value @f of 1.14. Forg; just
below this value, the instability appears convective, and after a transient the system ends up in a mildly fluctuating
source/sink pattern. Whegy is decreased, the instability becomes stronger and, presumably, absolute in nature.
Thesourcesehave then very irregularly, while the sinks drift according to there incoming, disordered waves. Note
that sources and sinks are created and annihilated in this state. In Fig. 9(c) and (d) we show the disordered dynamics
fore =1,c1=1,¢c3=-1,¢c2 =1,50 = 0.5 andg> = 1.1. Note that in the laminar patches, singe= —c3, the
dynamics is relaxational [2,4]. In this state, no creation or annihilation of sources and sinks is found; the sinks drift
slowly, while the sources behave very irregularly.
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The dynamical states as shown in Fig. 9 are different from the chaotic states that we are familiar with from the
single CGL equation [63-65,67], and so they are of some interest in their own right. Note that it is possible to get
persistent dynamics for values of andc3 that in a single CGL equation-framework would lead to completely
orderly dynamics. As the two examples in Fig. 9 show, qualitatively different states seem to be possible in this
regime; the question of classification of the various dynamical states is completely open as far as we are aware.

Finally, it should be pointed out that when, as is the case here, the left-and right-traveling mode no longer suppress
each othere becomes positive. In principle this might change the multiplicity of the sources, since the eigenvalues
coming from the linear fixed point can have a different structure for positiyésee Section B.7). However, this is
only true when the effective velocity + sq is larger than the critical velocity, ; for the cases considered above,
this does not happen. Hence, the sources are here still unique and select a unique wavenumber.

5.3. Mixed mechanisms

In the previous sections we have described three mechanisms by which sink-source patterns can be destabilized.
First of all, in Section 4 we found that due to a competition between the linear group vatpaitd the propagation
of linear fronts, the cores of the sources become unstable wkest°. In Section 5.1 we have shown that the waves
that are sent out by the sources can be convectively or even absolutely unstable, and in Section 5.2 we found that
these waves may also be unstable to bimodal perturbations ggtiemot very far above 1. Since the mechanisms
that lead to these instabilities are independent, these instabilities might occur together. This is the subject of this
section. In particular, one can always lower the control paransdétean experiment to make the sources become
core-unstable (Section 5.3.1). A second combination of instabilities occurs gghisrclose to 1 and the plane
waves are unstable and generate phase slips (Section 5.3.2); a particular interesting case occurs when the single
mode waves are in the so-called intermittent regime (Section 5.3.3).

5.3.1. Core instabilities and unstable waves

As discussed in Section 4.2, the cores of the source may start to fluctuateswhe®. As is visible in Fig.
4(c), the perturbations that are generated in the core are then advected away into the asymptotic plane waves.
In the discussions in Section 4, we have focused on the case where these waves are stable, but obviously, when
they are unstable, this will amplify the perturbations emitted by the source core. In particular, when the waves
are convectively unstable, a stable core for ¢Z° leads to stationary patterns, but a fluctuating core can fuel
the convective instabilities. This yields a simple experimental protocol to check for convective instabilities; simply
lower ¢ and follow the perturbations send by the sourceg forsZ°.

5.3.2. Phase slips and bimodal instabilities
Let us for definiteness suppose we have that= 0, and the right-traveling mode is active. When thismode
is chaotic and displays phase slips, the effective growth rate onhmode,egﬁ, may become positive for some
period. A only grows during this period; it depends then on the duration and spatial extension of the positive
e'e-ﬁ “pocket” whetherA| can grow on average. Clearly, one should look at a properly averaged v&lg@ ahd
therefore at the averagesof gzaé [57,58]. Wheryg: is sufficiently large, the averaged effective growth rate always
becomes negative, so that even a heavily phase slipping wave can still suppress its counter-propagating partner.
We show two examples of the dynamics when phase slips occugzaischot large enough to strictly suppress
the near-zero mode. As coefficients we choose= 1,c3 = 1.4,¢c2 = 1,¢ = 1,50 = 0.5, and the dynamics
is illustrated in Fig. 10. It should be noted that in Fig. 10(b) the sources are stationary, while some of the sinks
drift. This seems to be due to the fact that near the sink, i.e., far away from the sources, the wave emitted by the
sources has undergone phase slips, and the incoming wavenumbers of the sink can therefore be different from the
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Fig. 10. Two examples of the combination of phase slips and a valug glist above 1. The coefficients arg = 1,¢c3 = 1.4,
c2 =1, =1, 50 = 0.5. Grey shading as before (right (left) traveling waves are light (dark)). Irgf¢a} 1.05, while in (b)g2 = 1.2.

source-selected wavenumbers. For slightly different coefficients we have observed patterns of stationary sources,
with sinks in between that by this mechanism move in zig-zag fashion, i.e., alternating to the left and to the right.

5.3.3. Intermittency and bimodal instabilities

Recently, Amengual et al. studied the case of spatio-temporal intermittency in the coupled CGL equations for
a linear group velocityg = 0 andcz = ¢3 [59]. This particular sub-case of the coupled CGL equations is of
importance in the description of some laser systems [59-61]. V¢hes increased from zero, the authors of
[59] found that forgz < 1 one finds intermittency, with thd, and Ar obviously becoming more and more
correlated as the cross-coupling increases. Furthermore, the authors observed ghat-fdr, the two modes
become “synchronized”, i.e., the intermittency disappears and the systems ends up in a state that we recognize now
as a stationary source/source pattern (not source/sink). Since the intermittency “disappears” the authors question
the applicability of a single CGL equation for patches of single modes in the coupled CGL equations (2) and (3).

The purpose of this section is to clarify, correct and extend their results, using our results for the wavenumber
selection, the bimodal instabilities and the discussion in Section 5.3.2. In particular we will show that, (i) for
sufficiently largegs, the intermittency can persist, (ii) when the intermittency disappears it can do so by at least two
distinct mechanisms, (iii) more complicated states can occur. We conclude then that for single mode patches the
single CGL is a correct description, provided one is sufficiently far away from bimodal instabilities and one takes
the source-selected wavenumber and correct boundary conditions into account.

For the case considered in [59] the group-velogitis equal to zero, so the two modégs andAr are completely
equivalent. The distinction between sources and sinks depends therefore on the nonlinear group velocity, which
follows from the selected wavenumber. The counting arguments yield in this case again a disefesource and
a two-parameter family of sinks (see Section 3). In simulations we typically find stationary sources that separate
the patches oA_. andAr mode, andsingle amplitude sinksandwiched in between these sources.

We will show now a variety of scenarios for intermittency in the coupled CGL equations (2) and (3). The
coefficients used in [59] are;, = 0.2,¢c2 = ¢c3 = 2,¢ = 1 andsg = 0. The coefficientg; andcs are chosen
such that a single mode is in the so-called intermittent regime. In this regime, depending on initial conditions, one
may either obtain a plane wave attractor or a chaotic, “intermittent” state; the latter one is typically built up from
propagating homoclinic holes and phase slips [63-65,67].

In Fig. 11(a) we takg, = 2 and start from an ordered pair of sources. By a rapidly changitma value of 12
and then back to the value) we generate phase slips that nucleate a typical intermittent state. This intermittent
state persists for long times; there is no “synchronization” whatsoever. We found that we can also first let the source
develop completely, and then introduce some phase slips; also in this case the intermittency clearly persists. To
understand this, note that in this cageis sufficiently large, and sees; is negative (see Section 5.3.2); although
there are phase slips, the two modes suppress each other completely.
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Fig. 11. Space-time plots in the coupled-intermittent regime. To be able to show both the dynamicsAp #r& Agr mode, the

grey shading corresponds tdA%| + |AL|. This yields that right traveling patches are brighter in shade than left-traveling patches. (a)
c1 = 02, =c3 =2¢ =15 = 0andgy, = 12. (b) Same coefficients as (a), except for = 1.5. (C)c1 = 0.6,c3 = 1.4,
c2=1¢=150=0.1andg, = 2. (d) Same coefficients as (c), exceptder= 0. For as more detailed description see text.

