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Abstract

We study the coupled complex Ginzburg–Landau (CGL) equations for traveling wave systems, and show that sources and
sinks are the important coherent structures that organize much of the dynamical properties of traveling wave systems. We
focus on the regime in which sources and sinks separate patches of left and right-traveling waves, i.e., the case that these modes
suppress each other. We present in detail the framework to analyze these coherent structures, and show that the theory predicts
a number of general properties which can be tested directly in experiments. Our counting arguments for the multiplicities
of these structures show that independently of the precise values of the coefficients in the equations, there generally exists
a symmetric stationary source solution, which sends out waves with a unique frequency and wave number. Sinks, on the
other hand, occur in two-parameter families, and play an essentially passive role, being sandwiched between the sources.
These simple but general results imply that sources are important in organizing the dynamics of the coupled CGL equations.
Simulations show that the consequences of the wavenumber selection by the sources is reminiscent of a similar selection by
spirals in the 2D complex Ginzburg–Landau equations; sources can send out stable waves, convectively unstable waves, or
absolutely unstable waves. We show that there exists an additional dynamical regime where both single- and bimodal states
are unstable; the ensuing chaotic states have no counterpart in single amplitude equations. A third dynamical mechanism is
associated with the fact that the width of the sources does not show simple scaling with the growth rateε. This is related to the
fact that the standard coupled CGL equations arenotuniform inε. In particular, when the group velocity term dominates over
the linear growth term, no stationary source can exist; however, sources displaying nontrivial dynamics can often survive here.
Our results for the existence, multiplicity, wavelength selection, dynamics and scaling of sources and sinks and the patterns
they generate are easily accessible by experiments. We therefore advocate a study of the sources and sinks as a means to probe
traveling wave systems and compare theory and experiment. In addition, they bring up a large number of new research issues
and open problems, which are listed explicitly in the concluding section. ©1999 Elsevier Science B.V. All rights reserved.

PACS:47.54.+r; 03.40.Kf; 47.20.Bp; 47.20.Ky

Keywords:Pattern formation; Coherent structures; Traveling waves; Sources

∗ Corresponding author.
E-mail address:mvhecke@nbi.dk (M.v. Hecke)

0167-2789/99/$ – see front matter ©1999 Elsevier Science B.V. All rights reserved.
PII: S0167-2789(99)00068-8



2 M.van Hecke et al. / Physica D 134 (1999) 1–47

1. Introduction

Many spatially extended systems display the formation of patterns when driven sufficiently far from equilibrium
[1–5]. Examples include convection [2], interfacial growth phenomena [6,7] like directional solidification [8] and
eutectic growth [9], chemical Turing patterns [2,5,10], the printer instability [11–13], patterns in liquid crystals [14],
and even biophysical systems [15]. In the typical setup, the homogeneous equilibrium state turns unstable when a
control parameterR (such as the temperature difference between top and bottom in Rayleigh–Bénard convection) is
increased beyond a critical valueRc. If the amplitude of the patterns grows continuously whenR is increased beyond
Rc, the bifurcation is called supercritical (forward), and a weakly nonlinear analysis can be performed around the
bifurcation point. A systematic expansion in the small dimensionless control parameterε := (R − Rc)/Rc yields
amplitude equations that describe the slow, large-scale deformations of the basic patterns.

Because near threshold the form of the amplitude or envelope equation depends mainly on the symmetries and on
the nature of the primary bifurcation (stationary or Hopf, finite wavelength or not, etc.), the amplitude description
has become an important organizing principle of the theory of non-equilibrium pattern formation. Many qualitative
and quantitative predictions have been successfully confronted with experiments [2–5]. Even outside their range
of strict applicability, i.e., for finite values ofε, the amplitude equations are often the simplest nontrivial models
satisfying the symmetries of the underlying physical system. As such, they can be studied as general models of
nonequilibrium pattern formation.

The most detailed comparison between the predictions of an amplitude description and experiments has been made
[2] for the type of systems for which the theory was originally developed [1], hydrodynamic systems that bifurcate
to a stationary periodic pattern (critical wavenumberqc 6= 0 and critical frequencyωc = 0). The corresponding
amplitude equation has real coefficients and takes the form of a Ginzburg–Landau equation; it is often referred
to as the real Ginzburg–Landau equation. The coefficients occurring in this equation set length and time scales
only, and for a theoretical analysis of an infinite system, they can be scaled away. Hence one equation describes a
variety of experimental situations and the theoretical predictions have been compared in detail with the experimental
observations in a number of cases [2–5].

For traveling wave systems (critical wavenumberqc 6= 0 and critical frequencyωc 6= 0), there are, however,
few examples of a direct confrontation between theory and experiment, since the qualitative dynamical behavior
dependsstronglyon the various coefficients that enter the resulting amplitude equations1 . The calculations of these
coefficients from the underlying equations of motion are rather involved and have only been carried out for a limited
number of systems [21–25], and in many experimental cases the values of these coefficients are not known. A
different problem generally arises when dealing with systems of counter-propagating waves, where in many cases
the standard coupled amplitude equations (2) and (3) are not uniformly valid inε. Therefore one has to be cautious
about the interpretation of results based on these equations [26–32]. We return to this issue in Section 1.2.2.

It is the main goal of this paper to show that the theory, based on the standard coupled amplitude equations (2) and
(3), doespredict a number of generic properties of sources and sinks which can be directly tested experimentally.
In fact, as the results of [33] for traveling waves near a heated wire also show,sourcesand sink type solutions are
the ideal coherent structures to probe the applicability of the coupled amplitude equations to experimental systems.
The reason is that these coherent structures are, by their very nature, based on a competition between left and
right-traveling waves in the bulk, and, unlike wall or end effects, they do not depend sensitively on the experimental
details. Moreover, a study of their scaling properties not only yields experimentally testable predictions, but also
bears on the relation between the averaged amplitude equations and the standard amplitude equations (see Sections
1.2.2 and 4). Finally, as we shall discuss, one of our main points is consistent with something which is visible in

1 In practice complications may also arise due to the presence of additional important slow variables [16–20].



M.van Hecke et al. / Physica D 134 (1999) 1–47 3

many experiments, namely that the sources determine the wavelength in the patches between sources and sinks, and
hence organize much of the dynamics.

Sources and sinks have been observed in a wide variety of experimental systems where oppositely traveling waves
suppress each other, especially in convection [26,33–42]. An example of a one-dimensional source in a chemical
system is given in [43]. To our knowledge, however, they havenot been explored systematically in most of these
systems. In fact, many experimentalists who study traveling wave systems focus on the single-mode case – by
perturbing the system or quenching the control parameterε it is in general possible to eliminate the sources and
sinks.

Theoretically, some properties of sources and sinks in coupled amplitude equations have been analyzed by many
workers [26–33,44–55]. We shall briefly review some of these results in Section 1.2. To our knowledge, however,
there have been very little systematic studies comparing theory and experiment, and we therefore advocate a study
of these coherent structures as a means to probe traveling wave systems. The two main objectives of this paper
are to expand the detailed analysis and reasoning underlying the arguments of [33], and to stimulate experimental
investigations along such lines for other systems as well.

1.1. The coupled complex Ginzburg–Landau equations

When both the critical wavenumberqc and the critical frequencyωc are nonzero at the pattern forming bifurcation,
the primary modes are traveling waves and the generic amplitude equations are complex Ginzburg–Landau (CGL)
equations. When these primary modes are essentially one-dimensional and the system possesses left–right reflection
symmetry, the weakly nonlinear patterns are of the form

physical fields∝ ARe−i(ωct−qcx) + ALe−i(ωct+qcx) + c.c., (1)

whereAR andAL are the complex-valued amplitudes of the right and left-traveling waves. Following arguments
from general bifurcation theory, i.e., anticipating that these amplitudes are of orderε1/2 and that they vary on slow
temporal and spatial scales, one then finds that the appropriate amplitude equations for traveling wave systems with
left–right symmetry are the coupled CGL equations [2,5,26–29,56]

∂tAR + s0∂xAR = εAR + (1 + ic1)∂
2
xAR − (1 − ic3)|AR|2AR − g2(1 − ic2)|AL |2AR, (2)

∂tAL − s0∂xAL = εAL + (1 + ic1)∂
2
xAL − (1 − ic3)|AL |2AL − g2(1 − ic2)|AR|2AL . (3)

In these equations, we have used the freedom to choose appropriate units of length, time and of the amplitudes
to set various prefactors to unity. Our conventions are those of [2], except that we have, following [26], denoted
the coupling coefficient of the two modes byg2. Apart from the “control parameter”ε, there are five important
coefficients occurring in these equations:c1 andc3 determine the linear and nonlinear dispersion of a single mode,
c2 determines the dispersive effect of one mode on the other,g2 expresses the mutual suppression of the modes and
s0 is thelinear group velocity of the traveling wave modes2 . As a function of all these different coefficients, many
different types of dynamics are found [2,57–59].

It is important to stress, following [26–32], that one has to be cautious about the range of validity of the coupled
amplitude equations ((2) and (3)). When the linear group velocitys0 is of order

√
ε, as happens near a co-dimension

two point in binary mixtures [26] or lasers [60,61], thenε can be removed from the equations by an appropriate
rescaling of space and time and the amplitude equations are valid uniformly inε. However, in most realistic traveling

2 It should be noted that by a rescaling one can either fixε or s0. Sinceε can be varied experimentally, we usually keeps0 at a fixed value and
vary ε.
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wave systemss0 is of order unity, the amplitude equations do not scale uniformly withε [26], and their validity is
not guaranteed. In practice, the attitude towards this issue has often been (either implicitly or explicitly [62]) that
as they respect the proper symmetries, the equations may well yield good descriptions of physical systems outside
their proper range of validity.

Note in this regard that in a single patch of a left or right traveling wave a single amplitude equation forAR or AL

suffices; in this case, the linear group velocity terms0∂xAR or s0∂xAL can be removed by a Galilean transformation.
The issue of validity of the amplitude equations does not arise then (see the discussion in Section 5.3.2), and many
theoretical studies have focused on this single CGL equation [63–65].

1.2. Historical perspective

In this section we will give a brief overview of earlier theoretical work on sources, sinks and coupled amplitude
equations in as far as these pertain to our work. It should be noted that grain boundaries for 2D traveling waves,
under the assumption of lateral translational symmetry, can be described as 1D sources and sinks [49,51]; hence
some results relevant to the work here can be found in papers focusing on the 2D case. This explains the frequent
references to early work on grain boundaries in 2D standing wave patterns [55]. Earlier experimental work will be
discussed in the section on experimental relevance.

1.2.1. Earlier work on sources and sinks
Early examples of sources and sinks in the literature can be found in the work by Joets and Ribotta (see [44–46]

and references therein), who studied these structures both in experiments on electroconvection in a nematic liquid
crystal, and in simulations of coupled Ginzburg–Landau equations. They focus mainly on nucleation of sources and
sinks, and multiplication processes. Sources and sinks have also been observed and studied in traveling waves in
binary mixtures [37–39,41,42]. In this system, however, the transition is weakly subcritical. We will compare some
of the results of these experiments with some of our findings in Section 6.2.2.

Theoretically, some properties of sources and sinks in coupled amplitude equations have also been analyzed by
Cross [26,27], Coullet et al. [47,48], Malomed [49,50], Aranson and Tsimring [51] and others [33,52,53].

Coullet et al. [47] consider sources and sinks occurring in one- and two-dimensional coupled CGL equations
from both a topological and numerical point of view. In particular, they observe numerically that patterns in which
sources and sinks are present typically select a unique wavenumber, a feature which plays a central role in our
discussion.

A particular important prediction of Coullet et al. [48] was that sources typically exist only a finite distance above
threshold, forε > εso

c > 0. The authors remark that below this threshold, the sources become very sensitive to noise,
and an addition of noise to the coupled CGL equations was found to inhibit the divergence of sources in this case.
Moreover, they predict that the width of sinks diverges as 1/ε in contrast to what was asserted in [26,27] or what was
found perturbatively in the limits0 → 0, ε finite [49]. There appears to have been neither a systematic numerical
check of these predictions nor a comparison with experiments. In this paper we shall recover the existence of a
critical valueεso

c from a slightly different angle, and show thatεso
c is only the critical value above whichstationary

source solutions exist. Belowεso
c source-type structurescan exist, but they are intrinsically dynamical and very

large. We will refer to these structures asnon-stationarysources, as opposed to the stationary ones we encounter
aboveεso

c . As we will discuss in Section 1.2.2, the prediction of afinite critical valueεso
c for sources from the

lowest order amplitude equations is a priori questionable, but we shall argue that the existence of such a critical
value is quite robust for systems where the bifurcation to traveling waves is supercritical. For systems where the
bifurcation is subcritical, there need not be such a critical valueεso

c . This may be the reason that in experiments
on traveling waves in binary fluid convection [37], there does not appear to be evidence for the nonexistence of
stationary sources below a nonzero value ofεso

c .
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Malomed [49] studied sources and sinks near the Real Ginzburg–Landau limit of the coupled CGL equations, and
also found wavenumber selection. Aranson and Tsimring [51] considered domain walls occurring in a 2D version
of the complex Swift–Hohenberg model. Assuming a translational invariance along this domain wall, one obtains as
amplitude equations the coupled 1D CGL equations ((2) and (3)) withs0 = 1, c1 → ∞, c2 = c3 = 0 andg2 = 2.
For that case, a unique source was found as well as a continuum of sinks. For the full 2D problem, a transverse
instability typically renders these solutions unstable. Finally, Rovinsky et al. [52] studied the effects of boundaries
and pinning on sinks and sources occurring in coupled CGL equations, and finally we note that some examples of
sources in periodically forced systems are discussed by Lega and Vince [54].

1.2.2. Validity of the coupled CGL equations
There is quite some discussion about under what conditions the standard coupled amplitude equations (2) and

(3) are valid for counter-propagating wave systems [28–32]. The essential observation is that whens0 is finite, ε
cannot be scaled out from the coupled amplitude equations (2) and (3).

Knobloch and De Luca [28,29] and Vega and Martel [30–32] found that under some conditions the amplitude
equations for finites0 reduce to

∂tAR + s0∂xAR = εAR + (1 + ic1)∂
2
xAR − (1 − ic3)|AR|2AR − g2(1 − ic2)〈|AL |2〉AR, (4)

∂tAL − s0∂xAL = εAL + (1 + ic1)∂
2
xAL − (1 − ic3)|AL |2AL − g2(1 − ic2)〈|AR|2〉AL . (5)

in the limit ε → 0, where〈|AL |2〉 and〈|AR|2〉 denote averages in the co-moving frames of the amplitudesAR and
AL. Intuitively, the occurrence of the averages stems from the fact that the group velocitys0 becomes infinite after
scalingε out of the equations; in other words, when we follow one mode in the frame moving with the group velocity,
the other mode is swept by so quickly, that only its average value affects the slow dynamics. These equations have
been used in particular to study the effect of boundary conditions and finite size effects [28–32], but for the study
of sources and sinks they appear less appropriate since they are effectively decoupled single-mode equations with a
renormalized linear growth term. Nevertheless, we shall see in Section 4 that in the smallε limit sources and sinks
often disappear from the dynamics, and if so, these equations may yield an appropriate description of the late-stage
regime.

1.2.3. Complex dynamics in coupled amplitude equations
In Section 5 we will discuss chaotic behavior that results from the source-induced wavenumber selection. Complex

and chaotic behavior in the coupled amplitude equations has, to the best of our knowledge, received very little
attention; notable exceptions are the papers by Sakaguchi [57,58], Amengual et al. [59] and van Hecke and Malomed
[66].

In the papers of Sakaguchi [57,58], the coupled CGL equations ((2) and (3)) were studied in the regime where
the cross-coupling coefficientg2 is close to 1. It was pointed out that the transition between single and bimodal
states in general shifts away fromg2 = 1 when the nonlinear waves show phase or defect chaos; in some cases
this transition can become hysteretic. Furthermore, periodic states and tightly bound sink/source pairs that we will
encounter in Section 5.2 were already obtained here.

In the recent work by Amengual et al. [59], two coupled CGL equations with group velocitys0 equal to zero
were studied. The dispersion coefficientsc1 and c3 were chosen such that the uncoupled equations are in the
spatio-temporal intermittent regime [63–65,67]. Upon increasing the coupling coefficientg2, sink/source patterns
were observed forg2 > 1; in these patterns, no intermittency was observed. We will comment on this work in
Section 5.3.2, and in particular give a simple explanation of the disappearance of the intermittency.
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Fig. 1. Schematic representations of the various coherent structures that we will encounter in this paper. The amplitude of the left (right) traveling
waves is indicated by a thick (thin) curve, while the linear group velocity and total group velocity are denoted bys0 ands respectively, and their
direction is indicated by arrows. (a) and (b) are, in our definition, both sources, since the nonlinear group velocitys points outward; the majority
of cases that we will encounter will be of type (a). Similarly, (c) and (d) both represent sinks. Finally, one may in principal encounter structures
that are neither sources nor sinks. We never have observed a structure of the form shown in (e) in our simulations, but structures like shown in
(f) occur quite generally in the chaotic regimes. The dotted curve for theAR mode indicates that we can have many different possibilities here,
including the case wereAR = 0; in that case a description in terms of a single CGL equation suffices. Note that figure (f) does not exhaust all
possibilities which are essentially single-mode structures. E.g., in our simulations presented in Fig. 3, we encounter a case where in between a
source of type (a) and one of type (b) there is a single-mode sink, for whichs points inwards.

