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Rayleigh–Taylor instability of pulled versus pushed fronts
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Campus Plaine, 1050 Brussels, Belgium

b Instituut-Lorentz, Leiden University, Postbus 9506, 2300 RA Leiden, The Netherlands

Received 7 February 2006; received in revised form 3 May 2006; accepted 3 May 2006
Available online 13 June 2006

Communicated by C.K.R.T. Jones

Abstract

Due to a possible density difference across an autocatalytic reaction–diffusion front, a hydrodynamic Rayleigh–Taylor instability triggering
fingering of the self-organized interface can set in when the front is propagating perpendicularly to the gravity field. We investigate here the
influence of the form of the reaction kinetics on the stability properties and the nonlinear dynamics of fingering. We show that the pulled versus
pushed character of the front leads to important differences in the dispersion curves and in the role of fluctuations in the nonlinear dynamics of
fingering. In particular, the effective dispersion curve in the pulled regime is strongly time-dependent, and only converges to the usual dispersion
relation of the Rayleigh–Taylor instability at late times. Our results also have implications for combustion fronts.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

When a chemical reaction front is propagating in a solution,
the density before and behind the front will generally be
different. As a result, even when the chemical front itself has
no diffusive instabilities, a long-wavelength Rayleigh–Taylor-
like (RT) instability can occur in a vertical cell, if the front
is such that it results in a heavier solution being on top of
a lighter one. Many authors have studied this situation in the
last few years, both experimentally and theoretically ([1–3] and
references therein). The details generally depend on the size and
aspect ratio of the cell and on the precise form of the reaction
equation. However, in the limit that the cell is much larger than
the intrinsic front width, the problem simplifies and depends
only on a few effective parameters, as in this limit the front
dynamics can normally be mapped onto that of an infinitely
sharp interface — the problem then essentially reduces to
the usual Rayleigh–Taylor instability of a sharp reactive
interface. The techniques to map a moving front onto a sharp
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interface description go under various names (moving boundary
approximation, sharp or effective interface limit, eikonal
approximation), but are well known and applied in many fields.
In essence, the technique comes down to a matched asymptotic
expansion in which the dynamics on the “inner” front scale is
translated into effective boundary conditions for the dynamics
of the effective interface on the “outer” scale [4–8].

The effective interface approach leads one intuitively to
expect the details of the chemical reaction to have only minor
consequences. A comparison between experimental dispersion
curves (giving the growth rate of the RT instability as a function
of its wave number) for fingering of iodate–arsenous acid
(IAA) [9] and chlorite–tetrathionate (CT) [10] reactions show
that they feature strong similarities. Theoretical dispersion
curves computed for third-order [11–13] and fourth-order
[14,15] one-variable models describing respectively the IAA
and CT reactions in the experimental conditions also present
similar characteristics. These curves predict therefore the onset
of fingers with analogous wavelength at roughly the same
time in both systems. Experimental analysis of the nonlinear
fingering dynamics of IAA [2] and CT [3] fronts show similar
regimes of coarsening, merging and sometimes finger splitting.
Numerical integration of the corresponding third-order [1] and
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fourth-order [14,16] models also point out similar nonlinear
dynamics such as evolutions towards one asymptotic single
finger with self-similar properties (which could be mapped onto
a sharp interface description) and onset of tip-splitting above a
given critical value of parameters. However, one surprising and
hitherto unexplained finding has been that if indeed the cell is
wide, so that an interfacial description would be expected to
apply, there are nevertheless important differences between the
stability and dynamics of fingering of fronts with “quadratic”
autocatalysis reaction kinetics (e.g. Eq. (6) below) and “cubic”
or higher-order autocatalysis (e.g. Eq. (7) below) [17–19]. For
example, in a careful study of Coroian and Vasquez [18], it
was found that going from cubic to higher-order autocatalytic
reactions only induces very small shifts in the critical Rayleigh
number at which the front becomes unstable in wide cells, while
in their widest cells the critical Rayleigh number was found to
be about three times as big when they switched from cubic to
quadratic kinetics. In other words, fronts with order two kinetics
were found to be much more stable with regard to fingering than
higher-order ones which converged to the results for an eikonal
relation in wide cells.