In contrast, wheny is lowered e can become positive, and this corresponds to the scenario described in [59].
In Fig. 11(b) we start from state obtained fg=2, and then quenc}p to a value of 1.5. In this casesss becomes
positive every now and then, and after a while, in the patch originally the exclusive domaijn siall blobs of
AR mode grow. After a sufficient period has elapsed, these blobs nucleate new sources, and the system ends up in a
stationary source/source pattern. The laminar patches in between the sources are quite small and the intermittency
disappears.

The system switches from the intermittent to the plane wave attractor when the new sources are formed; this does
not mean that the CGL equation is incorrect here, since both plane waves and intermittent states are attractors for
these coefficients. The disappearance of the intermittency can be easily understood as follows: the main mechanism
by which intermittency spreads through the single CGL equation is by the propagation of homoclinic holes that
are connected by phase slip events [67]. If the phase slips now generate sources, there is no generation of new
homoclinic holes and the intermittency dies out.

It should be noted that for this particular choice of the coefficient@ndcs, the homoclinic holes have a quite
deep minimum inA|, which increases the value of the average, therefore one needs quite a largeto
guarantee the mutual suppression of theand Ag modes.

Finally, we found that the selected wavenumber for the coefficients of this particular exampl@.1s As a
consequence, the transition to stationary domains as observed in [S8ptancur atg, precisely equal to 1, but
occurs forgz ~ 1.01 (see Section 5.2).

This generation of sources due to phase slips of the nonlinear mode is not the only way in which the intermittency
can disappear. Consider the example shown in Fig. 11(c). We have chosen the coefficignts 8%, c3 =
14,¢c0 = 1,6 = 1,50 = 0.1 andgz, = 2. The sources select now a wavenumber @783, and the plane
wave emitted by the source simply “eats up” the intermittent state; note the single amplitude sinks visible for late
times. It should be realized that many dynamical states are sensitive to a background wavenumber, and that the
spatio-temporal intermittent state is particularly sensitive to this [67]; when describing a patch in the coupled CGL
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Fig. 12. Four space-time plots, showing the transition from standing waves to disordered pattepas,=fol.1,¢; = 0.9,c3 = 2,
so=—0.1,¢ =1, and (ay2 = —0.72, (b)c2 = —0.71, (c)c2 = —0.5, (d) c2 = 0. See text.

equations by a single CGL equation, one should take into account that one has wave-selection at the boundaries due
to the sources.

Finally, whenc, is lowered to a value of 0, the sources themselves become unstable and the system displays the
tendency to form periodic patterns; these are however not stable, and an example of the peculiar dynamical states
one finds is shown in Fig. 11(d).

In conclusion, when one is far away from any bimodal instabilities, i.e., wh&sufficiently large, a description
in terms of a single CGL equation is sufficient for the patches separating the sources, provided one takes into account
the group velocity, boundary effects and, most importantly, the selected wavenumber. It is amusing to note that the
guestion under which conditions a single amplitude equation is a correct description of these waves depends on the
coefficientsgo andco of thecross-couplingerm.

5.3.4. Periodic and other states

We would like to conclude this section by showing an example of the wide range of different states that occur in
the coupled amplitude equations when we sweepVe choose the other coefficients as follows:= 1.1, ¢1 =
0.9,¢c3 = 2,50 = —0.1,¢ = 1. Our main finding is that for large positive or negatie their is no sustained
dynamics, while for smalt; we find a strongly chaotic state. In between there are at least two transitions between
laminar and disordered state (see Figs. 12 and 13).

For sufficiently negatives, all initial conditions evolve to a spatially periodic state, with rapidly alternaing
andAR patches. We can view these states as an example of highly nonlinear standing wave patterns. Depending on
initial conditions, these states may either be stationary or have a small drift. For our particular choice of coefficients
it is empirically found that these states are linearly stablefor —0.72. In Fig. 12(a) we see the evolution from a
slightly perturbed initial condition for this value of. Qualitatively, we observe that when the “local wavenumber”
of the standing wave is lowered, this leads to oscillations, that may or may not lead to “defects”. After some
reasonably long transient (note the perturbation at 320 ¢+ ~ 2600), the dynamics settles down in a slowly
drifting standing wave. This shows that these generalized standing waves are stable here.
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Fig. 13. Four space-time plots for the same coefficients as in Fig. 12, but now for positive valpg@jpd, = 0.8, (b)c2 = 0.9, (c)c2 = 0.95,
d)cz =1.

In Fig. 12(b) we start from such a coherent standing wave state and have lawéoealvalue of—0.71. In this
case perturbations of the waves are spontaneously formed, indicating a linear instability. Since the state is unstable,
these perturbations then spread to the system in a way that is reminiscent of the intermittent patterns obtained, for
instance, in experiments on intermittency in Rayleigh—-Bénard convection [107,108]. It should be noted that, due to
the instability of the laminar state, one does not have an absorbing state, so strictly speaking this state should not
be referred to as intermittent. Interestingly enough, the transition between laminar and chaotic behavior seems to
be second order, i.e., we could not find any hysteresis. The transition is simply triggered by the linear stability of
the periodic/standing waves, and when these waves are stable, they are the only type of attractor.

If ¢2 is further increased to a value of0.5 (Fig. 12(c)), we find a state that we might call defect-chaos of a
standing wave pattern. Fep = 0 (Fig. 12(d)), the dynamics evolves on much faster time-scales, and no clear
structures are visible by eye.

On the other hand, when we keep increasipgwe again find regular states, but these ones correspond to
stationary source/sink patterns. This is illustrated in Fig. 13, where we show four space—time plots for increasing,
positive values of». In comparison with the dynamics as shown in Fig. 12(d), the time scales become slower and
slower wher; is increased. This slowing down becomes quite cleatfor 0.8 (Fig. 13(a)) and, = 0.9 (Fig.

13(b)). Forc, = 0.95 (Fig. 13(c)), the dynamics becomes even more slow and regular. We clearly see now stationary
sources, with irregularly moving sinks in between. Due to the smallnegs phase slips in one of the single modes
leads in some case to the formation of new sources and sinks. Wheiincreased to a value of 1 (Fig. 13(d)),
some slow dynamics sets in, that may or may not be a long living transient. For valoeaklmfve 11, all initial
conditions seem to evolve to a stationary, regular source/sink pattern.

6. Outlook and open problems

In this paper we have extended the coherent structures framework and the counting arguments to the coupled CGL
equations, and obtained important information on the dynamical states that are independent of the precise values
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of the coefficients and bear experimental relevance. In general, these considerations lead to the conclusion that
sources are often unique, sometimes come in pairs but in any case are at most members of a discrete set of solutions.
As a result, they are instrumental for the wavenumber selection of both regular and chaotic patterns. Many of the
instability mechanisms and dynamical regimes of the coupled CGL equations can be understood qualitatively from
this point of view, and we have shown several examples of hitherto unexplored regimes of persistent spatio-temporal
chaotic dynamics (see Table 1). In this closing section, we wish to discuss some of these findings in the light of
experimental observations, and summarize the most important open theoretical problems.

6.1. Experimental implications

In short, the experimental predictions that we make, based on our study of the coupled CGL equations are the
following:

o Multiplicity. Our analysis shows that sources are expected to come in a discrete set, which would experimentally
amount to ainique stationary source. Furthermore, this source is expected ggrbmetricin that it sends out
waves of the same wavenumber to both sides.