1.3. Outline

After discussing the definition of sources and sinks of related coherent structures in Section 2 (p. 6), we turn to
the counting analysis in Section 3 (p. 8). We focus in our presentation on the ingredients of the analysis and on the
main results, relegating all technical details of the analysis to Appendices A and B (p. 36 and p. 40, respectively).
The essential result is that one typically finds a unique symmetric source solution with zero velocity.

We discuss the scaling of the width of sources and sinks withε in Section 4 (p. 12). The main result is that beyond
the critical valueεso

c sources are intrinsically non-stationary.
In Section 5 (p. 19), we discuss the stability of the waves sent out by the source solutions, and identify three

different mechanisms that may lead to chaotic behavior. Furthermore we explore numerically some of the richness
found in the coupled amplitude equations. We find a plethora of structures and possible dynamical regimes.

Finally, in Section 6 (p. 29), we close our paper by putting some of our results in perspective, also in relation to
the experiments, and by discussing some open problems.

2. Definition of sources and sinks

Sources and sinks arise when the coupling coefficientg2 is sufficiently large that one mode suppresses the other.
Then the system tends to form domains of either left-moving or right-moving waves, separated by domain walls or
shocks. The distinction betweensourcesor sinksaccording to whether the nonlinear group velocity pointss of the
asymptotic plane waves pointsoutwardsor inwards(see Fig. 1) is crucial here. From a physical point of view, the
group velocity determines the propagation of small perturbations. In our definition, a source is an “active” coherent
structure which sends out waves to both sides, while a sink is sandwiched between traveling wave states with the
group velocity pointing inwards; perturbations travel away from sources and into sinks. Mathematically, it will turn
out that the distinction between sources and sinks in terms of the group velocitys is also precisely the one that is
natural in the context of the counting arguments.
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In an actual experiment concerning traveling waves, when one measures an order parameter and produces
space–time plots of its time evolution, lines of constant intensity indicate lines of constant phase of the travel-
ing waves (see for example [33,37–39]). The direction of thephase velocityvph of the waves in each single-mode
domain is then immediately clear. Sinces andvph do not have to have the same sign, one cannot distinguish sources
and sinks based on this data alone. In passing, we note that it was found by Alvarez et al. [33], and it is also clear
from Fig. 11 of [36], thatvph ands are parallel in these heated wire experiments, so that the structures which to the
eye look like sources, areindeedsources according to our definition.

In the coupled CGL equations ((2) and (3)),s0 is the linear group velocity, i.e., the group velocity of the fast
modes3 . It is important to realize [68,69] that for positiveε, the group velocitys is differentfrom s0. To see this,
note that the coupled CGL equations admit single mode traveling waves of the form

AR = ae−i(ωRt−qx), AL = 0, (6)

or

AL = ae−i(ωL t−qx), AR = 0. (7)

Substitution of these wave solutions in the amplitude equations ((2) and (3)) yields the nonlinear dispersion
relation

ωR,L = ±s0q + (c1 + c3)q
2, (8)

so that the group velocitys = ∂ω/∂q of these traveling waves becomes

sR = s0,R + 2(c1 + c3)q, with s0,R = s0, (9)

sL = s0,L + 2(c1 + c3)q, with s0,R = −s0. (10)

Whenε ↓ 0, the band of the allowedq values shrinks to zero, ands approaches the linear group velocity±s0, as
it should. The term 2(c1 + c3)q accounts for the change in the group velocity away from threshold where the total
wave number may differ from the critical valueqc. This term involves both the linear and the nonlinear dispersion
coefficient, and its importance increases with increasingε. We will therefore sometimes refer tos as thenonlinear
or total group velocity, to emphasize the difference betweens0 ands.

Clearly it is possible, thats0 ands have opposite signs. Since the labels R and L ofAR andAL refer to the signs
of linear group velocitys0, if this occurs, the modeAR corresponds to a wave whose total group velocitys is to
the left! The various possibilities concerning sources and sinks are illustrated in Fig. 1.

It is important to stress that our analysis focuses on sources and sinks near the primary supercritical Hopf
bifurcation from a homogeneous state to traveling waves. Experimentally, sources and sinks have been studied in
detail by Kolodner [37] in his experiments on traveling waves in binary mixtures. Unfortunately, for this system a
direct comparison between theory and experiments is hindered by the fact that the transition to traveling waves is
subcritical, not supercritical.

3 We stress that the indices R and L of the amplitudesAR andAL are associated with the sign of thelinear group velocitys0. In writing Eq. (1)
with qc andωc positive, we have also associated a wave whose phase velocityvph is to the right withAR, and one whosevph is to the left with
AL , but this choice is completely arbitrary: At the level of the amplitude equations, the sign of the phase velocity of the critical mode plays no
role.
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3. Coherent structures; counting arguments for sources and sinks

3.1. Counting arguments: general formulations and summary of results

Many patterns that occur in experiments on traveling wave systems or numerical simulations of the single and
coupled CGL equations (2) and (3) exhibit local structures that have an essentially time-independent shape and
propagate with a constant velocityv. For these so-calledcoherentstructures, the spatial and temporal degrees of
freedom are not independent: apart from a phase factor, they are stationary in the co-moving frameξ = x−vt . Since
the appropriate functions that describe the profiles of these coherent structures depend only on the single variable
ξ , these functions can be determined by ordinary differential equations (ODE’s). These are obtained by substitution
of the appropriate Ansatz in the original CGL equations, which of course are partial differential equations. Since
the ODE’s can themselves be written as a set of first order flow equations in a simple phase space, the coherent
structures of the amplitude equations correspond to certain orbits of these ODE’s. Please note that plane waves,
since they have constant profiles, are trivial examples of coherent structures; in the flow equations they correspond to
fixed points. Sources and sinks connect, asymptotically, plane waves, and so the corresponding orbits in the ODE’s
connect fixed points. Many different coherent structures have been identified within this framework [67–72].

The counting arguments that give the multiplicity of such solutions are essentially based on determining the
dimensions of the stable and unstable manifolds near the fixed points. These dimensions, together with the parameters
of the Ansatz such asv, determine for a certain orbit the number of constraints and the number of free parameters
that can be varied to fullfill these constraints. We may illustrate the theoretical importance of counting arguments by
recalling that for the single CGL equation a continuous family of hole solutions has been known to exist for some
time [70]. Later, however, counting arguments showed that these source type solutions were on general grounds
expected to come as discrete sets, not as a continuous one-parameter family [68,69]. This suggested that there
is some accidental degeneracy or hidden symmetry in the single CGL equation, so that by adding a seemingly
innocuous perturbation to the CGL equation, the family of hole solutions should collapse to a discrete set. This was
indeed found to be the case [73,74]. For further details of the results and implications of these counting arguments
for coherent structures in the single CGL equation, we refer to [68,69].

It should be stressed that counting arguments cannot prove the existence of certain coherent structures, nor can
they establish the dynamical relevance of the solutions. They can only establish the multiplicity of the solutions,
assuming that the equations have no hidden symmetries. Imagine that we know – either by an explicit construction or
from numerical experiments – that a certain type of coherent structure solution does exist. The counting arguments
then establish whether this should be an isolated or discrete solution (at most a member of a discrete set of them),
or a member of a one-parameter family of solutions, etc. In the case of an isolated solution, there are no nearby
solutions if we change one of the parameters (like the velocityv) somewhat. For a one-parameter family, the counting
argument implies that when we start from a known solution and change the velocity, we have enough other free
parameters available to make sure that there is a perturbed trajectory that flows into the proper fixed point asξ → ∞.

For the two coupled CGL equations (2) and (3) the counting can be performed by a straightforward extension of
the counting for the single CGL equation [68,69]. The Ansatz for coherent structures of the coupled CGL equations
(2) and (3) is the following generalization of the Ansatz for the single CGL equation

AL(x, t) = e−iωL t ÂL(x − vt), AR(x, t) = e−iωRt ÂR(x − vt). (11)

Note that we take the velocities of the structures in the left and right mode equal, while the frequenciesω are allowed
to be different. This is due to the form of the coupling of the left-and right-traveling modes, which is through the
moduli of the amplitudes. It obviously does not make sense to choose the velocities of theAL andAR differently:
for large times the cores of the structures inAL andAR would then get arbitrarily far apart, and at the technical
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level, this would be reflected by the fact that with different velocities we would not obtain simple ODE’s forÂL

andÂR. Since the phases ofAL andAR are not directly coupled, there is no a priori reason to take the frequencies
ωL andωR equal; in fact we will see that in numerical experiments they are not always equal (see for instance the
simulations presented in Fig. 3). AllowingωL 6= ωR, the Ansatz (11) clearly has three free parameters,ωL , ωR and
v.

Substitution of the Ansatz (11) into the coupled CGL equations (2) and (3) yields the following set of ODE’s:

∂ξaL = κLaL , (12)

∂ξ zL = −z2
L + 1

1 + ic1
[−ε − iωL + (1 − ic3)a

2
L + g2(1 − ic2)a

2
R − (v + s0)zL], (13)

∂ξaR = κRaR, (14)

∂ξ zR = −z2
R + 1

1 + ic1
[−ε − iωR + (1 − ic3)a

2
R + g2(1 − ic2)a

2
L − (v − s0)zR], (15)

where we have written

ÂL = aLeiφL , ÂR = aReiφR. (16)

and whereq, κ andz are defined as

q := ∂ξφ, κ := (1/a)∂ξ a, z := ∂ξ ln(Â) = κ + iq. (17)

Compared to the flow equations for the single CGL equation (see Appendix A), there are two important differences
that should be noted: (i) Instead of the velocityv we now have velocitiesv ± s0; this is simply due to the fact that
the linear group velocity terms cannot be transformed away. (ii) The nonlinear coupling term in the CGL equations
shows up only in the flow equations for thez’s.

The fixed points of these flow equations, the points in phase space at which the right-hand sides of Eqs. (12)–(15)
vanish, describe the asymptotic states forξ → ±∞ of the coherent structures. What are these fixed points? From
Eq. (12) we find that eitheraL or κL is equal to zero at a fixed point, and similarly, from Eq. (14) it follows that
eitheraR or κR vanishes. For the sources and sinks of (2) and (3) that we wish to study, the asymptotic states are
left- and right-traveling waves. Therefore the fixed points of interest to us have either bothaL andκR or bothaR

andκL equal to zero, and we search for heteroclinic orbits connecting these two fixed points.
As explained before, with counting arguments one determines the multiplicity of the coherent structures from

(i) the dimensionD−
out of the outgoing (“unstable”) manifold of the fixed point describing the state on the left

(ξ = −∞), (ii) the dimensionD+
out of the outgoing manifold at the fixed point characterizing the state on the right

(ξ = ∞) and (iii) the numberNfree of free parameters in the flow equations. Note that every flowline of the ODE’s
corresponds to a particular coherent solution, with a fully determined spatial profile but with anarbitrary position;
if we would also specify the pointξ = 0 on the flowline, the position of the coherent structure would be fixed. When
we refer to the multiplicity of the coherent solutions, however, we only care about the profile and not the position.
We therefore need to count the multiplicity of theorbits. In terms of the quantities given above, one thus expects
a (D−

out − 1 − D+
out + Nfree)-parameter family of solutions; the factor−1 is associated with the invariance of the

ODE’s with respect to a shift in the pseudo-timeξ which leaves the flowlines invariant. In terms of the coherent
structures, this symmetry is the translational invariance of the amplitude equations.

When the number(D−
out1 − D+

out + Nfree) is zero, one expects a discrete set of solutions, while if this number
is negative, one expects there to be no solutions at all, generically.Proving the existence of solutions, within the
context of an analysis of this type, amounts to proving that the outgoing manifold at theξ = −∞ fixed point and
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the incoming manifold at theξ = ∞ fixed point intersect. Such proofs are in practice far from trivial – if at all
possible – and will not be attempted here.

Conceptually, counting arguments are simple, since the dimensionsD−
out andD+

out are just determined by studying
the linear flow in the neighborhood of the fixed points. Technically, the analysis of the coupled equations is a
straightforward but somewhat involved extension of the earlier findings for the single CGL. We therefore prefer to
only quote the main result of the analysis, and to relegate all technicalities to Appendix B.

For sources and sinks, always one of the two modes vanishes at the relevant fixed points. We are especially
interested in the case in which the effective value ofε, defined as

εL
eff := ε − g2|aR|2, εR

eff := ε − g2|aL |2. (18)

is negativefor the mode which is suppressed. In this case small perturbations of the suppressed mode decay to zero
in each of the single-amplitude domains, so this situation is thenstable. E.g., for a stable source configuration as
sketched in Fig. 2,εR

eff should be negative on the left, andεL
eff should be negative on the right of the source. We will

focus on the results for this regime of full suppression of one mode by the other.
The basic result of our counting analysis for the multiplicity of source and sink solutions is that whenεeff < 0 the

counting arguments for“normal” sources and sinks (the linear group velocitys0 and the nonlinear group velocity
s of the same sign), is simply that
• Sources occur in discrete sets. Within these sets, as a result of the left–right symmetry forv = 0, we expect a

stationary, symmetric source to occur.
• Sinks occur in a two-parameter family.
Notice that apart from the conditions formulated above, these findings are completely independent of the precise
values of the coefficients of the equations. This gives these results their predictive power. Essentially all of the
results of the remainder of this paper are based on the first finding that sources come in discrete sets, so that they
fix the properties of the states in the domains they separate.

As discussed in Appendix B the multiplicity ofanomaloussources is the same as for normal sources and sinks
in large parts of parameter space, but larger multiplicitiescanoccur. Likewise, sources withεeff > 0 may occur as
a two-parameter family, although most of these are expected to be unstable (Section B.7). We shall see in Section
5 that in this case, which happens especially wheng2 is only slightly larger than 1, new nontrivial dynamics can
occur.

3.2. Comparison between shooting and direct simulations

Clearly, the coherent structure solutions are by constructionspecialsolutions of the original partial differential
equations. The question then arises whether these solutions are also dynamically relevant, in other words, whether
they emerge naturally in the long time dynamics of the CGL equation or as “nearby” transient solutions in nontrivial
dynamical regimes. For the single CGL equation, this has indeed been found to be the case [67–69,75–80]. To check
that this is also the case here, we have performed simulations of the coupled CGL equations and compared the sinks
and sources that are found there to the ones obtained from the ODE’s (12)–(15). Direct integration of the coupled
CGL equations was done using a pseudo-spectral code. The profiles of uniformly translating coherent structures
were obtained by direct integration of the ODE’s (12)–(15), shooting from both theξ = +∞ andξ = −∞ fixed
points and matching in the middle.

In Fig. 2(a), we show a space–time plot of the evolution towards sources and sinks, starting from random initial
conditions. The grey shading is such that patches ofAR mode are light andAL mode are dark. Clearly, after a
quite short transient regime, a stationary sink/source pattern emerges. In Fig. 2(b) we show the amplitude profiles
of |AR| (thin curve) and|AL | (thick curve) in the final state of the simulations that are shown in Fig. 2(a). In



M.van Hecke et al. / Physica D 134 (1999) 1–47 11

Fig. 2. (a) Space–time plot showing the evolution of the amplitudes|AL | and|AR| in the CGL equations starting from random initial conditions.
The coefficients were chosen asc1 = 0.6, c2 = 0.0, c3 = 0.4, s0 = 0.4, g2 = 2 andε = 1. The grey shading is such that patches ofAR mode
are light and theAL mode are dark. (b) Amplitude profiles of the final state of (a), showing a typical sink/source pattern. (c) Comparison between
the source obtained from direct simulations of the CGL equations as shown in (b) (squares) and profiles obtained by shooting in the ODE’s
(12)–(15) (full curves). (d) Similar comparison, now for the wavenumber profiles. In (c) and (d), the thick (thin) curves correspond to the left
(right) traveling mode.

Fig. 2(c) and (d) we compare the amplitude and wavenumber profile of the source obtained from the CGL equations
aroundx = 440 (boxes) to the source that is obtained from the ODE’s (12)–(15) (full lines). The fit is excellent,
which illustrates our finding that sources are stable and stationary in large regions of parameter space and that their
profile is completely determined by the ODE’s associated with the Ansatz (11).

However, the CGL equations posses a large number of coefficients that can be varied, and it will turn out that
there are several mechanisms that can render sources and source/sink patterns unstable. We will encounter these
scenarios in Sections 4 and 5.

3.3. Multiple discrete sources

As we already pointed out before, the fact that sources come in a discrete set does not imply that there exists
only one unique source solution. There could in principle be more solutions, since the counting only tells us that
infinitesimally close to any given solution, there will not be another one.