It is the goal of this paper to put these findings into
a more general perspective by explaining the origin of the
differences of fingering properties between order two and larger
order kinetics in terms of the differences between so-called
pulled and pushed fronts [20]. Indeed, it has become clear
in recent years that fronts which propagate into a linearly
unstable state come simply in two classes: pulled fronts whose
dynamics is driven by the linear instability ahead of the actual
front itself and pushed fronts whose dynamics are driven by
the nonlinearities in the front region itself. Strictly speaking,
only the latter type of fronts reduce to a moving boundary
approximation in the thin interface limit — pulled fronts do not.
Due to the fact that the dynamics of pulled fronts are governed
by what happens in the semi-infinite region ahead of them,
their velocity converges very slowly to their asymptotic value
[21], and the same feature implies that we can formally not
map them mathematically onto a moving boundary problem
[8]. The implications of this in a given practical case are not
immediately clear. Some pulled fronts become indeed very
sensitive to noise or slight changes in the equations [20], but
in other cases it appears that an empirical moving boundary
(or thin front) approximation still leads to sensible results for
the stability of the fronts, provided one takes into account that
the convergence of the pulled fronts to their asymptotic speed
and shape is quite slow. The results of Coroian and Vazquez
[18] and similar results for combustion fronts [22] indicate that
this is the case with chemical and combustion fronts. Indeed,
as we shall see in this paper, for the “quadratic” autocatalytic
fronts with a Rayleigh–Taylor instability, the main implication
of the pulled nature of these fronts appears to be that the
Rayleigh–Taylor instability emerges only very slowly in time,
much slower than in the pushed regime. In addition, there is
an enhanced sensitivity to initial conditions. As a result, even
though the instability threshold is difficult to define sharply for
pulled fronts, as initial conditions remain more important, we
can understand the increased stability of fronts with quadratic
kinetics in terms of the slow convergence of their speed to
the asymptotic value: for a long time the dispersion relation
of a pulled front is dominated by the slow acceleration of the
front velocity to its asymptotic value, and during this phase the
buoyancy-induced long-wavelength instability is suppressed.

This article is organized as follows. In Section 2, we present
the model to be used to analyze RT fingering of chemical
fronts and introduce two different kinetics yielding respectively
a pushed and a pulled front. In Section 3, we contrast the
nonlinear fingering dynamics of pushed versus pulled fronts.
To enlighten the differences observed, we recall in Section 4 the
known main differences between both families of fronts. On the
basis of this explanation, we revisit fingering of pushed versus
pulled fronts in Section 5, where we compare the dispersion
curves of both systems before concluding in Section 6.

2. Model and numerical technique

As we mentioned above, reaction–diffusion pushed fronts
converge to their asymptotic speed exponentially fast on the
time scale of the intrinsic front relaxation time, while pulled
fronts do not. In this section we investigate the nonlinear
behaviour of both types of fronts with regard to buoyancy-
driven fingering.

The problem can be described using a two-dimensional
model system of width L y and length Lx oriented vertically
along the gravity direction ex , with y the transverse direction. A
chemical front is initiated at the bottom and propagates upwards
in the −x direction. We will make the problem dimensionless
using scales based on the velocity U = 1ρgK/ν, the length
Lh = Dm/U and the time τh = Dm/U 2. Here 1ρ is the
dimensionless density difference across the front, g the gravity
acceleration, K the permeability, while Dm is the diffusion
coefficient of the relevant chemical species and ν = µ/ρo is
the kinematic viscosity of the solvent with µ and ρo being
its dynamic viscosity and density respectively. The pressure
p, density ρ and concentration c are scaled using µDm/K ,
(ρ2 − ρ1) and co, where ρ2 and ρ1 are the densities of
the heavy and light solutions respectively and co is the
initial concentration of c. The hydrostatic pressure gradient is
incorporated in ∇ p. The dimensionless Damköhler number,
Da, is introduced as the ratio of the hydrodynamic time scale τh
to the chemical time scale τc = 1/(qcn

o), where q is the kinetic
constant and n the order of the kinetics. The dimensionless
equations written using these scales take the form [1,11,14,16]:

∇ · u = 0, (1)

∇ p = −u + (1 − c)ex , (2)