Sinks are non-unique. This means that one could have sinks with different velocities present at the same time.
In light of the previous remark on the uniqueness of sources, this might prove hard to observe experimentally.

o Wavenumber selectio®ne important consequence of the uniqueness of sources is that they select an asymptotic
wavenumber, just as spirals do in the 2D-case. Since the traveling-wave system is quasi-one-dimensional however,
we expect the wavenumber selection to be much easier to study.

e Scaling behaviotWe have made definite predictions for the smaadlealing of the width of sources and sinks.
Moreover, we predict the stationary sources to disappear at some finite valpetdth is the point where the
non-stationary sources take over. These sources scafé aas do the sinks.

o Instabilities and dynamical behavioApart from the non-stationary sources that occur whds decreased
sufficiently, we have found that there are at least two other mechanisms leading to dynamical states. The central
observation is that the waves that are selected and sent out by the sources may become unstable. Similar to what
happens in the single CGL equation, these waves can become convectively or absolutely unstable; the latter case
in particular yields chaotic states (Section 5.1). When the cross-coupling coefficient is not too far above one, and
the selected wavenumber is unequal to zero, there is a regime where both single and bimodal states are unstable.

6.2. Comparison of results with experimental data

Most research in the field of traveling wave systems has focussed on the properties of the single-mode states, i.e.,
the states where the entire experimental cell is filled up by either the left-or the right-traveling wave. From such a
perspective, it is natural to disregard the source/sink patterns that generally occur initially above onset as unwanted
transient states. Consequently they have not been studied as extensively as we think they deserve to be. It is the
aim of this section to confront a number of the theoretical findings of this article with some of the experimental
observations in the heated wire experiments [33—36] and in the experiments on traveling waves in binary liquids
[37—39,109-111]. In no way do we claim this comparison to be exhaustive — the main aim of our discussion is to
show that our results put various earlier observations in a new light, and that it should be feasible to settle various
of the issues we raise with further systematic experiments.

6.2.1. Heated wire experiments
When a wire which is put a distance of the order of a millimeter under the free surface of a liquid layer is heated,
traveling waves occur beyond some critical value of the heating power [33—36]. This bifurcation towards traveling
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waves turns out to be supercritical [36], and the group velocity and phase velocity turn out to have the same sign in
the experiments [33F. The paper by Vince and Dubois [36] is one of the few papers we know of that discusses
thee-dependence of the width of sources. The authors show that the inverse width scales linearly with the heating
power Q, and associate this with a scaling of the source widtiTasThis is correct if the value of) at which the

source width diverges coincides with the threshold value for the linear instability, but whether this is actually the
case is unfortunately not quite clear from the published tHat&ormulated differently, in terms of our numerical

data shown in Fig. 4(d), the question arises whether in the experiments the approximate linear scaling of the inverse
width with the heating power was associated with that of the thick line abByer with the linear scaling- ¢
beloweg°. If indeed the experiments are consistent witieah scaling of the width, then according to our analysis

the sources should be (weakly) non-stationary and prone to pinning to inhomogeneities in the cell. If the source
width diverges at a finite value @f this might be evidence for the existence of the critical vaffelt should be

of interest to investigate this further.

In [34], Dubois et al. also note that.”. sources may be large when the sinks are always very narroinvin
their heated wire experiments. This agrees with our finding that sinks are always less wide than the sources but the
published data do not allow us to extract the scaling of the sink widthawith

In the experiments by Alvarez et al. [33], sources were found to be stationary and symmetric but non-unique,
i.e., each source sends out the same waves to both sides, but different sources send out different waves. As a result,
patches with different wavenumbers were found to be present in the system (at any one time), and the sources
were seen to move in response to the fact that they were sandwiched between waves of different frequency. We
have already seen in Section 3.3 that there are certain regions of parameter space where there were two different
sources present at the same time (for one of them, the linear group vatpaitg nonlinear group velocity had
opposite signs). However, the fact that we can have various discrete source solutions can not explain the experimental
observations. First of all, in our simulations two of such sources were separated by a sink-type structure in one
single mode patchnotby a sink separating two oppositely traveling waves, as in the experiments. Secondly, in the
experiments there were always slight differences between any two pair of sources, which appears inconsistent with
the existence of a finite number of discrete source solutions.

It appears likely to us that the occurrence of slight differences between different sources results from the fact that
there are always some impurities or inhomogeneities present in any experimental setup. Very much like the spirals
and target patterns one encounters in the 2D CGL equation [112], coherent structures might well be pinned to such
imperfectiong*. This would of course not invalidate the results of the counting arguments for the homogeneous
case, as it is precisely on the basis of this counting argument that one would expect the properties of the discrete
source solution(s) to depend sensitively on the local parameter values.

The sinks which in the experiments of [33] were sandwiched between two patches with different wavenumbers,
were found to move according to what was referred to as a “phase matching rule”: during the motion, a constant
phase difference is maintained across the sink profile, so that no phase slip events occur. This commonly occurs
for sinks in thesingleCGL equation, and Fig. 3 provides an example of this, but there is one important difference
here: sinks in the experiments separate two oppositely traveling waves, so phase matching in the actual experiments
involves thefastscales represented by the critical wavelengtbf the pattern at onset. In the amplitude approach
all information about thigy; is lost since we eliminated the fast scales and only consider the difference between
the actual wavenumber of the pattern and thig.. At least in the experiments of [33] the coupling between the

12Fig. 11 of [36] also illustrates quite nicely that the group velocity and phase velocity are parallel.

13|n the experiments shown in Fig. 10 of [36], the source width diverge@l &t 4.2 W. Unfortunately, the distandebetween the wire and the
fluid surface is not given for the data shown. All other measurements in the paper are add.84 mm and: = 1.97 mm, and these values
correspond t@¢ ~ 2.5W andQ; ~ 2 W.

14 An example of how sources can be pinned near cell boundaries bglasvdiscussed in [52].



32 M.van Hecke et al./Physica D 134 (1999) 1-47

fast and the slow scales is important. These so-caltedadiabaticeffects [98] will be the object of further study.
Experimentally, it is not clear whether the “phase matching rule” was a peculiarity of [33], or whether it holds quite
generally.

As we have seen in this paper, the wavenumber selection by sources entails various scenarios for instabilities
and chaotic dynamics in the single-mode patches that are separated by sources and sinks. In the experiments, there
are regimes in parameter space where the dynamics is reminiscent of what one expects when the mode selected
by the sources becomes convectively or absolutely unstable. Whether the data are consistent with this scenario has
remained unexplored, however.

We finally note that it has recently become apparent that traveling waves in convection cells with a free surface
which are heated from the side [113-115], are intimately related to those occurring in the heated wire experiments
[40]. Sources and sinks have also been observed in such experiments, but a systematic study of some of the issues we
raise does not appear to have been undertaken yet. Clearly, both the heated wire experiments and this system appear
to be very suitable setups to study the dynamics of sources and sinks; in addition, both do show rich dynamical
behavior.

6.2.2. Binary mixtures

One of the best studied experimental traveling wave systems is binary fluid convection [37-39,110,111]. Since
the bifurcation in this case has been shown to be weakly subcritical [21], the description of the behavior in this
system is strictly speaking beyond the scope of the coupled CGL equations we consider. A brief discussion is
nevertheless warranted, not only because some of the behavior of sources and sinks is quite generic, in that it does
not strongly depend on the underlying bifurcation structure (e.g., sources still form a discrete set according to the
counting arguments), but also because the additional complications of the binary mixture convection experiments
are an interesting subject for future study.