Fig. 3 shows an example of the occurrence of two different isolated source solutions. The figure is a space–time
plot of a simulation where we obtained two different sources, one of which is an anomalous one (s ands0 of opposite
sign). One clearly sees the different wavenumbers emitted by the two structures, and sandwiched in between these
two sources is a single amplitude sink, whose velocity is determined by the difference in incoming wavenumbers.
We have checked that the wavenumber selected by the anomalous source is such that the counting still yields a
discrete set. If we follow the spatio-temporal evolution of this particular configuration, we find highly nontrivial
behavior which we do not fully understand as of yet (not shown in Fig. 3).

These findings illustrate our belief that the “normal” sources and sinks are the most relevant structures one expects
to encounter. It therefore appears to be safe to ignore the possible dynamical consequences of the more esoteric
structures, which one a priori cannot rule out. The main complication of the possible occurrence of multiple discrete
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Fig. 3. (a,b) Space–time plots showing|AR| (a) and|AL | (b) in a situation in which there are two different sources present. Coefficients in
this simulation arec1 = 3.0, c2 = 0, c3 = 0.75, g2 = 2.0, s0 = 0.2 andε = 1.0. Initial conditions were chosen such that a well-separated
source-source pair emerges, and a short transient has been removed. The source atx ≈ 730 is anomalous, i.e., its linear and nonlinear group
velocitys0 ands have opposite signs. Sandwiched between the sources is a single-mode sink, traveling in the direction of the anomalous source;
this sink is visible in (b). (c) Snapshot of the amplitude profiles of the two sources and the single mode sink at the end of the simulation shown
in (a-b). (d) The wavenumber profiles of the two sources in their final state. Note that when the modulus goes to zero, the wavenumber is no
longer well-defined; we can only obtainq up to a finite distance from the sources. The selected wavenumber emitted by the anomalous source is
qsel = 0.387, while the wavenumber emitted by the ordinary source isqsel = 0.341. The velocity of the sink in between agrees with the velocity
that follows from a phase-matching rule, i.e., the requirement that the phase difference across the sink remains constant. In (c) and (d), thick
(thin) curves correspond to left (right) traveling modes.

sources, as in Fig. 3, is that single amplitude sinks can arise in the patches separating them. The motion of these
sinks can dominate the dynamics for an appreciable time.

4. Scaling properties of sources and sinks for smallε

In this section we study the scaling properties and dynamical behavior of sources and sinks in the limit whereε is
small. This is a nontrivial issue, since due to the presence of the linear group velocitys0, the coupled CGL equations
do not scale uniformly withε. We focus in particular on the width of the sources and sinks. The results we obtain
are open for experimental testing, since the control parameterε can usually be varied quite easily. The behavior
of the sources is the most interesting, and we will discuss this in Sections 4.1 and 4.2. Using arguments from the
theory of front propagation, we recover the result from Coullet et al. [48] that there is a finite threshold value for
ε, below which nocoherentsources exist (Section 4.1). Forε below this critical value, there are, depending on the
initial conditions, roughly two different possibilities. For well-separated sink/source patterns, we findnon-stationary
sources whose average width scales as 1/ε (in possible agreement with the experiments of Vince and Dubois [35];
see Section 6.2.1). These sources can exist for arbitrarily small values ofε. For patterns with less-well separated
sources and sinks, we typically find that the sources and sinks annihilate each other and disappear altogether. The
system evolves then to a single mode state, as described by the averaged amplitude equations (4) and (5). These
scenarios are discussed in Section 4.2. By some simple analytical arguments we obtain that the width of coherent
sinks diverges as 1/ε; typically these structures remain stationary (see Section 4.3).
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Fig. 4. (a) Sketch of a wide source, indicating the competition between the linear group velocitys0 and the front velocityv∗. (b) Width of
coherent sources as obtained by shooting, forc1 = c3 = 0.5, c2 = 0, g2 = 2 ands0 = 1. (c) Example of dynamical source for same values of
the coefficients andε = 0.15. The order parameter shown here is the sum of the amplitudes|AL | and|AR|, and the total time shown here is 1000.
(d) Average inverse width of sources for the same coefficients as (b) as a function ofε. The thick curve corresponds to the coherent sources as
shown in (b). Forε close to and belowεso

c = 0.2, there is a crossover to dynamical behavior. The inset shows the region aroundε = 0, where
the average width roughly scales asε−1.

4.1. Coherent sources: analytical arguments

By balancing the linear group velocity term with the second order spatial derivative terms, we see that the coupled
amplitude equations (2) and (3) may contain solutions whose widths approach a finite value of order 1/s0 asε → 0.
As pointed out in particular by Cross [26,27], this behavior might be expected near end walls in finite systems;
in principle, it could also occur for coherent structures such as sources and sinks which connect two oppositely
traveling waves. Solutions of this type arenot consistent with the usual assumption of separation of scales (length
scale∼ ε−1/2) which underlies the derivation of amplitude equations. One should interpret the results for such
solutions with caution.

As we shall discuss, the existence of stationary, coherent sources is governed by a finite critical valueεso
c , first

identified by Coullet et al. [48]. Since the coupled amplitude equations (2) and (3) are only valid to lowest order in
ε, the question then arises whether the existence of this finite critical valuesεso

c is a peculiarity of the lowest order
amplitude equations. Since this threshold is determined by the interplay of the linear group velocity and a front
velocity, which are both defined for arbitraryε, we will argue that the existence of a threshold is a robust property
indeed.

We now proceed by deriving this critical valueεso
c from a slightly different perspective than the one that underlies

the analysis of Coullet et al. [48], by viewing wide sources as weakly bound states of two widely separated fronts.
Indeed, consider a sufficiently wide source like the one sketched in Fig. 4(a) in which there is quite a large interval
where both amplitudes are close to zero4 . Intuitively, we can view such a source as a weakly bound state of two
fronts, since in the region where one of the amplitudes crosses over from nearly zero to some value of order unity,

4 It is not completely obvious that wide sources necessarily have such a large zero patch, but this is what we have found from numerical
simulations. Wide sinks actually will turn out not to have this property.
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the other mode is nearly zero. Hence as a first approximation in describing the fronts that build up the wide source of
the type sketched in Fig. 4(a), we can neglect the coupling term proportional tog2 in the core-region. The resulting
fronts will now be analyzed in the context of the single CGL equation.

Let us look at the motion of theAR front on the right (by symmetry theAL front travels in the opposite direction).
As argued above, its motion is governed by the single CGL equation in a frame moving with velocitys0

(∂t + s0∂x)AR = εAR + (1 + ic1)∂
2
xAR − (1 − ic3)|AR|2AR. (19)

The front that we are interested in here corresponds to a front propagating “upstream”, i.e., to the left, into the
unstableAR = 0 state. Such fronts have been studied in detail [68,69], both in general and for the single CGL
equation specifically.

Fronts propagating into unstable states come in two classes, depending on the nonlinearities involved. Typically,
when the nonlinearities are saturating, as in the cubic CGL equation (19), the asymptotic front velocityvfront equals
the linear spreading velocityv∗. This v∗ is the velocity at which a small perturbation around the unstable state
grows and spreads according to thelinearizedequations. For Eq. (19), the velocityv∗ of the front, propagating into
the unstableA = 0 state, is given by [68,69]

v∗ = s0 − 2
√

ε(1 + c2
1). (20)

The parameter regime in which the selected front velocity isv∗ is often referred to as the “linear marginal stability”
[81–85] or “pulled fronts” [86–89] regime, as in this regime the front is “pulled along” by the growing and spreading
of linear perturbations in the tip of the front.

For smallε, the velocityv∗ = vfront is positive, implying that the front moves to the right, while for largeε, v∗ is
negative so that the front moves to the left. Intuitively, it is quite clear that the value ofε wherev∗ = 0 will be an
important critical value for the dynamics, since for largerε the two fronts sketched in Fig. 4(a) will move towards
each other, and some kind of source structure is bound to emerge. Forε < εso

c , however, there is a possibility that
a source splits up into two retracting fronts. Hence the critical value ofε is defined throughv∗(εso

c ) = 0, which,
according to Eq. (20) yields

εso
c = s2

0/(4 + 4c2
1). (21)

We will indeed find that the width ofcoherentsources diverges for this value ofε; however, the sources will
not disappear altogether, but are replaced bynon-stationarysources which cannot be described by the coherent
structures Ansatz (11).

4.2. Sources: numerical simulations

By using the shooting method, i.e., numerical integration of the ODE’s (12)–(15), to obtain coherent sources, we
have studied the width of the coherent sources as a function ofε. The width is defined here as the distance between
the two points where the left and right traveling amplitudes reach 50% of their respective asymptotic values. In
Fig. 4(b), we show how the width of coherent sources varies withε. For the particular choice of coefficients here
(c1 = c3 = 0.5, c2 = 0, g2 = 2 ands0 = 1), εso

c = 0.2, and it is clear from this figure, that the width of stationary
source solutions of Eq. (19) diverges at this critical value5 .

In dynamical simulations of the full coupled CGL equations however, this divergence is cut off by a crossover
to the dynamical regime characteristic of theε < εso

c behavior. Fig. 4(c) is a space–time plot of|AL | + |AR| that

5 Note that by a rescaling of the CGL equations, one can sets0 = 1 without loss of generality.
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illustrates the incoherent dynamics we observe forε < εso
c . The initial condition here is source-like, albeit with a

very small width. In the simulation shown, we see the initial source flank diverge as we would expect sinces0 > v∗.
As time progresses, right ahead of the front a small ‘bump’ appears: as we mentioned before, both amplitudes are
to a very good approximation zero in that region, so the state there is unstable (remember that though small,ε is
still nonzero). This bump will therefore start to grow, and will be advected in the direction of the flank. The flank
and bump then merge and the flank jumps forward. The average front velocity is thus enhanced. The front then
slowly retracts again, and the process is repeated, resulting in a “breathing” type of motion. For longer times these
oscillations become very, very small. For this particular choice of parameters, they become almost invisible after
times of the order 3000; however, a close inspection of the data yields that the sources never become stationary but
keep performing irregular oscillations. Since these fluctuations are so small, it is very likely that to an experimentalist
such sources appear to be completely stationary.

From the point of view of the stability of sources, we can think of the change of behavior of the sources as a
core-instability. This instability is basically triggered by the fact that wide sources have a large core where bothAL

andAR are small, and since the neutral state is unstable, this renders the sources unstable. The difference between
the critical value ofε where the instability sets in andεso

c is minute, and we will not dwell on the distinction between
the two6 . Although all our numerical results are in accord with this scenario, one should be aware, however, that
it is not excluded that other types of core-instabilities exist in some regions of parameter space7 . Furthermore, it
should be pointed out that whenε is belowεso

c , there isnostationary albeit unstable source! The dynamical sources
can thannotbe viewed as oscillating around an unstable stationary source.

The weak fluctuations of the source flanks are very similar to the fluctuations of domain walls between single
and bimodal states in inhomogeneously coupled CGL equations as studied in [66]. Completely analogous to what
is found here, there is a threshold given in terms ofε ands0 for the existence of stationary domain walls, which
we understand now to result from a similar competition between fronts and linear group velocities. Beyond the
threshold, dynamical behavior was shown to set in, which, depending on the coefficients, can take qualitatively
different forms; similar scenarios can be obtained for the sources here.

The main ingredient that generates the dynamics seems to be the following. For a very wide source, we can think
of the flank of the source as an isolated front. However, thetip of this front will always feel the other mode, and it is
precisely this tip which plays an essential role in the propagation of “pulled” fronts [81–83,86–89]! Close inspection
of the numerics shows that near the crossover between the front regime and the interaction regime, oscillations,
phase slips or kinks are generated, which are subsequently advected in the direction of the flank. These perturbations
are adeterministicsource of perturbations, and it is these perturbations that make the flank jump forward, effectively
narrowing down the source.

The jumping forward of the flank of the source forε just belowεso
c is reminiscent to the mechanism through

which traveling pulses were found to acquire incoherent dynamical behavior, if their velocity was different from the
linear group velocity [93]. In extensions of the CGL equation, it was found that if a pulse would travel slower than
the linear spreading speedv∗, fluctuations in the region just ahead of the pulse could grow out and make the pulse
at one point “jump ahead”. In much the same way the fronts can be viewed to “jump ahead” in the wide source-type
structures belowεso

c when the fluctuations ahead of it grow sufficiently large.

6 For a similar scenario in the context of non-homogeneously coupled CGL equations, see [66].
7 An example of a similar scenario is provided by pulses in the single quintic CGL equation. Pulses are structures consisting of localized regions

where|A| 6= 0. The existence and stability of pulse solutions can, to a large extent, be understood by thinking of a pulse as a bound state of
two fronts [68,69]. However, recent perturbative calculations near the non-dissipative (Schrödinger-like) limit [90–92] have shown that in some
parameter regimes a pulse can become unstable against a localized mode. This particular instability can not simply be understood by viewing a
pulse as a bound state of two fronts.
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In passing, we point out that we believe these various types of “breathing dynamics” to be a general feature of the
interaction between local structures and fronts. Apart from the examples mentioned above, a well known example
of incoherent local structures are the oscillating pulses observed by Brand and Deissler in the quintic CGL [94,95].
Also in this case we have found that these oscillations are due to the interaction with a front, but instead of a pulled
front it is apushedfront that drives the oscillations here [96].

Returning to the discussion of the behavior of the wide non-stationary sources, we show in Fig. 4(d) the (inverse)
average width of the dynamical sources for smallε. These simulations were done in a large system (size 2048),
with just one source and, due to the periodic boundary conditions, one sink. If one slowly decreasesε, one finds
that the average width of the sources diverges roughly asε−1 (see the inset of Fig. 4(d)). However, if one does
not take such a large system, i.e., sources and sinks are not so well separated, we often observed that, after a few
oscillations of the sources, they interact with the sinks and annihilate. In many cases, especially for small enough
ε, all sources and sinks disappear from the system, and one ends up with a state of only right or left traveling wave.
Since no sources or sinks can occur in the average equations (4) and (5), this behavior seems precisely to be what
these average equations predict. In a sense, this regime without sources and sinks follow nicely from the ordinary
CGL equations whenε ↓ 0.

In conclusion, we arrive at the following scenario:
• For ε > εso

c , sources arestationaryand stable, provided that the waves they send out are stable. The structure
of these stationary source solutions is given by the ODE’s (12)–(15), and their multiplicity is determined by the
counting arguments.

• Whenε ↓ εso
c , the source width rapidly increases, and forε = εso

c , the size of the coherent sources (i.e., solutions
of the ODE’s (12)–(15)) diverges, in agreement with the picture of a source consisting of two weakly bound
fronts. For a value ofε just aboveεso

c , the sources have a wide core where bothAR andAR are close to zero,
and these sources turn unstable. Our scenario is that in this regime a source consists essentially of two of the
“nonlinear global modes” of Couairon and Chomaz [97]. Possibly, their analysis can be extended to study the
divergence of the source width asε ↓ εso

c .
• For ε < εso

c , wide, non-stationarysources can exist. Their dynamical behavior is governed by the continuous
emergence and growth of fluctuations in the region where both amplitudes are small, resulting in an incoherent
“breathing” appearance of the source. For long times, these oscillations may become very mild, especially when
ε is not very far belowεso

c .
• In the limit forε ↓ 0, there are, depending on the initial conditions, two possibilities. For random initial conditions,

pairs of sources and sinks annihilate and the system often ends up in a single mode state, which is consistent
with the ’averaged equation’ picture discussed in Section 1.2.2. This happens in particular in sufficiently small
systems. Alternatively, in large systems, one may generate well-separated sources and sinks. In this case the
average width of the incoherent sources diverges as 1/ε, in apparent agreement with the experiments of Vince
and Dubois [35] (see Section 6.2.1 for further discussion of this point).
We finally note that our discussion above was based on the fact that near a supercritical bifurcation, fronts

propagating into an unstable state are “pulled” [86–89] or “linear marginal stability” [81–85] fronts:vfront = v∗.
It is well-known that when some of the nonlinear terms tend to enhance the growth of the amplitude, the front
velocity can be higher:vfront > v∗ [81–89]. These fronts, which occur in particular near a subcritical bifurcation,
are sometimes called “pushed” [86–89] or “nonlinearly marginal stability” [68,69,85] fronts. In this case it can
happen that the front velocity remains large enough for stable stationary sources to exist all the way down toε = 0.
We believe that this is probably the reason that Kolodner [38] does not appear to have seen any evidence for the
existence of a criticalεso

c in his experiments on traveling waves in binary mixtures, as in this system the transition
is weakly subcritical [21,98].
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4.3. Sinks

As we have seen in Section B.2, counting arguments show that there generically exists a two-parameter family of
uniformly translating sink solutions. The scaling of their width as a function ofε is not completely obvious, since
the figures of Cross [26]8 indicate that their width approaches a finite value asε ↓ 0, while Coullet et al. found a
class of sink solutions whose width diverges asε−1 for ε ↓ 0.

In Appendix C we demonstrate, by examining the ODE’s (12)–(15) in theε ↓ 0 limit, that the asymptotic scaling
of the width of sinks asε−1 follows naturally.