∂c

∂t
+ u · ∇c = ∇

2c + Da f (c). (3)

The second equation is Darcy’s law for the incompressible
velocity field u. The density of the solution is assumed to
depend linearly on the concentration c which varies according
to the reaction–diffusion–advection equation (3). This system
of equations describes the evolution of a chemical front
propagating into a 2D porous medium or a thin Hele–Shaw cell.
In dimensionless units, the length is now L ′

x = Lx/Lh while
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the dimensionless width of the system is basically the Rayleigh
number of the problem defined as

Ra =
L y

Lh
=
1ρgK L y

νDm
. (4)

We have studied this system for two different kinetics f (c)
which are special cases of the cubic polynomial

f (c) = a1c + a2c2
+ a3c3, (a1 > 0), (5)

with the coefficient of the highest-order nonzero term negative.
The condition that a1 > 0 implies that the stationary state c = 0
is unstable, and the condition that the highest-order nonzero
coefficient is negative implies that there always is a stationary
state with c > 0. The examples discussed in this paper are

a1 = 1, a2 = −1, a3 = 0 : f (c) = −c(c − 1), (6)

a1 = 0.01, a2 = 0.99, a3 = −1 :

f (c) = −c(c − 1)(c + 0.01) (7)

which are examples of “quadratic” and “cubic” autocatalysis,
respectively. The kinetics (7) corresponds to the one used to
model the iodate–arsenous acid (IAA) reaction. As will be
discussed more explicitly in Section 4 below, this reaction
kinetics leads to so-called pushed fronts, which in the absence
of convection, move with velocity vrd = 0.721. The second-
order kinetics (6) could be due to a chemical reaction of the
type A + B → 2B [17], and leads to so-called pulled fronts.
The corresponding asymptotic reaction–diffusion front speed
is vrd = 2. Studies of other pulled and pushed kinetics fully
confirm the tendencies to be explained below on the basis of
the examples (6) and (7) and are therefore not reported here.

In order to numerically integrate the set of Eqs. (1)–(3) with
f (c) given by Eqs. (6) and (7), we introduce the stream function
ψ such that u = ∂ψ/∂y and w = −∂ψ/∂x . In terms of this
variable, the equations of the problem become:

∇
2ψ = −cy, (8)

ct + cxψy − cyψx = ∇
2c + Da f (c), (9)

where subscripts indicate partial derivatives. Eqs. (8) and (9)
are solved using a pseudo-spectral method [1,14,16,23] on a
two-dimensional domain, the dimensionless length and width
of which are given by L ′

x and Ra respectively. Note that
the Rayleigh number only appears implicitly in the problem
through the lateral width of the cell, see Eq. (4). We impose
periodic boundary conditions in both directions. The initial
condition is a step function along x going from c = 1 to
c = 0 and located at the bottom of the system with a noise
applied at the front, at an intermediate concentration between
c = 0 and c = 1. To ensure periodicity in agreement with
our periodic boundary condition, a reverse step function going
from c = 0 to c = 1 is constructed at the top as well. For
some of the simulations, we have created a drop of nonzero c
ahead of the upward moving front. To visualize the dynamics,
we plot the two-dimensional concentration field on a grey scale
ranging from black (c = 0) to white (c = 1). The systems
are always taken long enough so that the dynamics observed
Fig. 1. Pure Rayleigh–Taylor density fingering for f (c) = 0, Ra = 256 shown
at times t = 0, 3000, 6000 and 9000.

does not depend on the front meeting any boundary or the other
front. However, for clarity, we show only a focus on the unstable
concentration field of the upward propagating front in order to
better visualize the results under discussion.

3. Nonlinear dynamics of fingering

Fig. 1 shows pure density fingering in the absence of
chemical reactions, i.e. for f (c) = 0. The fingers develop
without a preferential direction (neither up nor down) from
the initial position of the front corresponding to the heavy
c = 0 fluid overlying the light c = 1 solution. Let us
compare this with fingering of chemical fronts. The case where
f (c) is given by Eq. (7) is shown in Fig. 2. We focus on the
unstable ascending front and one can see the interplay between
the reaction–diffusion processes and the hydrodynamics. The
fingers now favor the upgoing direction of the advancing front.
Their initial wavelength is in good agreement with the one
predicted by the linear stability analysis. Through a coarsening
dynamics [24] these initial fingers merge, leading to one
asymptotic finger, the shape and speed of which do not undergo
further changes [1,16]. This front is pushed and in the presence
of convection it advances with a front speed v > vrd . In Fig. 3
we can see the evolution of a pulled front, corresponding to the
kinetics f (c) = −c(c − 1). The initial condition, as for all our
simulations here, is a step function and after a relaxation of the
initial steep front only one single finger emerges.