Kaplan and Steinberg have shown that the transition from localized traveling wave patterns (pulses) to extended
traveling waves is essentially governed by the convective instability of the edges of the pulsés T4 fact that
the relevant front velocity is given by linear marginal stability arguments, suggests that the subcritical character
of the bifurcation is not very strong here. On the other hand, the nonadiabatic effects, such as locking, observed
in [42], point in the other direction, namely that the subcritical nature of the transition is rather strong. Hence, the
importance of the subcritical effects in these experiments can not be trivially established.

Kolodner [38] has observed a wide variety of source/sink behavior. In some cases, there appears to be a stable
source/sink pair where the sink is clearly wider than the source. This of course contradicts what we typically find
(except close to the relaxational limit — see Section 4.4). This may have to do with the subcritical nature of the
bifurcation, but one should also keep in mind that in other cases there is evidence that such behavior could still be a
transient, because there are still phase slip events occurring. E.g., Fig. 5 of [38] shows a notable example of a case
in which the sink is initially wider than the source, but in which a process clearly involving the fast scales narrows
it down, so that in the end it smaller than the source.

Another interesting state that is encountered in the experiments are drifting source/sink patterns (see, e.g., Fig. 7
of [38]). The sources here move slowly but with a constant velocity, and are non-symmetric in that the wavenumbers
on either side are different. However, there is again a one-to-one correspondence between the drift velocity and
the difference in wavenumbers. In [38], this is referred to this process as “Doppler shifting”, to indicate that
in the frame co-moving with it, the drifting source sends out waves with the same frequency to the left and
the right. This is completely equivalent to the “phase matching rule” of [33]. When such a moving source is
present, the sinks are also found to obey the phase matching rule and so they move with exactly the same drift

15This is similar to the behavior of sources negft (Section 1.2.2).
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velocity as the sources. Clearly, it is still the source that selects the wave number and hence plays the active role
here — as usual, the sink motion is essentially determined by the properties of the waves that come in. A priori,
one could imagine that the sources and sinks in the binary fluid experiments are more prone towards obeying
the phase matching rule due to the subcritical nature of the bifurcations to traveling waves, but one can find
various examples in the experiments where they do not obey this rule. Obviously, this question deserves further
study.

The fact that Kolodner [38] observes in his Figa steadily moving source is not necessarily in contradiction
with our counting arguments, as these do allow for the existence of a discretewset 6fsources. In practice,
however, for a proper analysis of such source solutions in the binary fluid experiments it is probably necessary to
include the coupling to the slow concentration field, as in the work of Riecke et al. on traveling pulse solutions [16,
116,117].

Although several of the experiments of Kolodner have been done at very small valgietherfe is no visible
evidence of the divergence of the width of any of the sources and sinks. Presumabily, this is due to the subcritical
nature of the bifurcation — in Section 4.2 we already argued that in this case the width of neither the sources nor the
sinks need to diverge as— 0.

In passing, we note that, quite impressively, Kolodner has also been able to extract the spatial amplitude profiles of
his sources and sinks (Figs. 8, 18, 21 of [38]). These agree remarkably well with the profiles we obtained numerically
using the shooting method described earlier. Even the characteristic overshoots of the amplitudes near the edges of
sinks are clearly observable in all cases.

In conclusion, although a detailed comparison between the sources and sinks in binary fluid experiments
and those analyzed theoretically here, is not justified, many qualitative features (multiplicity, wavenumber se-
lection, etc.) are quite similar. We expect that thelependence of the width of these structures is very dif-
ferent in the two cases, due to the subcritical nature of the bifurcation in binary mixtures and due to the cou-
pling to the slow concentration field. The latter effect probably also plays an important role in the drift of the
sources.

6.3. Open problems

In spite of the fact that we have been able to map out many of the various possible static and dynamical properties
of sources and sinks, there remains a large number of theoretical issues and open problems which need to be studied
in further detail. This section briefly lists the ones we consider most important.

e Phase matchinglhe absence of the coupling of the phases across a moving sink appears to be one of the main
short comings of the coupled CGL equations.

For the single mode CGL equation, the velocity of sinks is determined in terms of the two wavenygmbers
andgy, of the incoming modes, without solving for the structure of the sinks:(c1 + ¢3)(gn; +gn,) [68,69].

This follows directly from the requirement that in the frame moving with the sink, the frequencies to the left and

the right of the sink should be equal. Phase slips occur when these frequencies are unequal, and in that case the

sink is not a “coherent structure” (i.e., it has a time-dependent spatial profile).

For the sinks in the coupled CGL equations ((2.6) and (3)) that we have studied here, the velocity of a moving
sink can not be simply given in terms of the wavenumbers of the incoming waves — the velocity is determined
implicitly by the solution of the ODE’s Egs. (12)-(15). The frequencies to the left and to the right of sinks
correspond to two different modes, and the coupling between these modes depends only on their amplitudes, not
on their phase. Moreover, the phase matching as observed empirically in the experiments [33] clearly involves
the fast scale that has been eliminated to obtain the amplitude equations; therefore, such rule can never be
implemented in the standard coupled CGL equations (2) and (3) [33].
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The phase matching as observed in the experiments is clearly a non-adiabatic effect as it involves both the
fast and the slow scales. Can this non-adiabatic effect be studied perturbatively, as in [98]? As pointed out to
us by Newell, the experimental phase matching appears to be the analogue in space-time of what happens at
grain boundaries in the phase equations in the nonlinear regime [3]. Does this analogy open up a route towards
analyzing this effect?

Multiplicities. In our counting analysis, we have focussed on the regime wheére so, and in particular on

the case = 0. From the results detailed in the appendix, it follows that the flow structure near the fixed points
changes whelw| > sp; this implies that the counting arguments allow for rapidly moving source and sinks
solutions with different multiplicities. We do not know whether such solutions actually exist. We have not studied
this possibility (nor the one associated with changes of the fixed point structure related to the critical velocity
ven) in detail, as we have neither found such coherent structure solutions of the ODE’s, nor observed any of them
in numerical simulations of the coupled CGL equations.

Coherent structuredaNhengs is large enough, single amplitude coherent structures such as sources, sinks and
homoclinic holes are often exact solutions of the coupled CGL equations. One of the modes corresponds then to
the coherent structure, the other mode is zero. To see this, note that solutions of the single CGL equation have
often a minimum amplituder, which is nonzero. As long asf = ¢ — goa?, remains negative for the zero mode,

this mode is suppressed. A detailed analysis of the behavior of such coherent strucggrisseduced and the

other mode becomes active, remains to be done.

The closely bound source/sink pairs, as shown in Fig. 7(a) can be seen as a “new” coherent structure of the
coupled CGL equations. We note that from a counting point of view, such source-sink pairs typically correspond
to homoclinic orbits, since they often connect the same plane wave state to the left and the right. Irrespective
of the details of the structure of the corresponding fixed point, one needs to satisfy in general one condition to
obtain such a homoclinic orbit (One can see this easily as follows. Suppose the fixed pointtiaseasional
outgoing manifold. This yields — 1 degrees of freedom amdconditions, so in general one parameter needs to
be tuned to obtain a homoclinic orbit). Since we have three free parameters, this yields a two-parameter family
of such sink-source pairs

It would be interesting to investigate whether these homoclinic structures are connected to the homoclinic
holes, analyzed recently for the single CGL equation [67]. It is conceivable that upon lowgrthg suppressed
mode will mix in below some particular value gp, so that a homoclinic holes can be deformed to coupled
sink-source pairs.

A related issue is the study of the cross-over from an array of sources and sinks to an (almost) periodically
modulated amplitude pattern of the type seen in Fig. 12 and by Sakaguchi [57,58].