If we now focus again on uniformly translating sink structures of the form

AR,L = e−iωR,L t ÂR,L(ξ), (22)

and explicitly carry out this scaling by introducing the scaled variables

ξ̄ = εξ, ω̄R,L = ωR,L

ε
, ĀR,L = ÂR,L√

ε
, (23)

We find that,if the limit ε → 0 is regular we can (to lowest order inε), approximate the ODE’s (12)–(15) by the
following reduced set of equations

(−iω̄ + s0∂ξ̄ )ĀR = ĀR − (1 − ic3)|ĀR|2ĀR − g2(1 − ic2)|ĀL |2ĀR, (24)

(−iω̄ − s0∂ξ̄ )ĀL = ĀL − (1 − ic3)|ĀL |2ĀL − g2(1 − ic2)|ĀR|2ĀL , (25)

where we have set̄ωR = ω̄L = ω andv = 0, to study symmetric, stationary sinks. As one can see by comparing
Eqs. (24) and (25) with the original Eqs. (12)–(15), the taking of theε → 0 limit effectively amounts to the removal
of the diffusive term∝ ∂2

ξ . One coulda priori wonder whether this procedure is justified, since we are removing the
highest order derivative from the equations, which could very well constitute a singular perturbation. This matter
will be resolved with the aid of our counting argument.

Eqs. (24) and (25) admit an exact solution for the sink profile, first obtained by Coullet et al. When we substitute

ĀR,L = āLeiφ̄R,L , q̄R,L = ∂ξ̄ φ̄R,L , (26)

the explicit solution is given by

aR(x) =
√

ε

1 + e(2(g2−1)εx)/s0
=

√
ε − a2

L . (27)

The width of these solutions is easily seen to indeed diverge asε−1. Since we can still varȳω continuously to
give various values for the asymptotic wavenumber, which is for solutions of the type (27) given by

q̄R = 1

s0
(ω̄ + c3) for ξ̄ = −∞ and q̄L = −1

s0
(ω̄ + c3) for ξ̄ = ∞, (28)

we see that we still have a one-parameter family ofv = 0 sinks. Since this is in accord with the full counting
argument, the limitε ↓ 0 is indeed regular.

In passing we note that source solutions of finite width are completely absent in the scaled Eqs. (24) and (25).
This is because the only orbit that starts from theAR = 0 single mode fixed point and flows to theAL = 0 single

8 The work of Cross was motivated by experiments on traveling waves in binary mixtures. In such systems, the bifurcation is weakly subcritical;
experimentally, the sinks width is then expected to be finite for smallε.
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Fig. 5. The width of stationary sinks obtained from the ODE’s Eqs. (12) and (15) as a function ofε, for c1 = 0.6, c3 = 0.4, c2 = 0, s0 = 0.4,
g0 = 1 andg2 = 2. (a) Example of the stationary sink which has an incoming wavenumber corresponding to the wavenumber that is selected
by the sources, forε = 0.5. (b) Idem, now forε = 0.05. Notice the differences in scale between (a) and (b). These two sinks are not related by
simple scale transformations; this illustrates again the absence of uniformε scaling of the coupled CGL equations. (c) Asε is decreased, the sink
width initially roughly increases asε−1/2. Whenε becomes sufficiently small, the group-velocity terms dominate over the diffusive/dispersive
terms, and the sink-width is seen to obey an asymptoticε−1 scaling (see (d) for a blowup aroundε = 0. The straight line indicates the analytic
result for the 50% width as obtained from Eq. (27), i.e. width−1 = 5ε/(2 ln 3).

mode fixed point passes through theAL = AR = 0 fixed point, and therefore takes an infinite pseudo-timeξ ;
such a source has an infinitely wide core regime whereAL andAR are both zero. This also agrees with our earlier
observations, since the coherent sources already diverge at finiteεso

c .
In Fig. 5 we plot the sink width versusε for the full set of ODE’s, as obtained from our shooting. It is clear that

the sink indeed diverges atε = 0, and that it asymptotically approaches the theoretical prediction from the above
analysis.

4.4. The limits0 → 0

In this paper, we focus mainly on the experimentally most relevant limits0 finite, ε small. For completeness,
we also mention that Malomed [49] has also investigated the limit whereε is nonzero ands0 → 0, ci → 0,
perturbatively. In this limit, which is relevant for some laser systems [60,61], sinks are found to bewider than
sources. This finding can easily be recovered from the results of our appendix: from (A.12) it follows that to first
order ins0 the change in the exponential growth rateκ of the suppressed mode away from zero is

δκ±
L = −s0/2, δκ±

R = s0/2. (29)

where according to our convention of the Appendices,κ− corresponds to the negative root of (A.12), andκ+ to the
positive one. For a sink, the left traveling mode is suppressed on the left of the structure, and so this mode grows as
exp(κ+

L ξ), while on the right of the sink the right-traveling mode decays to zero as exp(κ−
L ξ). For the sources, the

right and left traveling modes are interchanged. According to (29), upon increasings0 the relevant rate of spatial
growth and decay decreases for sinks and increases for sources. Hence in this limit, somewhat counter-intuitively,
sinks are wider than sources. For a further discussion of the limits0 → 0, we refer to the paper by Malomed
[49].
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Table 1
Overview of disordered and chaotic states

Type Section Figure Parameters

Core-instabilities 4.1 and 4.2 4 ε < εso
c = s2

0/(4 + 4c2
1)

Absolute instabilities 5.1 7 and 8 v∗
BF > 0

Bimodal chaos 5.2 9 1< g2 < ε/(ε − qsel)

Defects+Bimodal 5.3.2 10 g2 just above 1
Intermittent+Bimodal 5.3.3 11 g2 just above 1
Periodic patterns 5.3.4 7,8 and 12 c2,c3: opposite signs and not small

5. Dynamical properties of source/sink patterns

Apart from the instability of the sources that occurs whenε < εso
c , there are at least two other mechanisms that

lead to nontrivial dynamics of source/sink patterns, and this section is devoted to a description of such states. Due
to the high dimensionality of the parameter space (one has to consider, in principle, the coefficientsc1, c2, c3, g2

andε or s0), we aim at presenting some typical examples and uncovering general mechanisms, rather than aiming
at a complete overview. Several of the scenario’s we lay out deserve further detailed investigation in the future.

The starting point of our analysis here is the discrete nature of the sources (see Section B.2) which implies that
the wavenumber of the laminar patches is often uniquely determined [47,49,51]. A stability analysis of these waves
yields the two following instability mechanisms:
• Benjamin–Feir instability. When the waves emitted by the sources are unstable to long wavelength modes, it

is the nature of this instability, i.e., whether it isconvectiveor absolute, that determines the global dynamical
behavior. The dynamical states that occur in this case are discussed in Section 5.1.

• Bimodal instabilities. The selected wavenumber can also lead to an instability resulting from the competition
between the left and right traveling modes. The essential observation is that for a selected wavenumberqsel there
exists a range 1< g2 < ε/(ε − q2

sel) for which bothsingle and bimodal states are unstable. Provided that there
are sources in the system, we find then a regime ofsource-induced bimodalchaos (see Section 5.2).
Furthermore, both of these instabilities can occur simultaneously, as seems to be the case in experiments of

the Saclay group [40], and can be combined with the small-ε instability of the sources, discussed in Section 4.
This leads to quite a rich palette of dynamical and chaotic states (Section 5.3). We have summarized the various
disordered states that are typical for the coupled amplitude equations in Table 1. The first three types of dynamics
are source-driven. Sources are not essential for the last three types of dynamics, which are driven by the coupling
between theAL andAR modes.

5.1. Convective and absolute sideband-instabilities

Plane waves in the single CGL equation with wavenumberq exhibit sideband instabilities when [2]9

q2 >
ε(1 − c1c3)

3 − c1c3 + 2c2
3

, (30)

9 When both nominator and denominator are negative, as may occur for largec1, this equation seems to suggest that one might have a stable
band of wavenumbers. However, when 1− c1c3 is negative, no waves are stable; the flipping of the sign of the denominator for largec1 bears
no physical relevance, but is due to a long-wavelength expansion performed to obtain Eq. (30). Note that the denominator is always positive as
long as 1− c1c3 is positive.
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and when the curvec1c3 = 1 is crossed, all plane waves become unstable, and one encounters various types of
spatio-temporal chaos [2,63–65]. For the coupled CGL equations under consideration here, the condition for linear
stability of a single mode is still given by Eq. (30), since the mode which is suppressed is coupled quadratically to
the one which is nonzero. Since the sources in general select a wavenumber unequal to zero, the relevant stability
boundary for the plane waves in source/sink patterns typically lies below thec1c3 = 1 curve.

Consider now a linearly unstable plane wave. Perturbations of this wave grow, spread and are advected by the
group velocity. The instability of the wave is called convective when the perturbations are advected away faster
than they grow and spread; when monitored at a fixed position, all perturbations eventually decay. In the case
of absolute instability, the perturbations spread faster than they are advected; such an instability often results in
persistent dynamics. To distinguish between these two cases one has to compare, therefore, the group velocity
and the spreading velocity of perturbations. For a general introduction to the concepts of convective and absolute
instabilities, see e.g. [99,100].

Numerical simulations of the coupled CGL equations presented show that the distinction between the two types
of instabilities is important for the dynamical behavior of the source/sink patterns. When the waves that are selected
by the sources are convectively unstable, we find that, after transients have died out, the pattern typically “freezes”
in an irregular juxtaposition of stationary sources and sinks. When the waves are absolutely unstable10 , however,
persistent chaos occurs.

The wavenumber selection and instability scenario sketched above for the coupled CGL equations is essentially
the one-dimensional analogue to the “vortex-glass” and defect chaos states in the 2D CGL equation [101–104]; in
that case the wavenumber is selected by so-called spiral or vortex solutions. As we shall discuss, there are, however,
also some differences between these cases.

We will briefly indicate how the threshold between absolute and convective instabilities is calculated (see also
[104]). The advection of a small perturbation is given by the nonlinear group velocitys = ∂ω/∂q which is the sum
of the linear group velocitys0 and the nonlinear termsq := 2q(c1 + c3):

sL = −s0 + 2qL(c1 + c3), sR = s0 + 2qR(c1 + c3). (31)

The spreading velocity of perturbations is conveniently calculated in the linear marginal stability/pulled front
framework [81–84,88,89] once one has obtained a dispersion relation for these perturbations. Since we consider
single mode patches, we are allowed to restrict ourselves to a single CGL equation, in which the linear group velocity
term±s0∂xA is easily incorporated, as it just gives a constant boost. Considering a perturbed plane wave of the form
A = (a + u)exp i(qx − ωt), whereu is a small complex-valued perturbation∼ exp i(kx − σ t) anda2 = ε − q2.
Upon substituting this Ansatz into a single CGL equation, linearizing and going to a Fourier representation, one
obtains a dispersion relationσ(k) [105]. From this relation one then finally calculates the spreading velocityv∗

BF of
the Benjamin–Feir perturbations in the linear marginal stability or saddle-point framework [81–84].

Since in general we can only calculate the selected wavenumberq by a shooting procedure of the ODE’s (12)–(15)
for a source, obtaining a full overview of the stability of the plane waves as a function of the coefficients necessarily
involves extensive numerical calculations. Therefore, we will focus now on a single sweep ofc2. For reasons to be
made clear below, we chooseε = 1, c1 = c3 = 0.9, s0 = 0.1 andg2 = 2. Since we fix all coefficients butc2, the
stability boundary Eq. (30) is fixed. By sweepingc2, the selected wavenumber varies over a range of order 1, and
one encounters both convective and absolute instabilities.

10 It should be noted that the criterion for absolute instability concerns the propagation of perturbations in an ideal, homogeneous background.
For typical source/sink patterns, one has finite patches; the criterion can also not determine when perturbations are strong enough to really affect
the core of the sources. Analogous to the 2D case, we have found that persistent dynamics sets in slightlyabovethe threshold between convective
and absolute instabilities.
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Fig. 6. Frequencyω, corresponding selected wavenumberqseland perturbation velocityv∗
BF as a function ofc2, forε = 1, c1 = c3 = 0.9, s0 = 0.1

andg2 = 2. Forc2 < −0.25,v∗
BF < 0, and perturbations in the right-flank of the source propagate to the left, so that the waves are absolutely

unstable.

We have found that after a transient, patterns in the stable or convectively unstable case are indistinguishable11 .
When there is no inherent source of noise or perturbations, there is nothing that can be amplified, and the convective
instability is rendered powerless (see however, Section 5.3).

Although the transition between stable and convectively unstable waves is not very relevant for the source/sinks
patterns here, the transition between convectively and absolutely unstable waves is interesting. To obtain an absolute
instability one needs to carefully choose the parameters; whenq increases, the contribution to the group velocity
of the nonlinear termsq increases, and we have to takec1 andc3 quite close to thec1c3 = 1 curve to find absolute
instabilities. This is the reason for our choice of coefficients. In Fig. 6 we have plotted the selected frequency
(obtained by shooting), corresponding wavenumber and propagation velocityv∗

BF of the mode to the right of the
source, as a function ofc2. For this choice of coefficients the single mode waves turn Benjamin–Feir convectively
unstable when, accordingly to Eq. (30)|q| > 0.223, which is the case for all values ofc2 shown in Fig. 6. The
waves turn absolutely unstable when|q| > 0.553, and this yields that the waves become absolutely unstable for
c2 < −0.25.

When the selected waves becomes absolutely unstable, the sources may be destroyed since perturbations can no
longer be advected away from them; the system typically ends up in a chaotic state. In Fig. 7 we show what happens
when we choose the coefficients as in Fig. 6, and decreasec2 deeper and deeper into the absolutely unstable regime.
All runs start from random initial conditions, and a transient oft = 104 was deleted. Although the left- and right
traveling waves do not totally suppress each other, it was found that pictures of|AL | and|AR| are, to within good
approximation, each others negative (see also the final states in Fig. 8). In accordance with this, we choose our
greyscale coding to correspond to|AR|, such that light areas correspond to right-traveling waves and dark ones to
left-traveling waves.

In Fig. 7(a),c2 = −0.3 and the waves have just turned absolutely unstable, but the only nontrivial dynamics
is a very slow drift of some of the sources and sinks. Note that this does not invalidate our counting results that
isolated sources are typically stationary, because the drifting occurs only for structures that are close together. When
c2 is lowered to−0.4 (Fig. 7(b)), one can see now the Benjamin–Feir perturbations spreading out in the opposite
direction of the group velocity, eventually affecting the sources (for example aroundx = 230, t = 2700). Some of
the sinks become very irregular. Whenc2 is decreased even further to−0.6 (Fig. 7(c)), the sources and sinks show a
tendency to form periodic states [57,58] (see also Fig. 8). These states seem at most weakly unstable since only some
very mild oscillations are observed. The two sinks with the largest patches around them show most dynamics, and
one sees the irregular creation and annihilation of small source/sink pairs here (aroundx = 320 and 440). Finally,

11 Except, of course, when we prepare a very large system with widely separated sources and sinks.
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Fig. 7. Source/sink patterns with absolutely unstable selected wavenumbers for the same coefficients as in Fig. 6 and various values ofc2. (a)
c2 = −0.3, (b)c2 = −0.4, (c)c2 = −0.6, (d)c2 = −0.8. For more information see text.

Fig. 8. Two more examples of nontrivial dynamics in the absolutely unstable case. Both cases:c1 = c3 = 0.9, c2 = −2.6, g2 = 2, and a transient
of 104 is deleted. (a-b):s0 = 0.1. Here the periodic states are quite dominant. It appears that these states themselves are prone to drifting and slow
dynamics. (b) Snapshots of|AL | (thick curve) and|AR| (thin curve) in the final state. Obviously, the two modes, although disordered, suppress
each other completely. (c–d) Here we have increaseds0 to 0.2. The plane waves are still absolutely unstable, and the dynamics is disordered,
but much less than in case (a–b).

whenc2 is decreased to−0.8 (Fig. 7(d)) the state becomes more and more disordered; the irregular “jumping” sink
atx ≈ 230 is worth noting here.

It is interesting to note that, in particular for large negativec2 closely bound, uniformly drifting sink-source pairs
are formed (see for instance aroundx = 430, t = 700 in Fig. 7(d)). Another frequently occurring type of solution
are periodic states, corresponding to an array of alternating patches ofAL andAR mode (see also Fig. 8). The
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source/sink pairs and in particular the periodic states occur over a quite wide range of coefficients; their existence
has been reported before by Sakaguchi [57,58]. In a coherent structures framework, periodic states correspond to
limit cycles of the ODE’s (12)–(15). In many cases they can be seen as strongly nonlinear standing waves, and they
show an interesting destabilization route to chaos (see Section 5.3.4).

Apart from the similarities between the mechanisms here and the spiral chaos of the 2D CGL equation, it is also
enlightening to notice the differences. The first difference is that our sources, in contrast to the spirals in 2D, are not
topologically stable. In the states we have shown so far this does not play a role; in the following section we will
see examples where instabilities of the sources themselves play a role. While in the 2D case the spiral cores that
play the role of a source are created and annihilated in pairs, it is here only the sources and sinks that are created
or annihilated in pairs. Furthermore, in the spiral case, the linear analysis that determines whether the waves are
absolutely of convectively unstable is performed for plane waves. This means one neglects curvature corrections of
the order 1/r, wherer is the distance to the core of the source. Here, the only correction comes from the asymptotic,
exponential approach of the wave to a plane wave; this exponential decay rate is given by the decay rateκ (see the
Appendix). Finally, in the spiral case, for fixedc1 andc3, both the group velocity and the selected wavenumber are
fixed, while here the selected wavenumber can be tuned byc2, without influencing the stability boundaries of the
single mode state. The group velocity can be tuned bys0. Although the selected wavenumber influences the group
velocity, cf. Eq. (31), ands0 influences the selected wavenumber, this large number of coefficients gives us more
freedom to tune the instabilities.