We have investigated the effect of a small perturbation ahead
of the front. In order to do so, we have set a nonzero c in a
small localized region well ahead of the step condition. We
have tested our results for c varying in the perturbation in
the range 10−3

≤ c ≤ 0.2. For the case of pure density
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Fig. 2. Density fingering for the pushed kinetics f (c) = −c(c − 1)(c + 0.01),
Ra = 256, Da = 0.01. The nonlinear evolution of the concentration c is shown
at successive times t = 1089, 1287, 1881, 2772, 3762 and 5049.

Fig. 3. Density fingering for the pulled kinetics f (c) = −c(c − 1), Ra = 256,
Da = 0.0005 shown at times t = 1485, 2475 and 2871.

fingering there was no growing of the perturbation. For the
pushed front kinetics f (c) = −c(c − 1)(c + 0.01), these
small perturbations grow very slowly and are systematically
overtaken by the ascending front, even for large c at the drop
position.
Fig. 4. Density fingering for f (c) = −c(c − 1), Ra = 256, Da = 0.0005
in the presence of a drop of c = 0.1 placed at t = 0 ahead of the front. The
density plots show the variable c for successive times t = 400, 4000, 9000,
18 000, 22 000, 26 000 and t = 36 000.

When we placed the small drop in a system presenting pulled
fronts, we have observed that the perturbation grows quickly
and gives rise to another front. Such dynamics can be seen
in Fig. 4. At the lower part of the plots, we can see the same
fingering dynamics as for the system without the drop. At the
upper part, the initially localized perturbation grows, giving rise
to both a stable downward propagating front and an unstable
front moving upwards and evolving also into an asymptotic
single finger traveling at the same faster speed than the first
finger.

The difference between the two cases illustrates that while
the front velocities are not that different (vĎ ≈ 0.721 according
to Eq. (15) below in the first case and v∗

= 2 in the
pulled regime of Fig. 4), the exponential growth rate for small
perturbations about the unstable state is a factor 100 different



162 D. Lima et al. / Physica D 218 (2006) 158–166
in the two regimes1 (growth ∼e0.01t in the first case, et in the
second one).

4. One-dimensional dynamics of pulled and pushed fronts

In order to understand the effect of the reaction kinetics
on the long-wavelength RT stability and dynamics of the
reaction fronts studied in the previous section, it is important
to summarize the most important findings of the study of the
general problem of front propagation into unstable states, as
reviewed in [20].

For our situation, the relevant question concerning front
selection is the following: what is the long-time velocity of
fronts that propagate into an unstable domain where c = 0,
if they emerged from initial conditions which are such that,
at t = 0, c decayed to zero fast enough when going into the
unstable domain. For the precise formulation of such so-called
“sufficiently localized” initial conditions, we refer to [20]; for
here it is sufficient to know that decay to zero at least as fast as
a Gaussian is always fast enough.2

An important aspect of fronts which propagate into a linearly
unstable state is the following. When a state is linearly unstable,
this means that when the equations are linearized about this
stationary state, a range of Fourier modes of the form e−iωt+ikx

will be unstable, i.e. will have Imω(k) > 0. Because of the
instability, even a small perturbation about the unstable state
will grow out and spread, according to the linear dynamics.
This linear spreading can be solved exactly for any equation
— in general the asymptotic linear spreading speed v∗ is given
by the equations

dω
dk

∣∣∣∣
k∗

=
Im ω(k∗)

Im k∗
= v∗. (10)

Notice that the first equality effectively constitutes two
equations, for the real and imaginary part of k∗, and the second
equality then determines the linear spreading velocity v∗.