Phase-space and dynamical argumeirisSection 4.2, the existence of a special vaifféwas obtained from

what was essentially a dynamical argument. At this value tie width of stationary sources, as determined by

the set of ODE’s Egs. (12)—(15), was found to diverge. What is the precise connection between the phase-space
structure of the ODE’s and the dynamical argument? This question is related to that which arises in the study of
nonlinear global modes, and it is quite possible that the analysis of [97] can be extended to sources as well.
Stability. A full stability analysis of sources and sinks would be welcome, as most of our discussion on their
stability is based on intuitive arguments. Such an analysis might well detect the existence of additional instability
mechanisms associated with the existence of discrete core modes in much the same way as happened for pulses
[90-92].

Breathing.In Section 4.2, we noted that interactions between local structures and fronts often give rise to an
oscillatory or “breathing” type of dynamics [94,95,116]. The mechanism through which this happens remain
largely unexplored, however.
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Fig. 14. (a) Space-time plot pAR| illustrating the interaction between sources and sinks. The runs started from random initial conditions, and
the coefficients were chosenas= 0.6, c3 = 0.4,¢2 = 0, g2 = 2.0, 50 = 0.4 and at: = 0.07. Note that is well above the critical value

£3° = 0.029, and the sources are stable. Hence, any movement of the coherent structures is solely due to their interactions. Note that in the final
stage of an annihilation event, the source moves most, while the sink stays almost put. Note also the similarity to Fig. 24 of [38]. (b) Hidden line
plot of | A | showing the annihilation process in detail.

Coullet et al. [48] briefly mention that belog® sources are very sensitive to noise. We found that the average
width of the breathing sources depends weakly on the strength of the noise, but have not investigated this issue
in detail. The dependence on the noise should be clarified further.

Finally, after along transient, the non-stationary sources bel®seem to be only very weakly time-dependent,
and in some sense “near” a stationary source solution. Can this idea be made more precise?

e Pinning and interaction®Rartly to explain the experimental observation of Alvarez et al. [33], we have conjectured
that sources can be pinned to slight inhomogeneities, and that if they do, the selected wavenumber will vary with
the local inhomogeneity. Moreover, stationary sources are then expected to existgaddthe homogeneous
system, in much the same way as boundary conditions can give rise to the existence of stable stationary sources
beloweZ°[52]. Again, a back-up of these conjectures is called for.

As some of our simulations indicate (see Fig. 14), when sources and sinks get close to each other, they
attract and eventually coalesce (or form a pair) in some characteristic fashion. Can this attraction be understood
perturbatively?

e Bimodal chaosOne of our key observations is that the wavenumber selection induced by the sources allows for
a bimodal instability forg, just above 1. Fog2 just below 1, similar behavior can be found [106]. The chaotic
dynamics in these regimes involves the competition between the two modes in an essential way, and apart from
[59,106], a detailed analysis of the dynamics here is lacking.

e Subcritical bifurcations.To what extent can our arguments be extended to the case of a weakly subcritical
bifurcation? As we discussed in Section 6.2.2, this issue is of relevance to the experiments on binary mixtures.

Finally, we stress that in most cases we have only shown examples of the possible types of behavior. A more
systematic mapping out of the phase-space of the coupled CGL equations (2) and (3) may very well lead to
additional surprises.
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Appendix A. Coherent structures framework for the single CGL equation
A.1l. The flow equations
Inthis appendix, we lay the groundwork for our analysis of the coupled equations by summarizing and simplifying
the main ingredients of the analysis of [68,69] of the single CGL equation
HA=eA+ (L+ic1)d?A — (1 —ic3)|AI2A. (A.1)

Note that if a single mode is present, the coupled equations reduce to a single CGL written in the frame moving
with the linear group velocity of this modaotin the stationary frame.

Asin Eqg. (11), acoherent structure is defined as a solution whose time dependence amounts, apart from an overall
time-dependent phase factor, to a uniform translation in time with velocity

A(x, 1) =€ A(x —vt) = e T AE). (A.2)

Note that if the coherent structure approaches asymptotically a plane wave statesfoso or for ¢ — —oo,
the phase velocity of these waves would equal the propagation velocity of the coherent struciwesiid be O.
Whenw # 0, these two velocities differ.

For solutions of the form (A.2)3; = —iw — vdg, SO when we substitute the Ansatz (A.2) into the single CGL
equation (A.1), we obtain the following ODE:

(—iw — vde)A = eA + (1+ic1)d2A — (1 —ica)|APA. (A.3)

Solutions of this ODE correspond to coherent structures of the CGL equation (A.1) and vice-versa [68,69].
To analyze the orbits of the ODE (A.3), it is useful to rewrite it as a set of coupled first order ODE’s. To do so, it
is convenient to writed in terms of its amplitude and phase

AE) = a(£)€?®, (A4)

wherea and¢ are real-valued. Substituting the representation (A.4) into the ODE (A.3) yields, after some trivial
algebra

dsa =ka, gk =K(a,q,k), 0deq = 9Ql(a,q,«k), (A.5)
whereq andk are defined as
q:=0¢, Kk =(1/a)da. (A.6)

The fact that there is no fourth equation is due to the fact that the CGL equation is invariant under a uniform change
of the phase ofi, so thatyp itself does not enter in the equations. The functitihendQ are given by [68,69]

K:

= slei(—w —vg) — e — vk + (1= c1c3)a®] + ¢° — k2, (A7)
1+cq

Q:

= s[(—w —vg) +c1(vk + &) — (c1+ c3)a’] — 2q. (A.8)
l+c7
At first sight it may appear somewhat puzzling that we write the equations in a form contaigirty In a instead
of simply d:a. One advantage is that it allows us to distinguish more clearly between various structures whose
amplitudes vanish exponentially 8s— oo — these are then still distinguished by different values.@econdly,
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the choice ofk in favor or dza allow us to combinec andg as the real and imaginary part of the logarithmic
derivative ofA: we can rewrite (A.5) more compactly as

dz = 24 [-e—iw+ (11— ic3)a? — vz]. (A.9)

1+ic

wherez := 9 In(A) = « +igq.

The fixed points of the ODE’s have, according to (A.5), either 0 orx = 0. The values of andk forthea = 0
fixed points are related through the dispersion relation of the linearized equation, or, what amounts to the same, by
the equation obtained by setting the right-hand side of (A.9) equal to zero and takirty Following [68,69] we
will refer to these fixed points diear fixed pointsWe will denote them byL ., where the index indicates the
sign of k. This means that the behavior nearlanfixed point corresponds to a situation in which the amplitude is
growing away from zero to the right, while the behavior neafLarfixed point describes the situation in which the
amplitudea decays to zero.

Since a fixed point witlu # 0, x = 0 corresponds to nonlinear traveling waves, the corresponding fixed points
are refered to asonlinear fixed point§68,69]. We denote these hiy,, where the index now indicates the sign of
thenonlinear group velocity of the corresponding traveling wave [68,69]. Thus, since the indéx dénotes the
sign of the group velocity, the amplitude nearsn fixed point can either grow( > 0) or decay £ < 0) with
increasing.

The coherent structures correspond to orbits which go from one of the fixed points to another one or back to the
original one, and the counting analysis amounts to establishing the dimensions of the in-and outgoing manifolds
of these fixed points. In combination with the number of free parameters (in thiss@sgw), this yields the
multiplicity of orbits connecting these fixed points, and therefore of the multiplicity of the corresponding coherent
structures.

A.2. Fixed points and linear flow equations in their neighborhood

Since there are three flow equations (A.5), there are three eigenvalues of the linear flow near each fixed point.
When we perform the counting analysis for these fixed points we will only need the signs of the real parts of the
three eigenvalues, since these determine whether the flow along the corresponding eigendirection is-iywards (
or outwards 4). We will denote the signs by pluses and minuses, solthdt+, +, —) denotes arl. _ fixed point
with two eigenvalues which have a positive real part, and one which has a negative real part.