5.2. Instability to bimodal states: source-induced bimodal chaos

The dynamics we study in this section is intrinsically due to a competition between the single source-selected
waves and bimodal states. Therefore, this state is in an essential way different from what can be found in a single
CGL equation framework.

The wavenumber selection by the sources is of importance to understand the competition between single mode
and bimodal states. In the usual stability analysis of the single mode and bimodal states, it is assumed that both theAL

andAR modes have equal wavenumber [56]. Therefore, this analysis does not apply to the case of a single mode, say
the right-traveling mode, with nonzero wavenumber. The left-traveling mode is then in the zero amplitude state and
has no well-defined wavenumber; one should consider therefore its fastest growing mode, i.e., a wavenumber of zero.
The following, limited analysis, already shows that forg2 just above 1, instabilities are expected to occur. Restricting
ourselves to long wavelength instabilities, the analysis is simply as follows. Write the left- and right-traveling waves
as the product of a time dependent amplitude and a plane wave solution:

AL = aL(t)ei(qLx−ωL t), AR = aR(t)ei(qRx−ωRt), (32)

and substitute this Ansatz in the coupled CGL equations. One obtains then the following set of ODE’s

∂taL = (ε − q2
L − a2

L − g2a
2
R)aL , ∂taR = (ε − q2

R − a2
R − g2a

2
L)aR. (33)

Consider the single mode state withaR 6= 0, aL = 0 and takeqL = 0. The maximum linear growth rate ofaL now
follows from Eq. (33) to be the one withqL = 0; this mode has a growth rate given byε − g2a

2
R = ε − g2(ε − q2

R).
From this it follows that a single mode state with wavenumberqR is unstable wheng2 < ε/(ε − q2

R). In source/sink
patterns, the selected wavenumber is as large as

√
ε/3 at the edge of the stability band forc1 = c3 = 0; it is as large

as 0.6
√

ε in Fig. 6. In extreme cases, the value ofg2 necessary to stabilize plane waves can be at least 50% larger
than the value 1 that one would expect naively.

On the other hand, the stability analysis of the bimodal states shows that they are certainly unstable forg2 > 1.
A naïve analysis for generalqL andqR, based on Eq. (33) can be performed as follows. Solving the fixed point
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Fig. 9. Two examples of bimodal chaos. (a) and (c) show space time plots, and the grey shading is the same as before. Both simulations started
from random initial conditions, and a transient oft = 104 has been deleted from these pictures. For a detailed description, see text. Note that
the final states of runs (a) and (c), depicted in (b) and (d), clearly show that the two modes no longer suppress each other completely.

equations of Eq. (33) for the bimodal state (i.e.,aL andaR both unequal to zero), and linearizing around this fixed
point yields a 2× 2 matrix. From an inspection of the eigenvalues we find that the bimodal states turn unstable
wheng2 < ε − q2

1/(ε − q2
2), whereq1 is the largest andq2 is the smallest of the wavenumbersqL , qR. When both

wavenumbers are equal this critical value ofg2 is one; it is smaller in general.
It should be noted that this analysis does not capture sideband instabilities that may occur, and therefore waves

in a much wider range might be unstable. For sideband-instabilities of bimodal states, the reader may consult [56]
and [106]. However, our analysis shows already that there is certainly a regime aroundg2 = 1 whereboththe single
and bimodal states are unstable. This regime at least includes the range 1< g2 < ε/(ε − q2

sel).
The distinction between convective and absolute instabilities becomes slightly blurred here. Suppose for instance

we inspect a single-mode state that turns unstable against bimodal perturbations. Initially, these perturbations will
be advected by the group velocity of the nonlinear mode, but as the perturbations grow, both modes will start
to play a role, and since they feel a group velocity of opposite sign, the perturbations are effectively slowed
down. Roughly speaking, the instability might be linearly convectively unstable but nonlinearly absolutely unstable
[99,100].

Without going into further details we will now show two examples of the bimodal chaos that occurs wheng2

is just above 1. For examples of similar dynamics, also forg2 < 1, see [106]. In the first example (Fig. 9(a) and
(b)) we have takenε = 1, c1 = c3 = 0.5, c2 = −0.7, s0 = 1 andg2 = 1.1. The selected wavenumber is almost
independent of the value ofg2 and approximately equal to 0.35, which yields a critical value ofg2 of 1.14. Forg2 just
below this value, the instability appears convective, and after a transient the system ends up in a mildly fluctuating
source/sink pattern. Wheng2 is decreased, the instability becomes stronger and, presumably, absolute in nature.
Thesourcesbehave then very irregularly, while the sinks drift according to there incoming, disordered waves. Note
that sources and sinks are created and annihilated in this state. In Fig. 9(c) and (d) we show the disordered dynamics
for ε = 1, c1 = 1, c3 = −1, c2 = 1, s0 = 0.5 andg2 = 1.1. Note that in the laminar patches, sincec1 = −c3, the
dynamics is relaxational [2,4]. In this state, no creation or annihilation of sources and sinks is found; the sinks drift
slowly, while the sources behave very irregularly.
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The dynamical states as shown in Fig. 9 are different from the chaotic states that we are familiar with from the
single CGL equation [63–65,67], and so they are of some interest in their own right. Note that it is possible to get
persistent dynamics for values ofc1 andc3 that in a single CGL equation-framework would lead to completely
orderly dynamics. As the two examples in Fig. 9 show, qualitatively different states seem to be possible in this
regime; the question of classification of the various dynamical states is completely open as far as we are aware.

Finally, it should be pointed out that when, as is the case here, the left-and right-traveling mode no longer suppress
each other,εeff becomes positive. In principle this might change the multiplicity of the sources, since the eigenvalues
coming from the linear fixed point can have a different structure for positiveεeff (see Section B.7). However, this is
only true when the effective velocityv ± s0 is larger than the critical velocityvcL; for the cases considered above,
this does not happen. Hence, the sources are here still unique and select a unique wavenumber.

5.3. Mixed mechanisms

In the previous sections we have described three mechanisms by which sink-source patterns can be destabilized.
First of all, in Section 4 we found that due to a competition between the linear group velocitys0 and the propagation
of linear fronts, the cores of the sources become unstable whenε < εso

c . In Section 5.1 we have shown that the waves
that are sent out by the sources can be convectively or even absolutely unstable, and in Section 5.2 we found that
these waves may also be unstable to bimodal perturbations wheng2 is not very far above 1. Since the mechanisms
that lead to these instabilities are independent, these instabilities might occur together. This is the subject of this
section. In particular, one can always lower the control parameterε in an experiment to make the sources become
core-unstable (Section 5.3.1). A second combination of instabilities occurs wheng2 is close to 1 and the plane
waves are unstable and generate phase slips (Section 5.3.2); a particular interesting case occurs when the single
mode waves are in the so-called intermittent regime (Section 5.3.3).

5.3.1. Core instabilities and unstable waves
As discussed in Section 4.2, the cores of the source may start to fluctuate whenε < εso

c . As is visible in Fig.
4(c), the perturbations that are generated in the core are then advected away into the asymptotic plane waves.
In the discussions in Section 4, we have focused on the case where these waves are stable, but obviously, when
they are unstable, this will amplify the perturbations emitted by the source core. In particular, when the waves
are convectively unstable, a stable core forε > εso

c leads to stationary patterns, but a fluctuating core can fuel
the convective instabilities. This yields a simple experimental protocol to check for convective instabilities; simply
lower ε and follow the perturbations send by the sources forε > εso

c .

5.3.2. Phase slips and bimodal instabilities
Let us for definiteness suppose we have thatAL = 0, and the right-traveling mode is active. When thisAR mode

is chaotic and displays phase slips, the effective growth rate of theAL mode,εL
eff , may become positive for some

period.AL only grows during this period; it depends then on the duration and spatial extension of the positive
εL

eff “pocket” whetherAL can grow on average. Clearly, one should look at a properly averaged value ofεL
eff , and

therefore at the averages ofε−g2a
2
R [57,58]. Wheng2 is sufficiently large, the averaged effective growth rate always

becomes negative, so that even a heavily phase slipping wave can still suppress its counter-propagating partner.
We show two examples of the dynamics when phase slips occur andg2 is not large enough to strictly suppress

the near-zero mode. As coefficients we choosec1 = 1, c3 = 1.4, c2 = 1, ε = 1, s0 = 0.5, and the dynamics
is illustrated in Fig. 10. It should be noted that in Fig. 10(b) the sources are stationary, while some of the sinks
drift. This seems to be due to the fact that near the sink, i.e., far away from the sources, the wave emitted by the
sources has undergone phase slips, and the incoming wavenumbers of the sink can therefore be different from the
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Fig. 10. Two examples of the combination of phase slips and a value ofg2 just above 1. The coefficients arec1 = 1, c3 = 1.4,
c2 = 1, ε = 1, s0 = 0.5. Grey shading as before (right (left) traveling waves are light (dark)). In (a),g2 = 1.05, while in (b)g2 = 1.2.

source-selected wavenumbers. For slightly different coefficients we have observed patterns of stationary sources,
with sinks in between that by this mechanism move in zig-zag fashion, i.e., alternating to the left and to the right.

5.3.3. Intermittency and bimodal instabilities
Recently, Amengual et al. studied the case of spatio-temporal intermittency in the coupled CGL equations for

a linear group velocitys0 = 0 andc2 = c3 [59]. This particular sub-case of the coupled CGL equations is of
importance in the description of some laser systems [59–61]. Wheng2 is increased from zero, the authors of
[59] found that forg2 < 1 one finds intermittency, with theAL andAR obviously becoming more and more
correlated as the cross-coupling increases. Furthermore, the authors observed that forg2 > 1, the two modes
become “synchronized”, i.e., the intermittency disappears and the systems ends up in a state that we recognize now
as a stationary source/source pattern (not source/sink). Since the intermittency “disappears” the authors question
the applicability of a single CGL equation for patches of single modes in the coupled CGL equations (2) and (3).

The purpose of this section is to clarify, correct and extend their results, using our results for the wavenumber
selection, the bimodal instabilities and the discussion in Section 5.3.2. In particular we will show that, (i) for
sufficiently largeg2, the intermittency can persist, (ii) when the intermittency disappears it can do so by at least two
distinct mechanisms, (iii) more complicated states can occur. We conclude then that for single mode patches the
single CGL is a correct description, provided one is sufficiently far away from bimodal instabilities and one takes
the source-selected wavenumber and correct boundary conditions into account.

For the case considered in [59] the group-velocitys0 is equal to zero, so the two modesAL andAR are completely
equivalent. The distinction between sources and sinks depends therefore on the nonlinear group velocity, which
follows from the selected wavenumber. The counting arguments yield in this case again a discretev = 0 source and
a two-parameter family of sinks (see Section 3). In simulations we typically find stationary sources that separate
the patches ofAL andAR mode, andsingle amplitude sinkssandwiched in between these sources.

We will show now a variety of scenarios for intermittency in the coupled CGL equations (2) and (3). The
coefficients used in [59] arec1 = 0.2, c2 = c3 = 2, ε = 1 ands0 = 0. The coefficientsc1 andc3 are chosen
such that a single mode is in the so-called intermittent regime. In this regime, depending on initial conditions, one
may either obtain a plane wave attractor or a chaotic, “intermittent” state; the latter one is typically built up from
propagating homoclinic holes and phase slips [63–65,67].

In Fig. 11(a) we takeg2 = 2 and start from an ordered pair of sources. By a rapidly changingc1 to a value of 1.2
and then back to the value 0.2, we generate phase slips that nucleate a typical intermittent state. This intermittent
state persists for long times; there is no “synchronization” whatsoever. We found that we can also first let the source
develop completely, and then introduce some phase slips; also in this case the intermittency clearly persists. To
understand this, note that in this caseg2 is sufficiently large, and soεeff is negative (see Section 5.3.2); although
there are phase slips, the two modes suppress each other completely.
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Fig. 11. Space–time plots in the coupled-intermittent regime. To be able to show both the dynamics in theAL and AR mode, the
grey shading corresponds to 2|AR| + |AL |. This yields that right traveling patches are brighter in shade than left-traveling patches. (a)
c1 = 0.2, c2 = c3 = 2, ε = 1, s0 = 0 andg2 = 1.2. (b) Same coefficients as (a), except forg2 = 1.5. (c) c1 = 0.6, c3 = 1.4,
c2 = 1, ε = 1, s0 = 0.1 andg2 = 2. (d) Same coefficients as (c), except forc2 = 0. For as more detailed description see text.

In contrast, wheng2 is lowered,εeff can become positive, and this corresponds to the scenario described in [59].
In Fig. 11(b) we start from state obtained forg2=2, and then quenchg2 to a value of 1.5. In this case,εeff becomes
positive every now and then, and after a while, in the patch originally the exclusive domain ofAL, small blobs of
AR mode grow. After a sufficient period has elapsed, these blobs nucleate new sources, and the system ends up in a
stationary source/source pattern. The laminar patches in between the sources are quite small and the intermittency
disappears.

The system switches from the intermittent to the plane wave attractor when the new sources are formed; this does
not mean that the CGL equation is incorrect here, since both plane waves and intermittent states are attractors for
these coefficients. The disappearance of the intermittency can be easily understood as follows: the main mechanism
by which intermittency spreads through the single CGL equation is by the propagation of homoclinic holes that
are connected by phase slip events [67]. If the phase slips now generate sources, there is no generation of new
homoclinic holes and the intermittency dies out.

It should be noted that for this particular choice of the coefficientsc1 andc3, the homoclinic holes have a quite
deep minimum in|A|, which increases the value of the average ofεeff ; therefore one needs quite a largeg2 to
guarantee the mutual suppression of theAL andAR modes.

Finally, we found that the selected wavenumber for the coefficients of this particular example is≈ 0.1. As a
consequence, the transition to stationary domains as observed in [59] cannot occur atg2 precisely equal to 1, but
occurs forg2 ≈ 1.01 (see Section 5.2).

This generation of sources due to phase slips of the nonlinear mode is not the only way in which the intermittency
can disappear. Consider the example shown in Fig. 11(c). We have chosen the coefficients asc1 = 0.6, c3 =
1.4, c2 = 1, ε = 1, s0 = 0.1 andg2 = 2. The sources select now a wavenumber of 0.3783, and the plane
wave emitted by the source simply “eats up” the intermittent state; note the single amplitude sinks visible for late
times. It should be realized that many dynamical states are sensitive to a background wavenumber, and that the
spatio-temporal intermittent state is particularly sensitive to this [67]; when describing a patch in the coupled CGL
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Fig. 12. Four space–time plots, showing the transition from standing waves to disordered patterns, forg2 = 1.1, c1 = 0.9, c3 = 2,
s0 = −0.1, ε = 1, and (a)c2 = −0.72, (b)c2 = −0.71, (c)c2 = −0.5, (d)c2 = 0. See text.

equations by a single CGL equation, one should take into account that one has wave-selection at the boundaries due
to the sources.

Finally, whenc2 is lowered to a value of 0, the sources themselves become unstable and the system displays the
tendency to form periodic patterns; these are however not stable, and an example of the peculiar dynamical states
one finds is shown in Fig. 11(d).

In conclusion, when one is far away from any bimodal instabilities, i.e., wheng2 is sufficiently large, a description
in terms of a single CGL equation is sufficient for the patches separating the sources, provided one takes into account
the group velocity, boundary effects and, most importantly, the selected wavenumber. It is amusing to note that the
question under which conditions a single amplitude equation is a correct description of these waves depends on the
coefficientsg2 andc2 of thecross-couplingterm.

5.3.4. Periodic and other states
We would like to conclude this section by showing an example of the wide range of different states that occur in

the coupled amplitude equations when we sweepc2. We choose the other coefficients as follows:g2 = 1.1, c1 =
0.9, c3 = 2, s0 = −0.1, ε = 1. Our main finding is that for large positive or negativec2, their is no sustained
dynamics, while for smallc2 we find a strongly chaotic state. In between there are at least two transitions between
laminar and disordered state (see Figs. 12 and 13).

For sufficiently negativec2, all initial conditions evolve to a spatially periodic state, with rapidly alternatingAL

andAR patches. We can view these states as an example of highly nonlinear standing wave patterns. Depending on
initial conditions, these states may either be stationary or have a small drift. For our particular choice of coefficients
it is empirically found that these states are linearly stable forc2 ≤ −0.72. In Fig. 12(a) we see the evolution from a
slightly perturbed initial condition for this value ofc2. Qualitatively, we observe that when the “local wavenumber”
of the standing wave is lowered, this leads to oscillations, that may or may not lead to “defects”. After some
reasonably long transient (note the perturbation atx ≈ 320, t ≈ 2600), the dynamics settles down in a slowly
drifting standing wave. This shows that these generalized standing waves are stable here.
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Fig. 13. Four space–time plots for the same coefficients as in Fig. 12, but now for positive values ofc2. (a)c2 = 0.8, (b)c2 = 0.9, (c)c2 = 0.95,
(d) c2 = 1.