The linear spreading problem is so robust that it determines
to a large extent the dynamics of fronts that propagate into
an unstable state. Indeed, the general answer from the theory
of front propagation is simply the following: quite generally,
for front propagation into unstable states, only two regimes
are possible. Either the dynamically selected fronts are “pulled
fronts” whose asymptotic speed is equal to the linear spreading
speed v∗, or they are “pushed fronts” whose asymptotic speed
is higher than the linear spreading speed v∗. Only in the pushed

1 The difference is even more significant if the term linear in c in f (c)
is absent, e.g. if f (c) = −c2(c − 1). In this case, the growth for small
c is only algebraic and two dimensions is the boundary between having a
threshold on the perturbation for growth — in other words, in three dimensions
only perturbations above a certain threshold grow out. Effectively, there is a
“nucleation barrier” in three dimensions [25].

2 To be more precise, we consider perturbations which in the pulled regime
fall off faster than exp(−λ∗x) for x → ∞ with λ∗ given in (12) below [20].
Initial conditions which fall off slower lead to larger front speeds. For example,
if the initial condition falls of as exp(−ax), then the asymptotic front speed
is vas = a + a1a−1. See in particular Ref. [26] for a discussion of such
generalizations in the context of reaction diffusion equations.
regime is the velocity dependent on all of the nonlinearities
in the equation — as long as fronts are pulled their speed is
completely independent of the nonlinearities in the equation.
Even though a general analytic result is not known, generally
speaking for a front to be pushed (and hence faster than v∗), the
nonlinearities need to enhance the growth over that given by the
linear terms.

There are many important differences between the pulled
and pushed regime. Pushed fronts converge to their asymptotic
speed exponentially fast (as their linear stability spectrum is
gapped), and as a result when one considers a pushed front in
more than one dimension, whose radius of curvature is much
less than the front thickness, the motion of such a front can
be mapped onto a moving boundary problem (sometimes also
called an effective interface description but often called an
eikonal description in the literature on chemical fronts). The
dynamics of pulled fronts, on the other hand, is dominated not
by what happens in the nonlinear front region, but actually
by what happens in the region ahead of the front! Because of
this, even if a weakly curved pulled front in more than one
dimension looks thin on the scale of its radius of curvature, its
dynamics can not be mapped onto a moving boundary (eikonal)
formulation [8,20,27]. This formulation is also called the “thin
front limit” in the flame literature [22].

Another aspect of the fact that the dynamics of pulled fronts
is actually driven by what happens ahead of the actual nonlinear
front region is that their velocity relaxes only very slowly to
their asymptotic value v∗: for fronts like those considered here
which converge to uniformly translating fronts the asymptotic
behavior for the time-dependent velocity v(t) is given by [20,
21]

v(t) = v∗
−

3
2λ∗t

+
3
√
π

2
√

D(λ∗)2t3/2
+O

(
1

t2

)
, (11)

where

λ∗
= Im k∗, D =

i
2

d2ω(k)

dk2

∣∣∣∣
k∗

. (12)

Both of these crucial features of pulled fronts, the fact
that even if they are thin they do not converge to a moving
boundary problem and the fact that their speed converges very
slowly to the asymptotic value v∗, also emerge in the fingering
of chemical reaction fronts studied above. Before discussing
this, we specialize these general findings to the reaction fronts
studied here.

For our fronts, the relevant application of these findings
concern fronts in the one-dimensional reaction diffusion
equation

∂c

∂t
=
∂2c

∂x2 + f (c), (13)

with f (c) given by Eqs. (6) and (7). Here a3 needs to be
negative to ensure saturation behind the front, and we take
a2 > 0 for convenience.

Even though for most equations and even for the reaction
diffusion Eq. (13) with general function f (c) the transition
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from pulled to pushed is not known analytically, for the case
(5) the pushed velocity and front shape is known analytically
[21]: for fronts with c ≥ 0 the fronts are pushed when

a2 >
√

|a3|a1/2, (a3 < 0), (14)

and the speed vĎ and steepness λĎ of the pushed front are then
given by

vĎ =
1
4

(
a2

|a3|

)3/2 (
−1 + 3

√
1 + 4R

) (
1 +

√
1 + 4R

)1/2
,

(15)

λĎ =
a3/2

2

4|a3|

(
1 +

√
1 + 4R

)3/2
, (16)

where

R =
a1|a3|

a2
2

< 2, (17)

and where in the comoving frame ξ = x − vĎt , the asymptotic
front profile is

c(ξ) =
a1/2

2

2|a3|

(
1 +

√
1 + 4R

) 1

1 + eλĎ(ξ−ξ0)
(18)

with ξ0 arbitrary due to translation invariance. In the pulled
regime, i.e. when (14) is not obeyed, the velocity and steepness
are simply

v∗
= 2

√
a1, λ∗

≡ Im k∗
=

√
a1, (19)

but the asymptotic front profile is not known in closed analytic
form.