From Egs. (A.5) and (A.9), we obtain as fixed point equations

ak =0, (A+ic)?+vz+e+io— (L+icz)a®=0, (A.10)

wherez := « + ig. From (A.10) we immediately obtain that fixed points either have 0 (linear fixed points
denoted ag) ora # 0, x = 0 (nonlinear fixed points denoted &3. Definingv := v/(l+c§) anda := a/(1+c§),
the derivative of the flow (A.5) is given by the matrix:

K a 0
DF=| 2a(1—c1c3) —-2c—0 29—c1v |. (A.12)
—2a(c1+c¢3) —29+c1v —2k—0

Solving the fixed point equations (A.10) and calculating the eigenvalues of the matrix DF (A.11) yields the dimen-
sions of the incoming and outgoing manifolds of these fixed points. Note that according to our convention, a fixed
point with a two-dimensional outgoing and one-dimensional ingoing manifold is denoted as —).
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We can restrict the calculations to the case of positjsnce the case of negativeean be found by the left—right
symmetry operatioré — —&,v — —v,z7 —> —z.

A.3. The linear fixed points
For the linear fixed points = 0, and from (A.10) we obtain as fixed-point equation:
A+ic)z?+vz+e+io=0, (A.12)

which has as solutions

v V2 — AL +ic)(e + i)

21 +icy) (A13)

The linear fixed points come as a pair, and the left—right symmetry implies that£dd, the eigenvalues of these
fixed points are opposite.
At these fixed points, the eigenvalues are given by

KOr — v — 2k £i(c10 — 29). (A.14)

To establish the signs of the real parts of the eigenvalues, we need to determine the gignd et — 2«.

Let us first establish the signs of this is important in establishing whether the evanescent wave decays to the
left (L) or to the right {_). Forv = 0, the Eq. (A.12) is purely quadratic, and so its solutions come in pairs
+(x + ig). By expanding the square-root (A.14) for largene obtains that in this cage= —v orx = —¢/v; for
largev, bothk’s are negative. Solving Eq. (A.12) we find thathanges sign when

16 —
Je

Fore < 0, these equations have no solutions, and in that case there alwalys sral aL; fixed point. Fore > 0
andv < (c1e — w)/+/¢ there also is d_ and aL . fixed point; for largev, there are twd._ fixed points.

To determine the sign 6fv — 2« note that from the solution (A.13), we obtain tha& —v/2+Re(,/7/...).
After some trivial rearranging this yields thaty — 2« has opposite sign for the pair éffixed points; when one
of them has twot’s, the other has twe-'s.

In the case that we havela. and aL _ fixed point the counting is as follows. For tlig fixed point,—v — 2«
is negative since bothandx are positive, and the eigenvalue structure is then—, —). The L _ fixed point then
has one negative eigenvaldeand two positive eigenvalues coming from thé — 2«. For largev, both«’s are
negative, and we obtainfa_(+, +, —) and aL_(+, —, —) fixed point.

In summary, then, the counting for the linear fixed points is as follows:

g= 45 v= (A.15)

e<0 a”v L—(—‘f_v =+, _)L+(+9_9_)7
VUV < —UcL L+(+5 ) _) L+(+a +7 +)9

& > 0 |U| < VcL L*(—i—’ +5 _) L+(+7 ) _)’ (A.16)
U > UcL - L*(dl_’ +5 _) L*(_a_a_)?

whereve = |c16 — w|/4/¢.
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A.4. The nonlinear fixed points

The analysis of the nonlinear fixed points goes along the same lines. Since the nonlinear fixed poiat has
0, z = iq, the fixed point equations become:

a®>=¢—q% q%(c1+c3)—vg—w—c3e =0. (A.17)

which yields

E: V2 + 4w + c38)(c1 + ¢3)
- 2(c1+c3) '
So the nonlinear fixed points come as a pair.
To obtain the eigenvalues, we substitte- 0 in the (A.11) and obtain as a secular equation:

(A.18)

(A4+c23 + 2042 + [2a%(c1e3 — 1) + 8¢ (L + ¢2) — de1qv + V2 + [4a®(c1 + c3)g — 2a%v] =0.  (A.19)

We only need to know the number of solution of the secular equation that have positive real part, and instead of
solving the equation explicitly, we can proceed as follows.
For a we cubic equation of the form

p3x®+ p2rZ + p1at + po, (A.20)

whereps > 0, we may read off the signs of the real parts of the solution to this equation from the following table
[68,69]:

else : (+,+,—) (casel),

Po < o[pz <0, p1p2 < pop3: (+,+,+) (caseii, (A21)

else : (+, —, —) (caseliv.

According to these rules, there are three combinations of the coefficients that we need to now the sign of, being
po = 4a’q(c1+ c3) — 2a°v, (A.22)
p2 = 2v, (A.23)
p1p2—pops= — (L4 cH)[4a(c1 + c3)g—2a%v] + 2v[2a(c1c3—1) + 4q*(L + c?)—de1gv +v?].  (A.24)

As before, we will takey > 0, which makeg2 > 0.

The sign ofpg is equal to the sign of@c1 + c3) — v, which according to Eq. (A.18) is either, /. The group
velocity 3, w of the the plane waves corresponding to shéixed points is found from (A.17) to bej2c1 + ¢3) — v,
which can be rewritten ago/(242). So, we always have omé_ fixed point with pg < 0 and oneV., fixed point
with pg > 0.

Whenpg < 0, sincep> is positive, the fixed point i&v_(+, —, —) (case (iv)). Wherpp > 0, the eigenvalues
depend on the sign gy p> — pops; when it is positive the eigenvalues are, —, —), when it is negative, the
eigenvalues aré+, +, —). Defininguv.y as the value ofv| wherepip> — pops changes sign, we obtain for the
nonlinear fixed points:

V< —ven: N_(+,+,+)andNy(+, +, —),
v <veny: N—_(+,—, —)andNi(+, +, —). (A.25)
V> Uy - N_(+, —, —)andN,(—, —, —).
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Egs. (A.16) and (A.25) express the dimensions of the stable and unstable manifolds of the fixed points of the
single CGL equation, and these are the basis for the counting arguments for coherent structures in this equation
[68,69]. We now turn to the extension of these results to the coupled CGL equations.

Appendix B. Detailed counting for the coupled CGL equations
B.1. General considerations

While the counting for the coupled CGL equations follows unambiguously from that for the single CGL, there
are various nontrivial subtleties in the extension of those results to the coupled CGL equations that require careful
discussion.

Suppose we want to perform the counting for #he= 0, kg = 0 fixed point, which corresponds to the case in
which only a right-traveling wave is present. The fixed point equations that follow from (15) are, up to a change of
v — v — 50, equal to the fixed point equation for the nonlinear fixed points of the single CGL equation, and can
be solved accordingly. To solve the fixed point equations that follow from (13), notejghiata constant at the
fixed point and so the termgo(1 — icz)a,% can be absorbed in thes — iw term. Since we may choogg freely,
for the counting analysis we can forget about tg’@iaﬁ as we may think of it as having been absorbed into the
frequency. The sign o, defined in Eq. (18) to bek; = & — goaj will, however, be important. Likewise, at the
other fixed point whereg = x = 0 the effectives is &% = ¢ — goa?.

Since the fixed points we are interested in for sources and sinks always haveagithed orag = 0, the
linearization around them largely parallels the analysis of the single CGL equation. For, when we linearize about
thea. = O fixed point, we do not have to take into account the variatiasrdh the coupling term and this allows
us, for the counting argument, to absorb these terms into an effectind redefined as discussed above. Once
this is done, the linear equations for the mode whose amplitvaaishes at the fixed poidb not involve the other
mode variables at allAs a result, the matrix of coefficients of the linearized equations has a block structure, and
most of the results follow directly from those of the single CGL equation. We will below demonstrate this explicitly,
using a symbolic notation for various terms whose precise expression we do not need explicitly.