In Fig. 12(b) we start from such a coherent standing wave state and have loweredc2 to a value of−0.71. In this
case perturbations of the waves are spontaneously formed, indicating a linear instability. Since the state is unstable,
these perturbations then spread to the system in a way that is reminiscent of the intermittent patterns obtained, for
instance, in experiments on intermittency in Rayleigh–Bénard convection [107,108]. It should be noted that, due to
the instability of the laminar state, one does not have an absorbing state, so strictly speaking this state should not
be referred to as intermittent. Interestingly enough, the transition between laminar and chaotic behavior seems to
be second order, i.e., we could not find any hysteresis. The transition is simply triggered by the linear stability of
the periodic/standing waves, and when these waves are stable, they are the only type of attractor.

If c2 is further increased to a value of−0.5 (Fig. 12(c)), we find a state that we might call defect-chaos of a
standing wave pattern. Forc2 = 0 (Fig. 12(d)), the dynamics evolves on much faster time-scales, and no clear
structures are visible by eye.

On the other hand, when we keep increasingc2, we again find regular states, but these ones correspond to
stationary source/sink patterns. This is illustrated in Fig. 13, where we show four space–time plots for increasing,
positive values ofc2. In comparison with the dynamics as shown in Fig. 12(d), the time scales become slower and
slower whenc2 is increased. This slowing down becomes quite clear forc2 = 0.8 (Fig. 13(a)) andc2 = 0.9 (Fig.
13(b)). Forc2 = 0.95 (Fig. 13(c)), the dynamics becomes even more slow and regular. We clearly see now stationary
sources, with irregularly moving sinks in between. Due to the smallness ofg2, phase slips in one of the single modes
leads in some case to the formation of new sources and sinks. Whenc2 is increased to a value of 1 (Fig. 13(d)),
some slow dynamics sets in, that may or may not be a long living transient. For values ofc2 above 1.1, all initial
conditions seem to evolve to a stationary, regular source/sink pattern.

6. Outlook and open problems

In this paper we have extended the coherent structures framework and the counting arguments to the coupled CGL
equations, and obtained important information on the dynamical states that are independent of the precise values
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of the coefficients and bear experimental relevance. In general, these considerations lead to the conclusion that
sources are often unique, sometimes come in pairs but in any case are at most members of a discrete set of solutions.
As a result, they are instrumental for the wavenumber selection of both regular and chaotic patterns. Many of the
instability mechanisms and dynamical regimes of the coupled CGL equations can be understood qualitatively from
this point of view, and we have shown several examples of hitherto unexplored regimes of persistent spatio-temporal
chaotic dynamics (see Table 1). In this closing section, we wish to discuss some of these findings in the light of
experimental observations, and summarize the most important open theoretical problems.

6.1. Experimental implications

In short, the experimental predictions that we make, based on our study of the coupled CGL equations are the
following:
• Multiplicity. Our analysis shows that sources are expected to come in a discrete set, which would experimentally

amount to aunique, stationary source. Furthermore, this source is expected to besymmetric, in that it sends out
waves of the same wavenumber to both sides.

Sinks are non-unique. This means that one could have sinks with different velocities present at the same time.
In light of the previous remark on the uniqueness of sources, this might prove hard to observe experimentally.

• Wavenumber selection.One important consequence of the uniqueness of sources is that they select an asymptotic
wavenumber, just as spirals do in the 2D-case. Since the traveling-wave system is quasi-one-dimensional however,
we expect the wavenumber selection to be much easier to study.

• Scaling behavior.We have made definite predictions for the small-ε scaling of the width of sources and sinks.
Moreover, we predict the stationary sources to disappear at some finite value ofε, which is the point where the
non-stationary sources take over. These sources scale asε−1, as do the sinks.

• Instabilities and dynamical behavior.Apart from the non-stationary sources that occur whenε is decreased
sufficiently, we have found that there are at least two other mechanisms leading to dynamical states. The central
observation is that the waves that are selected and sent out by the sources may become unstable. Similar to what
happens in the single CGL equation, these waves can become convectively or absolutely unstable; the latter case
in particular yields chaotic states (Section 5.1). When the cross-coupling coefficient is not too far above one, and
the selected wavenumber is unequal to zero, there is a regime where both single and bimodal states are unstable.

6.2. Comparison of results with experimental data

Most research in the field of traveling wave systems has focussed on the properties of the single-mode states, i.e.,
the states where the entire experimental cell is filled up by either the left-or the right-traveling wave. From such a
perspective, it is natural to disregard the source/sink patterns that generally occur initially above onset as unwanted
transient states. Consequently they have not been studied as extensively as we think they deserve to be. It is the
aim of this section to confront a number of the theoretical findings of this article with some of the experimental
observations in the heated wire experiments [33–36] and in the experiments on traveling waves in binary liquids
[37–39,109–111]. In no way do we claim this comparison to be exhaustive – the main aim of our discussion is to
show that our results put various earlier observations in a new light, and that it should be feasible to settle various
of the issues we raise with further systematic experiments.

6.2.1. Heated wire experiments
When a wire which is put a distance of the order of a millimeter under the free surface of a liquid layer is heated,

traveling waves occur beyond some critical value of the heating power [33–36]. This bifurcation towards traveling
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waves turns out to be supercritical [36], and the group velocity and phase velocity turn out to have the same sign in
the experiments [33]12 . The paper by Vince and Dubois [36] is one of the few papers we know of that discusses
theε-dependence of the width of sources. The authors show that the inverse width scales linearly with the heating
powerQ, and associate this with a scaling of the source width asε−1. This is correct if the value ofQ at which the
source width diverges coincides with the threshold value for the linear instability, but whether this is actually the
case is unfortunately not quite clear from the published data13 . Formulated differently, in terms of our numerical
data shown in Fig. 4(d), the question arises whether in the experiments the approximate linear scaling of the inverse
width with the heating power was associated with that of the thick line aboveεso

c , or with the linear scaling∼ ε

belowεso
c . If indeed the experiments are consistent with anε−1 scaling of the width, then according to our analysis

the sources should be (weakly) non-stationary and prone to pinning to inhomogeneities in the cell. If the source
width diverges at a finite value ofε, this might be evidence for the existence of the critical valueεso

c . It should be
of interest to investigate this further.

In [34], Dubois et al. also note that “. . . sources may be large when the sinks are always very narrow. . . ” in
their heated wire experiments. This agrees with our finding that sinks are always less wide than the sources but the
published data do not allow us to extract the scaling of the sink width withε.

In the experiments by Alvarez et al. [33], sources were found to be stationary and symmetric but non-unique,
i.e., each source sends out the same waves to both sides, but different sources send out different waves. As a result,
patches with different wavenumbers were found to be present in the system (at any one time), and the sources
were seen to move in response to the fact that they were sandwiched between waves of different frequency. We
have already seen in Section 3.3 that there are certain regions of parameter space where there were two different
sources present at the same time (for one of them, the linear group velocitys0 and nonlinear group velocitys had
opposite signs). However, the fact that we can have various discrete source solutions can not explain the experimental
observations. First of all, in our simulations two of such sources were separated by a sink-type structure in one
single mode patch,notby a sink separating two oppositely traveling waves, as in the experiments. Secondly, in the
experiments there were always slight differences between any two pair of sources, which appears inconsistent with
the existence of a finite number of discrete source solutions.

It appears likely to us that the occurrence of slight differences between different sources results from the fact that
there are always some impurities or inhomogeneities present in any experimental setup. Very much like the spirals
and target patterns one encounters in the 2D CGL equation [112], coherent structures might well be pinned to such
imperfections14 . This would of course not invalidate the results of the counting arguments for the homogeneous
case, as it is precisely on the basis of this counting argument that one would expect the properties of the discrete
source solution(s) to depend sensitively on the local parameter values.

The sinks which in the experiments of [33] were sandwiched between two patches with different wavenumbers,
were found to move according to what was referred to as a “phase matching rule”: during the motion, a constant
phase difference is maintained across the sink profile, so that no phase slip events occur. This commonly occurs
for sinks in thesingleCGL equation, and Fig. 3 provides an example of this, but there is one important difference
here: sinks in the experiments separate two oppositely traveling waves, so phase matching in the actual experiments
involves thefastscales represented by the critical wavelengthqc of the pattern at onset. In the amplitude approach
all information about thisqc is lost since we eliminated the fast scales and only consider the difference between
the actual wavenumberq of the pattern and thisqc. At least in the experiments of [33] the coupling between the

12 Fig. 11 of [36] also illustrates quite nicely that the group velocity and phase velocity are parallel.
13 In the experiments shown in Fig. 10 of [36], the source width diverged atQ ≈ 4.2 W. Unfortunately, the distanceh between the wire and the
fluid surface is not given for the data shown. All other measurements in the paper are made ath = 1.34 mm andh = 1.97 mm, and these values
correspond toQc ≈ 2.5 W andQc ≈ 2 W.
14 An example of how sources can be pinned near cell boundaries belowεso

c is discussed in [52].
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fast and the slow scales is important. These so-callednon-adiabaticeffects [98] will be the object of further study.
Experimentally, it is not clear whether the “phase matching rule” was a peculiarity of [33], or whether it holds quite
generally.

As we have seen in this paper, the wavenumber selection by sources entails various scenarios for instabilities
and chaotic dynamics in the single-mode patches that are separated by sources and sinks. In the experiments, there
are regimes in parameter space where the dynamics is reminiscent of what one expects when the mode selected
by the sources becomes convectively or absolutely unstable. Whether the data are consistent with this scenario has
remained unexplored, however.

We finally note that it has recently become apparent that traveling waves in convection cells with a free surface
which are heated from the side [113–115], are intimately related to those occurring in the heated wire experiments
[40]. Sources and sinks have also been observed in such experiments, but a systematic study of some of the issues we
raise does not appear to have been undertaken yet. Clearly, both the heated wire experiments and this system appear
to be very suitable setups to study the dynamics of sources and sinks; in addition, both do show rich dynamical
behavior.

6.2.2. Binary mixtures
One of the best studied experimental traveling wave systems is binary fluid convection [37–39,110,111]. Since

the bifurcation in this case has been shown to be weakly subcritical [21], the description of the behavior in this
system is strictly speaking beyond the scope of the coupled CGL equations we consider. A brief discussion is
nevertheless warranted, not only because some of the behavior of sources and sinks is quite generic, in that it does
not strongly depend on the underlying bifurcation structure (e.g., sources still form a discrete set according to the
counting arguments), but also because the additional complications of the binary mixture convection experiments
are an interesting subject for future study.

Kaplan and Steinberg have shown that the transition from localized traveling wave patterns (pulses) to extended
traveling waves is essentially governed by the convective instability of the edges of the pulses [41]15 . The fact that
the relevant front velocity is given by linear marginal stability arguments, suggests that the subcritical character
of the bifurcation is not very strong here. On the other hand, the nonadiabatic effects, such as locking, observed
in [42], point in the other direction, namely that the subcritical nature of the transition is rather strong. Hence, the
importance of the subcritical effects in these experiments can not be trivially established.

Kolodner [38] has observed a wide variety of source/sink behavior. In some cases, there appears to be a stable
source/sink pair where the sink is clearly wider than the source. This of course contradicts what we typically find
(except close to the relaxational limit – see Section 4.4). This may have to do with the subcritical nature of the
bifurcation, but one should also keep in mind that in other cases there is evidence that such behavior could still be a
transient, because there are still phase slip events occurring. E.g., Fig. 5 of [38] shows a notable example of a case
in which the sink is initially wider than the source, but in which a process clearly involving the fast scales narrows
it down, so that in the end it smaller than the source.

Another interesting state that is encountered in the experiments are drifting source/sink patterns (see, e.g., Fig. 7
of [38]). The sources here move slowly but with a constant velocity, and are non-symmetric in that the wavenumbers
on either side are different. However, there is again a one-to-one correspondence between the drift velocity and
the difference in wavenumbers. In [38], this is referred to this process as “Doppler shifting”, to indicate that
in the frame co-moving with it, the drifting source sends out waves with the same frequency to the left and
the right. This is completely equivalent to the “phase matching rule” of [33]. When such a moving source is
present, the sinks are also found to obey the phase matching rule and so they move with exactly the same drift

15 This is similar to the behavior of sources nearεso
c (Section 1.2.2).
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velocity as the sources. Clearly, it is still the source that selects the wave number and hence plays the active role
here – as usual, the sink motion is essentially determined by the properties of the waves that come in. A priori,
one could imagine that the sources and sinks in the binary fluid experiments are more prone towards obeying
the phase matching rule due to the subcritical nature of the bifurcations to traveling waves, but one can find
various examples in the experiments where they do not obey this rule. Obviously, this question deserves further
study.

The fact that Kolodner [38] observes in his Fig. 7 a steadily moving source is not necessarily in contradiction
with our counting arguments, as these do allow for the existence of a discrete set ofv 6= 0 sources. In practice,
however, for a proper analysis of such source solutions in the binary fluid experiments it is probably necessary to
include the coupling to the slow concentration field, as in the work of Riecke et al. on traveling pulse solutions [16,
116,117].

Although several of the experiments of Kolodner have been done at very small values ofε, there is no visible
evidence of the divergence of the width of any of the sources and sinks. Presumably, this is due to the subcritical
nature of the bifurcation – in Section 4.2 we already argued that in this case the width of neither the sources nor the
sinks need to diverge asε → 0.

In passing, we note that, quite impressively, Kolodner has also been able to extract the spatial amplitude profiles of
his sources and sinks (Figs. 8, 18, 21 of [38]). These agree remarkably well with the profiles we obtained numerically
using the shooting method described earlier. Even the characteristic overshoots of the amplitudes near the edges of
sinks are clearly observable in all cases.

In conclusion, although a detailed comparison between the sources and sinks in binary fluid experiments
and those analyzed theoretically here, is not justified, many qualitative features (multiplicity, wavenumber se-
lection, etc.) are quite similar. We expect that theε dependence of the width of these structures is very dif-
ferent in the two cases, due to the subcritical nature of the bifurcation in binary mixtures and due to the cou-
pling to the slow concentration field. The latter effect probably also plays an important role in the drift of the
sources.

6.3. Open problems

In spite of the fact that we have been able to map out many of the various possible static and dynamical properties
of sources and sinks, there remains a large number of theoretical issues and open problems which need to be studied
in further detail. This section briefly lists the ones we consider most important.
• Phase matching.The absence of the coupling of the phases across a moving sink appears to be one of the main

short comings of the coupled CGL equations.
For the single mode CGL equation, the velocity of sinks is determined in terms of the two wavenumbersqN1

andqN2 of the incoming modes, without solving for the structure of the sinks:v = (c1 + c3)(qN1 + qN2) [68,69].
This follows directly from the requirement that in the frame moving with the sink, the frequencies to the left and
the right of the sink should be equal. Phase slips occur when these frequencies are unequal, and in that case the
sink is not a “coherent structure” (i.e., it has a time-dependent spatial profile).

For the sinks in the coupled CGL equations ((2.6) and (3)) that we have studied here, the velocity of a moving
sink can not be simply given in terms of the wavenumbers of the incoming waves – the velocity is determined
implicitly by the solution of the ODE’s Eqs. (12)–(15). The frequencies to the left and to the right of sinks
correspond to two different modes, and the coupling between these modes depends only on their amplitudes, not
on their phase. Moreover, the phase matching as observed empirically in the experiments [33] clearly involves
the fast scale that has been eliminated to obtain the amplitude equations; therefore, such rule can never be
implemented in the standard coupled CGL equations (2) and (3) [33].
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The phase matching as observed in the experiments is clearly a non-adiabatic effect as it involves both the
fast and the slow scales. Can this non-adiabatic effect be studied perturbatively, as in [98]? As pointed out to
us by Newell, the experimental phase matching appears to be the analogue in space–time of what happens at
grain boundaries in the phase equations in the nonlinear regime [3]. Does this analogy open up a route towards
analyzing this effect?

• Multiplicities. In our counting analysis, we have focussed on the regime where|v| < s0, and in particular on
the casev = 0. From the results detailed in the appendix, it follows that the flow structure near the fixed points
changes when|v| > s0; this implies that the counting arguments allow for rapidly moving source and sinks
solutions with different multiplicities. We do not know whether such solutions actually exist. We have not studied
this possibility (nor the one associated with changes of the fixed point structure related to the critical velocity
vcN ) in detail, as we have neither found such coherent structure solutions of the ODE’s, nor observed any of them
in numerical simulations of the coupled CGL equations.

• Coherent structures.Wheng2 is large enough, single amplitude coherent structures such as sources, sinks and
homoclinic holes are often exact solutions of the coupled CGL equations. One of the modes corresponds then to
the coherent structure, the other mode is zero. To see this, note that solutions of the single CGL equation have
often a minimum amplitudeam which is nonzero. As long asεeff = ε−g2a

2
m remains negative for the zero mode,

this mode is suppressed. A detailed analysis of the behavior of such coherent structures asg2 is reduced and the
other mode becomes active, remains to be done.