If we consider the 6 variablesg , «, gL, ar, kr andgr as the elements of a vectar, and linearize the flow
equations (A.5) about a fixed point where one of the modes is nonzero, we can write the linearized equations in the
formw; = >, M;;w;, where the 6< 6 matrix M has the structure

KL a 0 O 0 O
“a” X X "ar” 0 O
] fa” X X fag” 0O O
M= 0 0 0 «gr ar O (®.1)
“aa” 0 0 "ar” X X
“aa” 0 0 "ar” X X

In this expression, all quantities assume their fixed point values. Furthermagiearid “a.” represent terms that

are linear irug orai, and theX stand for longer expressions that we do not need at the moment. At the fixed points,
eitherag or a_ is zero, so either the upper-right block is identical to zero, or the lower-left block is Ineether

case, the eigenvalues are simply given by the eigenvalues of the upper-left and lower-right block-nTdtisces
implies that for each of the 8 3 blocks, we can use the results of the counting for a single CGL equation, provided
we take into account thatande should be replaced by =+ so ands'éﬁ or gsﬁ at the appropriate places!
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As discussed in Appendix A, the fixed point structure of the single CGL depends on two “critical” velogitjes,
anduv.y, In general, these are different for the two fixed points which the orbit connects, so there is in principle a
large number of possible regimes, each with their own combination of eigenvalue structures at the fixed points. An
exhaustive list of all possibilities can be given, but it does not appear to be worthwhile to do so here. For, many of
the exceptional cases occur for large values of the propagation vetoaitg the relevance of the results for these
solutions of the coupled CGL equations is questionable — after all, as we explained before, the counting can at most
only demonstrate that certain solutions might be possible in some of these presumably somewhat extreme ranges
of parameter values, but they by no means prove the existence of such solutions or their stability or dynamical
relevance. Indeed, as discussed in Section 4.2, for gnttadl sources are intrinsically dynamical and are not given
by the coherentsources as obtained from the ODE’s (12)—(15).

For these reasons, our discussion will be guided by the following observations. The sinks and sources observed
in the heated wire experiments have velocities that are smaller that the group veloct;[88% also seems to
hold for other typical experiments with finite linear group veloaigy This motivates us to start the discussion by
investigating the regime that the velocitys smaller than the linear group velocity] < so. The sources are now
as sketched in Fig. 1a and the sinks are as in Fig. 1c; this restriction already leads to a tremendous simplification.
Furthermore, we are especially interested in the case that the two modes suppress each other sufficiently that the
effectivee of the mode which is suppressed is negative, &#Ff < 0. This requirement is certainly fulfilled for
sufficiently strong cross-coupling. The technical simplification of taleii‘@ < O is that in this case the structure
of the linear fixed points is completely independent of the parametanslow — see Eg. (A.16). It should be noted,
however, that in Section 5.2 we will encounter source/sink patterns whgere positive; these patterns are chaotic.

Also, theanomaloussources and sinks, mentioned at the end of Section 3.1, can in some parameter ranges defy
the general rules obtained here (see Section B.7 of this appendix). Furthermore, in Section B.6 we will discuss the
casesg < 2¢g(c1 + c3) (i.e., sources and sinks corresponding to those of Fig. 1(b) and (d)), angl+h@ limit.

B.2. Multiplicities of sources and sinks

We will first perform the analysis starting with the restrictions given above. From Fig. 1 we can read off the
building blocks of sources and sinks. are. We refer to the fixed point corresponding te-co(oo) as fixed point
1(2). In the coupled CGL equation case, we refer to the total group velocity of the nonlinear waves, which is given
by 27 (c1 + ¢3) + v % 5o [see Egs. (9) and (10)]; since by the substitution> v % so we absorb theg in thewv, the
indexes of theV_ and N, fixed points correspond to the nonlinear group velocities in the co-moving frame of the
coherent structures. For sinks of the type sketched in Fig. A(c} O for large negative and Ar = O for large
positivex. Consequently, the flow is

Ny (v —s0) L_ (v—s0)
from { L. (+s0) to { N (v s0) (B.2)

For sources of the type sketched in Fig. 1(4) = O for large negativer and A_. = O for large positivex.
Consequently, the flow is

(B.3)

from {N_ (v + s0) o {L— (v + s0)

Ly (v—sp) Ny (v—s0)

16n the experiments of [33], it was estimated from the datashat vph/3, Whereuph is the phase velocity, while typical sinks had a velocity
v which could be as small agp/50.
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As in Appendix A, we will denote the real parts of the three eigenvalues of the fixed points by a string of plus or
minus signs; e.g+, —, —).
Foreeff < 0 and arbitrary velocities, we obtain for tliefixed points (see Eqgs. (A.16)):

L—(+v +7 _)7 L+(+v ) _) (B4)

For now we assume that| < so, v — so < 0 andv 4 sp > 0. This yields, according to (A.25) for thE fixed
points:

N_(4+.— =), Ny(+. +. ). (B.5)

For sources we find that the combin@d_, L) fixed point 1 has a two-dimensional outgoing manifold, which
yields one free parameter. We can think of this parameter as a coordinate parameterizing the “directions” on the
unstable manifold” . Now, the only other freedom we have for the trajectories out of fixed point 1 is associated
with the freedom to view, w. andwgr as parameters in the flow equations that we can freely vary. This yields a
total of four free parameters. Fixed point 2(&,., L_) combination) has, according to Egs. (B.3),(B.4) and (B.5), a
four-dimensional outgoing manifold. An orbit starting from fixed point 1 has to be “perpendicular” to this manifold
in order to flow to fixed point 2; this yields four conditions. Assuming that these conditions can be obeyed for some
values of the free parameters, it is clear that as long as there are no accidental degeneracies, we expect that there is
at most only a discrete set of solutions possible — in other words, solutions will be found for sets of isolated values
of the anglep, w. andwg. One refers to this as a discrete set of sources.

When we fixv = 0, there is the following symmetry that we have to take into accquns: —&, 71 <> —zR, aL <
ar. Furthermore, this left—right symmetry yields that we should take= wg, S0, in comparison to the general
case, we have two free parameters less. When the outgoing manifold of fixed point 1 intersects the hyper-plane
L = —ZR,dL = aR, this yields, by symmetry, a heteroclinic orbit to fixed point 2. Therefore we only need to
intersect the hyper-plane to obtain a heteroclinic orbit, which yields two conditions (instead of four in the general
case). For the sources we have now two conditions and two free parameters; and this yields a discrete et of
sources. In other words, within the discrete set of sources we generically expect therevte-liessource solution.

For a sink we obtain, combining (B.2),(B.4) and (B.5), that fixed point INa, L) combination) has a
three-dimensional outgoing manifold, which yields two free parameters, while fixed pointA2_(a._) combi-
nation) has a three-dimensional outgoing manifold, which yields three conditions to be satisfied. Together with the
three free parametets o andwg, this yields a two-parameter family of sinks.

B.3. The role of

When discussing the counting for the single CGL equation, the valaésafniquely determined. In the coupled
equations however, one needs to work with dfiectivevalue ofe when studying the linear fixed points, since
the growth of the linear modes are determined by renormalized valuewloith are given byesr | = ¢ — gzaé,
Eeff R =€ — gQaE for the left-and right-traveling modes respectively [see Eq. (18)]. While the inclusion of the sign
structure of the linear fixed points for positive valuesahay have seemed somewhat superfluous fosihgle
CGL equation, in the case of the coupled equations this is relevant. In the analysis in Sections B.4-B.6 we assume
that both effective values efare negative. Some comments on the counting for positive valugg afe given in
Section B.7.