The closely bound source/sink pairs, as shown in Fig. 7(a) can be seen as a “new” coherent structure of the
coupled CGL equations. We note that from a counting point of view, such source-sink pairs typically correspond
to homoclinic orbits, since they often connect the same plane wave state to the left and the right. Irrespective
of the details of the structure of the corresponding fixed point, one needs to satisfy in general one condition to
obtain such a homoclinic orbit (One can see this easily as follows. Suppose the fixed point has an-dimensional
outgoing manifold. This yieldsn − 1 degrees of freedom andn conditions, so in general one parameter needs to
be tuned to obtain a homoclinic orbit). Since we have three free parameters, this yields a two-parameter family
of such sink-source pairs

It would be interesting to investigate whether these homoclinic structures are connected to the homoclinic
holes, analyzed recently for the single CGL equation [67]. It is conceivable that upon loweringg2, the suppressed
mode will mix in below some particular value ofg2, so that a homoclinic holes can be deformed to coupled
sink-source pairs.

A related issue is the study of the cross-over from an array of sources and sinks to an (almost) periodically
modulated amplitude pattern of the type seen in Fig. 12 and by Sakaguchi [57,58].

• Phase-space and dynamical arguments.In Section 4.2, the existence of a special valueεso
c was obtained from

what was essentially a dynamical argument. At this value ofε, the width of stationary sources, as determined by
the set of ODE’s Eqs. (12)–(15), was found to diverge. What is the precise connection between the phase-space
structure of the ODE’s and the dynamical argument? This question is related to that which arises in the study of
nonlinear global modes, and it is quite possible that the analysis of [97] can be extended to sources as well.

• Stability.A full stability analysis of sources and sinks would be welcome, as most of our discussion on their
stability is based on intuitive arguments. Such an analysis might well detect the existence of additional instability
mechanisms associated with the existence of discrete core modes in much the same way as happened for pulses
[90–92].

• Breathing.In Section 4.2, we noted that interactions between local structures and fronts often give rise to an
oscillatory or “breathing” type of dynamics [94,95,116]. The mechanism through which this happens remain
largely unexplored, however.
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Fig. 14. (a) Space–time plot of|AR| illustrating the interaction between sources and sinks. The runs started from random initial conditions, and
the coefficients were chosen asc1 = 0.6, c3 = 0.4, c2 = 0, g2 = 2.0, s0 = 0.4 and atε = 0.07. Note thatε is well above the critical value
εso

c = 0.029, and the sources are stable. Hence, any movement of the coherent structures is solely due to their interactions. Note that in the final
stage of an annihilation event, the source moves most, while the sink stays almost put. Note also the similarity to Fig. 24 of [38]. (b) Hidden line
plot of |AL | showing the annihilation process in detail.

Coullet et al. [48] briefly mention that belowεso
c , sources are very sensitive to noise. We found that the average

width of the breathing sources depends weakly on the strength of the noise, but have not investigated this issue
in detail. The dependence on the noise should be clarified further.

Finally, after a long transient, the non-stationary sources belowεso
c seem to be only very weakly time-dependent,

and in some sense “near” a stationary source solution. Can this idea be made more precise?
• Pinning and interactions.Partly to explain the experimental observation of Alvarez et al. [33], we have conjectured

that sources can be pinned to slight inhomogeneities, and that if they do, the selected wavenumber will vary with
the local inhomogeneity. Moreover, stationary sources are then expected to exist belowεso

c of the homogeneous
system, in much the same way as boundary conditions can give rise to the existence of stable stationary sources
belowεso

c [52]. Again, a back-up of these conjectures is called for.
As some of our simulations indicate (see Fig. 14), when sources and sinks get close to each other, they

attract and eventually coalesce (or form a pair) in some characteristic fashion. Can this attraction be understood
perturbatively?

• Bimodal chaos.One of our key observations is that the wavenumber selection induced by the sources allows for
a bimodal instability forg2 just above 1. Forg2 just below 1, similar behavior can be found [106]. The chaotic
dynamics in these regimes involves the competition between the two modes in an essential way, and apart from
[59,106], a detailed analysis of the dynamics here is lacking.

• Subcritical bifurcations.To what extent can our arguments be extended to the case of a weakly subcritical
bifurcation? As we discussed in Section 6.2.2, this issue is of relevance to the experiments on binary mixtures.

Finally, we stress that in most cases we have only shown examples of the possible types of behavior. A more
systematic mapping out of the phase-space of the coupled CGL equations (2) and (3) may very well lead to
additional surprises.
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Appendix A. Coherent structures framework for the single CGL equation

A.1. The flow equations

In this appendix, we lay the groundwork for our analysis of the coupled equations by summarizing and simplifying
the main ingredients of the analysis of [68,69] of the single CGL equation

∂tA = εA + (1 + ic1)∂
2
xA − (1 − ic3)|A|2A. (A.1)

Note that if a single mode is present, the coupled equations reduce to a single CGL written in the frame moving
with the linear group velocity of this mode,not in the stationary frame.

As in Eq. (11), a coherent structure is defined as a solution whose time dependence amounts, apart from an overall
time-dependent phase factor, to a uniform translation in time with velocityv:

A(x, t) := e−iωt Â(x − vt) = e−iωt Â(ξ). (A.2)

Note that if the coherent structure approaches asymptotically a plane wave state forξ → ∞ or for ξ → −∞,
the phase velocity of these waves would equal the propagation velocity of the coherent structures ifω would be 0.
Whenω 6= 0, these two velocities differ.

For solutions of the form (A.2),∂t = −iω − v∂ξ , so when we substitute the Ansatz (A.2) into the single CGL
equation (A.1), we obtain the following ODE:

(−iω − v∂ξ )Â = εÂ + (1 + ic1)∂
2
ξ Â − (1 − ic3)|Â|2Â. (A.3)

Solutions of this ODE correspond to coherent structures of the CGL equation (A.1) and vice-versa [68,69].
To analyze the orbits of the ODE (A.3), it is useful to rewrite it as a set of coupled first order ODE’s. To do so, it

is convenient to writeA in terms of its amplitude and phase

Â(ξ) := a(ξ)eiφ(ξ), (A.4)

wherea andφ are real-valued. Substituting the representation (A.4) into the ODE (A.3) yields, after some trivial
algebra

∂ξa = κa, ∂ξ κ = K(a, q, κ), ∂ξ q = Q(a, q, κ), (A.5)

whereq andκ are defined as

q := ∂ξφ, κ := (1/a)∂ξ a. (A.6)

The fact that there is no fourth equation is due to the fact that the CGL equation is invariant under a uniform change
of the phase ofA, so thatφ itself does not enter in the equations. The functionsK andQ are given by [68,69]

K := 1

1 + c2
1

[c1(−ω − vq) − ε − vκ + (1 − c1c3)a
2] + q2 − κ2, (A.7)

Q := 1

1 + c2
1

[(−ω − vq) + c1(vκ + ε) − (c1 + c3)a
2] − 2κq. (A.8)

At first sight it may appear somewhat puzzling that we write the equations in a form containingκ = ∂ξ ln a instead
of simply ∂ξa. One advantage is that it allows us to distinguish more clearly between various structures whose
amplitudes vanish exponentially asξ → ±∞ – these are then still distinguished by different values ofκ. Secondly,
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the choice ofκ in favor or ∂ξa allow us to combineκ andq as the real and imaginary part of the logarithmic
derivative ofÂ: we can rewrite (A.5) more compactly as

∂ξ z = −z2 + 1

1 + ic1
[−ε − iω + (1 − ic3)a

2 − vz]. (A.9)

wherez := ∂ξ ln(Â) = κ + iq.
The fixed points of the ODE’s have, according to (A.5), eithera = 0 orκ = 0. The values ofq andκ for thea = 0

fixed points are related through the dispersion relation of the linearized equation, or, what amounts to the same, by
the equation obtained by setting the right-hand side of (A.9) equal to zero and takinga = 0. Following [68,69] we
will refer to these fixed points aslinear fixed points. We will denote them byL±, where the index indicates the
sign ofκ. This means that the behavior near anL+ fixed point corresponds to a situation in which the amplitude is
growing away from zero to the right, while the behavior near anL− fixed point describes the situation in which the
amplitudea decays to zero.

Since a fixed point witha 6= 0, κ = 0 corresponds to nonlinear traveling waves, the corresponding fixed points
are refered to asnonlinear fixed points[68,69]. We denote these byN±, where the index now indicates the sign of
thenonlinear group velocitys of the corresponding traveling wave [68,69]. Thus, since the index ofN denotes the
sign of the group velocity, the amplitude near anN+ fixed point can either grow (κ > 0) or decay (κ < 0) with
increasingξ .

The coherent structures correspond to orbits which go from one of the fixed points to another one or back to the
original one, and the counting analysis amounts to establishing the dimensions of the in-and outgoing manifolds
of these fixed points. In combination with the number of free parameters (in this casev andω), this yields the
multiplicity of orbits connecting these fixed points, and therefore of the multiplicity of the corresponding coherent
structures.

A.2. Fixed points and linear flow equations in their neighborhood

Since there are three flow equations (A.5), there are three eigenvalues of the linear flow near each fixed point.
When we perform the counting analysis for these fixed points we will only need the signs of the real parts of the
three eigenvalues, since these determine whether the flow along the corresponding eigendirection is inwards (−)
or outwards (+). We will denote the signs by pluses and minuses, so thatL−(+, +, −) denotes anL− fixed point
with two eigenvalues which have a positive real part, and one which has a negative real part.

From Eqs. (A.5) and (A.9), we obtain as fixed point equations

aκ = 0, (1 + ic1)z
2 + vz + ε + iω − (1 + ic3)a

2 = 0, (A.10)

wherez := κ + iq. From (A.10) we immediately obtain that fixed points either havea = 0 (linear fixed points
denoted asL) ora 6= 0, κ = 0 (nonlinear fixed points denoted asN ). Definingṽ := v/(1+c2

1) andã := a/(1+c2
1),

the derivative of the flow (A.5) is given by the matrix:

DF =

 κ a 0

2ã(1 − c1c3) −2κ − ṽ 2q − c1ṽ

−2ã(c1 + c3) −2q + c1ṽ −2κ − ṽ


 . (A.11)

Solving the fixed point equations (A.10) and calculating the eigenvalues of the matrix DF (A.11) yields the dimen-
sions of the incoming and outgoing manifolds of these fixed points. Note that according to our convention, a fixed
point with a two-dimensional outgoing and one-dimensional ingoing manifold is denoted as(+, +, −).
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We can restrict the calculations to the case of positivev, since the case of negativev can be found by the left–right
symmetry operation:ξ → −ξ, v → −v, z → −z.

A.3. The linear fixed points

For the linear fixed pointsa = 0, and from (A.10) we obtain as fixed-point equation:

(1 + ic1)z
2 + vz + ε + iω = 0, (A.12)

which has as solutions

z = −v ±
√

v2 − 4(1 + ic1)(ε + iω)

2(1 + ic1)
. (A.13)

The linear fixed points come as a pair, and the left–right symmetry implies that forv = 0, the eigenvalues of these
fixed points are opposite.

At these fixed points, the eigenvalues are given by

κ or − ṽ − 2κ ± i(c1ṽ − 2q). (A.14)

To establish the signs of the real parts of the eigenvalues, we need to determine the signs ofκ and−ṽ − 2κ.
Let us first establish the signs ofκ; this is important in establishing whether the evanescent wave decays to the

left (L+) or to the right (L−). For v = 0, the Eq. (A.12) is purely quadratic, and so its solutions come in pairs
±(κ + iq). By expanding the square-root (A.14) for largev one obtains that in this caseκ = −v or κ = −ε/v; for
largev, bothκ ’s are negative. Solving Eq. (A.12) we find thatκ changes sign when

q = ±√
ε, v = c1ε − ω√

ε
. (A.15)

Forε < 0, these equations have no solutions, and in that case there always is aL− and aL+ fixed point. Forε > 0
andv < (c1ε − ω)/

√
ε there also is aL− and aL+ fixed point; for largev, there are twoL− fixed points.

To determine the sign of−ṽ − 2κ note that from the solution (A.13), we obtain thatκ = −ṽ/2± Re(√. . ./ . . . ).
After some trivial rearranging this yields that−ṽ − 2κ has opposite sign for the pair ofL fixed points; when one
of them has two+’s, the other has two−’s.

In the case that we have aL+ and aL− fixed point the counting is as follows. For theL+ fixed point,−ṽ − 2κ

is negative since bothv andκ are positive, and the eigenvalue structure is then(+, −, −). TheL− fixed point then
has one negative eigenvalueκ, and two positive eigenvalues coming from the−ṽ − 2κ. For largev, bothκ ′s are
negative, and we obtain aL−(+, +, −) and aL−(+, −, −) fixed point.

In summary, then, the counting for the linear fixed points is as follows:

ε < 0 allv : L−(+, +, −) L+(+, −, −),

ε > 0




v < −vcL : L+(+, −, −) L+(+, +, +),

|v| < vcL : L−(+, +, −) L+(+, −, −),

v > vcL : L−(+, +, −) L−(−, −, −),

(A.16)

wherevcL = |c1ε − ω|/√ε.
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A.4. The nonlinear fixed points

The analysis of the nonlinear fixed points goes along the same lines. Since the nonlinear fixed point hasκ =
0, z = iq, the fixed point equations become:

a2 = ε − q2, q2(c1 + c3) − vq − ω − c3ε = 0. (A.17)

which yields

q = v ±
√

v2 + 4(ω + c3ε)(c1 + c3)

2(c1 + c3)
. (A.18)

So the nonlinear fixed points come as a pair.
To obtain the eigenvalues, we substituteκ = 0 in the (A.11) and obtain as a secular equation:

(1+c2
1)λ

3 + 2vλ2 + [2a2(c1c3 − 1) + 4q2(1 + c2
1) − 4c1qv + v2]λ + [4a2(c1 + c3)q − 2a2v] = 0. (A.19)

We only need to know the number of solution of the secular equation that have positive real part, and instead of
solving the equation explicitly, we can proceed as follows.

For a we cubic equation of the form

p3λ
3 + p2λ

2 + p1λ
1 + p0, (A.20)

wherep3 > 0, we may read off the signs of the real parts of the solution to this equation from the following table
[68,69]:

p0 > 0

[
p2 > 0, p1p2 > p0p3 : (−, −, −) (case i),
else : (+, +, −) (case ii),

p0 < 0

[
p2 < 0, p1p2 < p0p3 : (+, +, +) (case iii),
else : (+, −, −) (case iv).

(A.21)

According to these rules, there are three combinations of the coefficients that we need to now the sign of, being

p0 = 4a2q(c1 + c3) − 2a2v, (A.22)

p2 = 2v, (A.23)

p1p2−p0p3 = − (1 + c2
1)[4a2(c1 + c3)q−2a2v] + 2v[2a2(c1c3−1) + 4q2(1 + c2

1)−4c1qv + v2]. (A.24)

As before, we will takev > 0, which makesp2 > 0.
The sign ofp0 is equal to the sign of 2q(c1 + c3) − v, which according to Eq. (A.18) is either±√

. . .. The group
velocity∂qω of the the plane waves corresponding to theN fixed points is found from (A.17) to be 2q(c1 + c3)− v,
which can be rewritten asp0/(2a2). So, we always have oneN− fixed point withp0 < 0 and oneN+ fixed point
with p0 > 0.

Whenp0 < 0, sincep2 is positive, the fixed point isN−(+, −, −) (case (iv)). Whenp0 > 0, the eigenvalues
depend on the sign ofp1p2 − p0p3; when it is positive the eigenvalues are(−, −, −), when it is negative, the
eigenvalues are(+, +, −). DefiningvcN as the value of|v| wherep1p2 − p0p3 changes sign, we obtain for the
nonlinear fixed points:

v < −vcN : N−(+, +, +) andN+(+, +, −),

|v| < vcN : N−(+, −, −) andN+(+, +, −),

v > vcN : N−(+, −, −) andN+(−, −, −).

(A.25)
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Eqs. (A.16) and (A.25) express the dimensions of the stable and unstable manifolds of the fixed points of the
single CGL equation, and these are the basis for the counting arguments for coherent structures in this equation
[68,69]. We now turn to the extension of these results to the coupled CGL equations.

Appendix B. Detailed counting for the coupled CGL equations

B.1. General considerations

While the counting for the coupled CGL equations follows unambiguously from that for the single CGL, there
are various nontrivial subtleties in the extension of those results to the coupled CGL equations that require careful
discussion.

Suppose we want to perform the counting for theaL = 0, κR = 0 fixed point, which corresponds to the case in
which only a right-traveling wave is present. The fixed point equations that follow from (15) are, up to a change of
v → v − s0, equal to the fixed point equation for the nonlinear fixed points of the single CGL equation, and can
be solved accordingly. To solve the fixed point equations that follow from (13), note thataR is a constant at the
fixed point and so the term−g2(1− ic2)a

2
R can be absorbed in the−ε − iωL term. Since we may chooseωL freely,

for the counting analysis we can forget about the ig2c2a
2
R as we may think of it as having been absorbed into the

frequency. The sign ofεL
eff , defined in Eq. (18) to beεL

eff = ε − g2a
2
R will, however, be important. Likewise, at the

other fixed point whereaR = κL = 0 the effectiveε is εR
eff = ε − g2a

2
L.

Since the fixed points we are interested in for sources and sinks always have eitheraL = 0 or aR = 0, the
linearization around them largely parallels the analysis of the single CGL equation. For, when we linearize about
theaL = 0 fixed point, we do not have to take into account the variation ofaR in the coupling term and this allows
us, for the counting argument, to absorb these terms into an effectiveε and redefinedω as discussed above. Once
this is done, the linear equations for the mode whose amplitudea vanishes at the fixed pointdo not involve the other
mode variables at all. As a result, the matrix of coefficients of the linearized equations has a block structure, and
most of the results follow directly from those of the single CGL equation. We will below demonstrate this explicitly,
using a symbolic notation for various terms whose precise expression we do not need explicitly.

If we consider the 6 variablesaL, κL, qL, aR, κR andqR as the elements of a vectorw, and linearize the flow
equations (A.5) about a fixed point where one of the modes is nonzero, we can write the linearized equations in the
form ẇi = ∑

jMijwj , where the 6× 6 matrixM has the structure

M =




κL aL 0 0 0 0
“aL” X X “aR” 0 0
“aL” X X “aR” 0 0
0 0 0 κR aR 0
“aL” 0 0 “aR” X X

“aL” 0 0 “aR” X X




. (B.1)

In this expression, all quantities assume their fixed point values. Furthermore, “aR” and “aL” represent terms that
are linear inaR or aL, and theX stand for longer expressions that we do not need at the moment. At the fixed points,
eitheraR or aL is zero, so either the upper-right block is identical to zero, or the lower-left block is zero.In either
case, the eigenvalues are simply given by the eigenvalues of the upper-left and lower-right block-matrices. This
implies that for each of the 3× 3 blocks, we can use the results of the counting for a single CGL equation, provided
we take into account thatv andε should be replaced byv ± s0 andεL

eff or εR
eff at the appropriate places!
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As discussed in Appendix A, the fixed point structure of the single CGL depends on two “critical” velocities,vcL

andvcN , In general, these are different for the two fixed points which the orbit connects, so there is in principle a
large number of possible regimes, each with their own combination of eigenvalue structures at the fixed points. An
exhaustive list of all possibilities can be given, but it does not appear to be worthwhile to do so here. For, many of
the exceptional cases occur for large values of the propagation velocityv and the relevance of the results for these
solutions of the coupled CGL equations is questionable – after all, as we explained before, the counting can at most
only demonstrate that certain solutions might be possible in some of these presumably somewhat extreme ranges
of parameter values, but they by no means prove the existence of such solutions or their stability or dynamical
relevance. Indeed, as discussed in Section 4.2, for smallε the sources are intrinsically dynamical and are not given
by the coherentsources as obtained from the ODE’s (12)–(15).

For these reasons, our discussion will be guided by the following observations. The sinks and sources observed
in the heated wire experiments have velocities that are smaller that the group velocity [33]16 ; this also seems to
hold for other typical experiments with finite linear group velocitys0. This motivates us to start the discussion by
investigating the regime that the velocityv is smaller than the linear group velocity,|v| < s0. The sources are now
as sketched in Fig. 1a and the sinks are as in Fig. 1c; this restriction already leads to a tremendous simplification.
Furthermore, we are especially interested in the case that the two modes suppress each other sufficiently that the
effectiveε of the mode which is suppressed is negative, i.e.,ε

L/R
eff < 0. This requirement is certainly fulfilled for

sufficiently strong cross-coupling. The technical simplification of takingε
L/R
eff < 0 is that in this case the structure

of the linear fixed points is completely independent of the parametersv andω – see Eq. (A.16). It should be noted,
however, that in Section 5.2 we will encounter source/sink patterns whereεeff is positive; these patterns are chaotic.
Also, theanomaloussources and sinks, mentioned at the end of Section 3.1, can in some parameter ranges defy
the general rules obtained here (see Section B.7 of this appendix). Furthermore, in Section B.6 we will discuss the
casess0 < 2q(c1 + c3) (i.e., sources and sinks corresponding to those of Fig. 1(b) and (d)), and thes0 = 0 limit.

B.2. Multiplicities of sources and sinks

We will first perform the analysis starting with the restrictions given above. From Fig. 1 we can read off the
building blocks of sources and sinks. are. We refer to the fixed point corresponding tox → −∞(∞) as fixed point
1(2). In the coupled CGL equation case, we refer to the total group velocity of the nonlinear waves, which is given
by 2q(c1 + c3) + v ± s0 [see Eqs. (9) and (10)]; since by the substitutionv → v ± s0 we absorb thes0 in thev, the
indexes of theN− andN+ fixed points correspond to the nonlinear group velocities in the co-moving frame of the
coherent structures. For sinks of the type sketched in Fig. 1(c),AL = 0 for large negativex andAR = 0 for large
positivex. Consequently, the flow is

from

{
N+ (v − s0)

L+ (v + s0)
to

{
L− (v − s0)

N− (v + s0)
(B.2)

For sources of the type sketched in Fig. 1(a),AR = 0 for large negativex andAL = 0 for large positivex.
Consequently, the flow is

from

{
N− (v + s0)

L+ (v − s0)
to

{
L− (v + s0)

N+ (v − s0)
. (B.3)

16 In the experiments of [33], it was estimated from the data thats0 ≈ vph/3, wherevph is the phase velocity, while typical sinks had a velocity
v which could be as small asvph/50.
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As in Appendix A, we will denote the real parts of the three eigenvalues of the fixed points by a string of plus or
minus signs; e.g.(+, −, −).

For εeff < 0 and arbitrary velocities, we obtain for theL fixed points (see Eqs. (A.16)):

L−(+, +, −), L+(+, −, −). (B.4)

For now we assume that|v| < s0, v − s0 < 0 andv + s0 > 0. This yields, according to (A.25) for theN fixed
points:

N−(+, −, −), N+(+, +, −). (B.5)

For sources we find that the combined(N−, L+) fixed point 1 has a two-dimensional outgoing manifold, which
yields one free parameter. We can think of this parameter as a coordinate parameterizing the “directions” on the
unstable manifold17 . Now, the only other freedom we have for the trajectories out of fixed point 1 is associated
with the freedom to viewv, ωL andωR as parameters in the flow equations that we can freely vary. This yields a
total of four free parameters. Fixed point 2 (a(N+, L−) combination) has, according to Eqs. (B.3),(B.4) and (B.5), a
four-dimensional outgoing manifold. An orbit starting from fixed point 1 has to be “perpendicular” to this manifold
in order to flow to fixed point 2; this yields four conditions. Assuming that these conditions can be obeyed for some
values of the free parameters, it is clear that as long as there are no accidental degeneracies, we expect that there is
at most only a discrete set of solutions possible – in other words, solutions will be found for sets of isolated values
of the angle,v, ωL andωR. One refers to this as a discrete set of sources.

When we fixv = 0, there is the following symmetry that we have to take into account:ξ → −ξ, zL ↔ −zR, aL ↔
aR. Furthermore, this left–right symmetry yields that we should takeωL = ωR, so, in comparison to the general
case, we have two free parameters less. When the outgoing manifold of fixed point 1 intersects the hyper-plane
zL = −zR, aL = aR, this yields, by symmetry, a heteroclinic orbit to fixed point 2. Therefore we only need to
intersect the hyper-plane to obtain a heteroclinic orbit, which yields two conditions (instead of four in the general
case). For the sources we have now two conditions and two free parameters; and this yields a discrete set ofv = 0
sources. In other words, within the discrete set of sources we generically expect there to be av = 0 source solution.

For a sink we obtain, combining (B.2),(B.4) and (B.5), that fixed point 1 (a(N+, L+) combination) has a
three-dimensional outgoing manifold, which yields two free parameters, while fixed point 2 (a(N−, L−) combi-
nation) has a three-dimensional outgoing manifold, which yields three conditions to be satisfied. Together with the
three free parametersv, ωL andωR, this yields a two-parameter family of sinks.

B.3. The role ofε

When discussing the counting for the single CGL equation, the value ofε is uniquely determined. In the coupled
equations however, one needs to work with theeffectivevalue ofε when studying the linear fixed points, since
the growth of the linear modes are determined by renormalized values ofε which are given byεeff,L = ε − g2a

2
R,

εeff,R = ε − g2a
2
L for the left-and right-traveling modes respectively [see Eq. (18)]. While the inclusion of the sign

structure of the linear fixed points for positive values ofε may have seemed somewhat superfluous for thesingle
CGL equation, in the case of the coupled equations this is relevant. In the analysis in Sections B.4–B.6 we assume
that both effective values ofε are negative. Some comments on the counting for positive values ofεeff are given in
Section B.7.

17 Note that a one-dimensional manifold yields no free parameters other than the one associated with the trivial translation symmetry of the
solution, and, in general, ap-dimensional outgoing manifold yieldsp − 1 nontrivial free parameters
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B.4. The role of the coherent structure velocityv

In the counting for the single CGL equation, we were able to remove the group velocity term∼ s0 by means of
a Galilean transformation to the comoving frame. In the coupled equations this is not possible, however, and we
need to incorporate thes0-terms when studying the fixed point structure.

In particular, when translating the result for the single CGL into coupled CGL variables, we need to make the
following replacements wherev is concerned

For theaR mode :v → v − s0 ≡ vR, (B.6)

For theaL mode :v → v + s0 ≡ vL . (B.7)

Just like the possible occurrence of positive values ofε could possibly affect the linear fixed points, this may well
affect the nonlinear fixed points. In the single CGL equation we were allowed to takev ≥ 0, but we can no longer
do this in the coupled case. Let us focus on the casev = 0, i.e, consider stationary coherent structures. Sinces0 is by
definition positive, theaL mode hasvL = s0 > 0, while theaR hasvR = −s0 < 0. The statement that we can alway
takev > 0 therefore no longer holds here, and we need to exercise caution when evaluating the nonlinear fixed
points as well. In particular,moving sources(v > 0) with |vR| > vcN or vL > vcN can have different multiplicities
than the stationary one withv = 0.

In the formulas for the counting, one should keep in mind that the linear group velocities have opposite signs for
the left-and right moving modes: this is also apparent from Eqs. (9) and (10), where we defineds0,R = s0 = −s0,L,
so that we may write the nonlinear group velocities as

sR = s0,R + 2qR(c1 + c3), sL = s0,L + 2qL(c1 + c3). (B.8)

B.5. Normal sources always come in discrete sets

In this section, we show that it is not possible for normal stationary sources, i.e., sources whoses ands0 have the
same sign, and for whomεeff < 0 for the linear modes, to come in families. The flow for a normal source is

from

{
AL : N−(v + s0)

AR : L+(v − s0)
to

{
AL : L−(v + s0)

AR : N+(v − s0)
. (B.9)

According to the counting, we have for theN−(v + s0) fixed point on the left that (we takev = 0)

p0 = 4a2
LqL(c1 + c3) − 2a2

LvL = 2a2
L[−s0 + 2qL(c1 + c3)] = 2a2

LsL < 0, (B.10)

because for a normal sourcesL has the same sign ass0,L. Furthermore we have

p2 = 2vL = 2s0 > 0. (B.11)

This implies, according to Eq. (A.21), that the sign structure of the left fixed point is a(N−(+, −, −), L+(+, −, −))

combination, independent of the selected wavenumber of the nonlinear mode and the sign of the combination
p1p2 − p0p3. The dimension of the outgoing manifold is therefore always equal to 2, yielding one free parameter.
For the right fixed point, a completely similar argument yields an(N+(+, +, −), L−(+, +, −)) fixed point, again
independent of the selected wavenumber or sgn[p1p2 − p0p3]. We therefore have to satisfy four conditions at this
fixed point.

Combining this with the free parameters we already had and the additional symmetry atv = 0 we find that the
sourcesalwayscome in discrete sets, independent of the selected wavenumbers and the parameters.
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B.6. Counting for anomalousv = 0 sources

When the signs of the linear group velocitys0 and the nonlinear group velocitys are opposite, we are dealing
with anomalous sources. This section investigates the consequences this has for the counting of such sources.

For an anomalous source, cf. Fig. 1(b), the flow is (again we only considerεeff < 0 for the linear modes)

from

{
AL : L+(v + s0)

AR : N−(v − s0)
to

{
AL : N+(v + s0)

AR : L−(v − s0)
, (B.12)

which yields for the nonlinear fixed point on the left

p0 = 4a2
RqR(c1 + c3) − 2a2

RvR = 2a2
R[s0 + 2qR(c1 + c3)] = 2a2

RsR < 0. (B.13)

where sgn[sR] = −sgn[s0,R]. Furthermore

p2 = 2vR = −2s0 < 0, (B.14)

so that bothp0 andp2 are negative, which implies that, according to Eq. (A.21), the sign structure of theN− fixed
point depends on sgn[p1p2 − p0p3]. In particular, whenp1p2 − p0p3 is negative it isN−(+, +, +), and if it is
positive it isN−(+, −, −). If p1p2 − p0p3 < 0, we can perform a similar calculation for the right fixed point,
and we find that the counting then yields a two-parameter family of anomalous sinks. If the expression is positive,
however, we find that the anomalous sources also come in a discrete set.

The sign of this expression depends, for any given set of coefficients, on the selected wavenumberqsel of the
nonlinear mode, and therefore the wavenumber selection mechanism will determine whether we can actually get to
a regime where sources come as a family. In practice, we have not found any examples where this happens. This
suggests to us that the possible regions of parameters space where this might happen, are small.

B.7. Counting for anomalous structures withεeff > 0 for the suppressed mode

As mentioned before, another situation that can change the counting is realized when the suppression of the
effectiveε by the nonlinear mode is not sufficiently large at the linear fixed points, so thatεeff > 0. If we restrict
ourselves to thev = 0 case, Eq. (A.16) tell us that the counting may indeed change when in addition|s0| > vcL. This
implies that the multiplicity of sources and sinks changes dramatically under these circumstances. An insufficient
suppression may happen in particular wheng2 is only slightly bigger than 1, while the selected wavenumber is large
enough to lower the asymptotic value of the nonlinear amplitude significantly below its maximal value

√
ε. The

zero mode then no longer stays suppressed; instead, it starts to grow, and we then typically get chaotic dynamics,
see, e.g., Section 5.2. For this reason, we confine ourselves to a few brief observations concerning thev = 0 case.

For v = 0 andεeff > 0, we can, according to Eq. (A.16), have aL−(− − −) fixed point of theAL mode when
s0 > vcL. TheAR mode then has aL+(+, +, +) fixed point. Since the index ofL denotes the sign of the asymptotic
value ofκ, with these fixed points we could in principle build a two-parameter family of stationary sources, provided
s ands0 have the same sign in the nonlinear region; otherwise the structures would be anomalous sinks.

Although we have not pursued the possible properties of such sources, we expect almost all members of this
double family to be unstable. The reason for this is that whenεeff is positive, the dynamics of the leading edge of the
suppressed mode is essentially like that of a front propagating into an unstable state. As is well known [68,69], in
that case there is also a two-parameter family of fronts in the CGL equation, but almost all of them are dynamically
irrelevant.
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Appendix C. Asymptotic behaviour of sinks for ε ↓ 0

In this appendix, we will discuss the scaling of the width of sinks in the small-ε limit.
We will assume that in the domain to the left of the sink, theAR-mode is suppressed, i.e.,εL

eff < 0 (likewise to
the right of the sink). As will be discussed in Section 5.2 below, we may get anomalous behavior whenεeff,L > 0,
which can occur wheng2a

2
R < ε; in that case theAL mode is (weakly) unstable and various types of disordered

behavior occur.
AssumingεL

eff to be negative to the left of a sink, the amplitude of the left-traveling mode grows exponentially

for increasingξ as|AL |(ξ) ∼ eκ+
L ξ . The spatial growth rateκL is given, by definition, by the value ofκ at the linear

fixed point. According to Eq. (A.13), one finds forzL = κL + iqL:

zL = −(v + s0) ±
√

(v + s0)2 − 4(1 + ic1)(εeff,L + iω)

2(1 + ic1)
, (C.1)

where we have used the fact that for the left-traveling mode,v as used in the appendix is replaced byv + s0, and
εeff,L = ε − g2a

2
R. If we expand the square-root in the smallε regime, whereω also tends to zero, we obtain

zL ≈ −(v + s0)

2(1 + ic1)
± (v + s0)

2(1 + ic1)

[
1 − 2(1 + ic1)(εeff,L + iω)

(v + s0)2

]
. (C.2)

Sinceεeff,L is negative, and of orderε, the rootz+
L with the positive real part is therefore

z+
L ≈ −εeff,L − iω

(v + s0)
, (C.3)

so thatκ+
L scales withε as

κ+
L = Re[z+

L ] ∼ ε. (C.4)

In order for the exponent in|AL(ξ)| ∼ eκ+Lξ to be of order unity,ξ ∼ κ+−1
L ∼ ε−1, which shows that the width of

the sinks will asymptotically scale asε−1 for smallε.
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