17Note that a one-dimensional manifold yields no free parameters other than the one associated with the trivial translation symmetry of the
solution, and, in general, g-dimensional outgoing manifold yielgs — 1 nontrivial free parameters
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B.4. The role of the coherent structure veloaity

In the counting for the single CGL equation, we were able to remove the group velocity-tegrby means of
a Galilean transformation to the comoving frame. In the coupled equations this is not possible, however, and we
need to incorporate thg-terms when studying the fixed point structure.

In particular, when translating the result for the single CGL into coupled CGL variables, we need to make the
following replacements wherneis concerned

For theag mode :v — v — 5o = vR, (B.6)
For thea. mode :v — v+ 50 = vL. (B.7)

Just like the possible occurrence of positive valuesaduld possibly affect the linear fixed points, this may well
affect the nonlinear fixed points. In the single CGL equation we were allowed tatake, but we can no longer
do this in the coupled case. Let us focus on the oaseD, i.e, consider stationary coherent structures. Sipteby
definition positive, they. mode has; = so > 0, while thear hasvr = —sg < 0. The statement that we can alway
takev > 0 therefore no longer holds here, and we need to exercise caution when evaluating the nonlinear fixed
points as well. In particulamoving source$v > 0) with |[ur| > ven Or v > ven can have different multiplicities
than the stationary one with= 0.

In the formulas for the counting, one should keep in mind that the linear group velocities have opposite signs for
the left-and right moving modes: this is also apparent from Egs. (9) and (10), where we dgfinedso = —so,L,
so that we may write the nonlinear group velocities as

SR = S0R +2gr(c1+¢3), sL =soL + 2gL(c1+ c3). (B.8)
B.5. Normal sources always come in discrete sets

In this section, we show that it is not possible for normal stationary sources, i.e., sources\ahdsghave the
same sign, and for whomys < O for the linear modes, to come in families. The flow for a normal source is

Gl PRORARICY PR ©9
According to the counting, we have for the_ (v + so) fixed point on the left that (we take= 0)

po = dafqL (c1+ ¢3) — 2afvL = 2af[—s0 + 2qL (c1 + ¢3)] = 2afs. <O, (B.10)
because for a normal sourgehas the same sign ag, . Furthermore we have

p2 = 2v. = 2s5¢ > 0. (B.11)

Thisimplies, accordingto Eq. (A.21), that the sign structure of the left fixed poiaNs &+, —, —), L4+ (+, —, —))
combination, independent of the selected wavenumber of the nonlinear mode and the sign of the combination
p1p2 — pops- The dimension of the outgoing manifold is therefore always equal to 2, yielding one free parameter.
For the right fixed point, a completely similar argument yields&n (+, +, —), L_(+, +, —)) fixed point, again
independent of the selected wavenumber or ggpf — pops]. We therefore have to satisfy four conditions at this
fixed point.

Combining this with the free parameters we already had and the additional symmetey @we find that the
sourcesalwayscome in discrete sets, independent of the selected wavenumbers and the parameters.
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B.6. Counting for anomalous = 0 sources

When the signs of the linear group velocityand the nonlinear group velocityare opposite, we are dealing
with anomalous sources. This section investigates the consequences this has for the counting of such sources.
For an anomalous source, cf. Fig. 1(b), the flow is (again we only consiglet O for the linear modes)

Ll PSR IR Pt ©12)
which yields for the nonlinear fixed point on the left

po = 4daiqr(c1 + c3) — 2a3vr = 2a3[so + 2qr(c1 + ¢3)] = 2aisr < 0. (B.13)
where sgn{r] = —sgnfso.r]. Furthermore

p2=2vRr = —2s50 <0, (B.14)

so that bothpg and p, are negative, which implies that, according to Eq. (A.21), the sign structure of tHixed

point depends on sgpi p> — pops]. In particular, whenp1p> — pops is negative it isN_(+, +, +), and if it is

positive it isN_(+, —, —). If pip2> — pop3 < 0, we can perform a similar calculation for the right fixed point,

and we find that the counting then yields a two-parameter family of anomalous sinks. If the expression is positive,
however, we find that the anomalous sources also come in a discrete set.

The sign of this expression depends, for any given set of coefficients, on the selected wavepundi¢he
nonlinear mode, and therefore the wavenumber selection mechanism will determine whether we can actually get to
a regime where sources come as a family. In practice, we have not found any examples where this happens. This
suggests to us that the possible regions of parameters space where this might happen, are small.

B.7. Counting for anomalous structures witly > 0 for the suppressed mode

As mentioned before, another situation that can change the counting is realized when the suppression of the
effectivee by the nonlinear mode is not sufficiently large at the linear fixed points, s@dhat O. If we restrict
ourselves to the = 0 case, Eq. (A.16) tell us that the counting may indeed change when in adstitionvc, . This
implies that the multiplicity of sources and sinks changes dramatically under these circumstances. An insufficient
suppression may happen in particular wigeis only slightly bigger than 1, while the selected wavenumber is large
enough to lower the asymptotic value of the nonlinear amplitude significantly below its maximal.yalugne
zero mode then no longer stays suppressed; instead, it starts to grow, and we then typically get chaotic dynamics,
see, e.g., Section 5.2. For this reason, we confine ourselves to a few brief observations concerning teese.

Forv = 0 andeesf > O, we can, according to Eq. (A.16), havd.a(— — —) fixed point of theA|. mode when
so > vcL. TheAr mode then has A, (+, +, +) fixed point. Since the index df denotes the sign of the asymptotic
value ofi, with these fixed points we could in principle build a two-parameter family of stationary sources, provided
s andsg have the same sign in the nonlinear region; otherwise the structures would be anomalous sinks.

Although we have not pursued the possible properties of such sources, we expect almost all members of this
double family to be unstable. The reason for this is that wlagiis positive, the dynamics of the leading edge of the
suppressed mode is essentially like that of a front propagating into an unstable state. As is well known [68,69], in
that case there is also a two-parameter family of fronts in the CGL equation, but almost all of them are dynamically
irrelevant.
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Appendix C. Asymptotic behaviour of sinks fore | 0

In this appendix, we will discuss the scaling of the width of sinks in the silitit.

We will assume that in the domain to the left of the sink, tiemode is suppressed, i.e'éﬁ < 0 (likewise to
the right of the sink). As will be discussed in Section 5.2 below, we may get anomalous behaviarewhen 0,
which can occur wheggane < ¢; in that case thel| mode is (weakly) unstable and various types of disordered
behavior occur.

AssumingeELjff to be negative to the left of a sink, the amplitude of the left-traveling mode grows exponentially

forincreasing as|A|(§) ~ &Lt The spatial growth rate_ is given, by definition, by the value efat the linear
fixed point. According to Eq. (A.13), one finds far =« +iqL:

_ —(450) £ /(v +50)% — AL+ ic1)(eefr.L + i)
LT 2(L+icp) ’
where we have used the fact that for the left-traveling modes used in the appendix is replacedby s, and
Seff L =& — gza%. If we expand the square-root in the smatlegime, wherev also tends to zero, we obtain

(C.1)

e —(v +.So) i (v +§o) [1 _ 2(1+ iCl)(Seff,Iz_ + iw)} _ (C.2)
21+ic1) 2 +icy) (v + s0)
Sincesefr,| is negative, and of order, the rootzf with the positive real part is therefore
+ —&eff,L — iw
N — C.3
T it (©3)
so that«,” scales withe as
KE“ = Re[zﬂ'] ~ . (C.4)

In order for the exponent ifA (§)| ~ €15 to be of order unitys ~ ;cf‘l ~ ¢~1 which shows that the width of
the sinks will asymptotically scale as? for smalle.
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