According to these results, the first case (6) (with a2 <

0) correspond to pulled front, and the second one (7) (with
R ≈ 0.01) is in the pushed regime. We illustrate the above
summary of the difference in the front dynamics in these two
regimes with numerical simulations. In Fig. 5, the pulled and
pushed fronts are shown at different times, and one can see
how the steep step-function initial condition relaxes to the
smoother asymptotic front solution. In Fig. 6 we have plotted
the instantaneous front speeds of both pushed and pulled fronts
as a function of time. These are calculated in time as the
tangent to the curve of the location of one given concentration
of the profile as a function of time. The horizontal lines show
the asymptotic front speeds, as calculated analytically. The
difference in the front speed evolution for pulled and pushed
fronts is indeed striking: pushed fronts reach their asymptotic
speed quite quickly, while pulled fronts experience a very
slow relaxation as compared to their pushed counterparts. On
comparing the time-dependence of the pulled fronts with the
analytic predictions, one should keep in mind that the exact
asymptotic result (11) normally becomes accurate only at much
later times than those shown in the figure.

5. Linear stability analysis of pulled and pushed fronts

In order to explore the implications of the difference in
behavior of pushed versus pulled fronts when their dynamics
Fig. 5. Front profiles for both pulled (top) and pushed (bottom) kinetics shown
at the same successive times starting from a step function as an initial condition.

Fig. 6. Front speeds as a function of time for the pushed and pulled fronts. The
analytical solution up to the leading term of Eq. (10) is also plotted. The speed
of the pushed front converges much more rapidly to its asymptotic value than
that of the pulled one.
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depends on buoyancy effects, we now perform a linear stability
analysis of these different fronts with regard to the buoyancy-
driven Rayleigh–Taylor instability in a moving coordinate z =

x − vt . In order to do a linear perturbation theory for lateral
modulations of the front, we first generate unperturbed flat
fronts corresponding to the one-dimensional base state:

c0 = c0(z, t), (20)

u = 0, (21)

p0 = p0(z, t), (22)

where p0 is the pressure profile for a given c0. Then we perturb
the base state and expand in Fourier modes the perturbations
velocity δu = (u1, w1), of pressure p1 and of concentration c1
as:

(u1, w1, p1, c1) = (δu, δw, δp, δc)(z, t0) exp(iky) exp(σ t),

(23)

where σ is the growth rate of the perturbations (since for our
fronts ω(k) is purely imaginary, we use σ = Im ω here)
and k their wave number. Linearizing Eqs. (1)–(3) around the
base state Eqs. (20)–(22) and eliminating w1, p1, we get the
following linearized equations:[

d2

dz2 − k2
]
δu = k2δc, (24)[

d2

dz2 − v
d
dz

−
d f

dc

∣∣∣∣
c0

− σ − k2

]
δc =

dc0

dz
δu, (25)

with δu and δc tending to zero for z → ±∞. The problem
is thus reduced to solving two coupled ordinary differential
equations (24) and (25) that define an eigenvalue problem for
σ , the solution of which gives the dispersion relation σ = σ(k).
We solve this eigenvalue problem by means of a second-order
central finite-differencing scheme using the LAPACK solver
DGEEVX [14]. There are three main methods to determine the
stability of a time-dependent flow [28]. We have chosen the
quasi-steady-state approximation over the solution of the initial
value problem or the energy method. The quasi-steady-state
approximation consists in freezing the base state at successive
times and calculating the growth rate as if this corresponding
base state was steady. This approximation is well justified
here: if the front is pushed then, as explained before, the
velocity converges exponentially fast to the asymptotic time-
independent value; if, on the other hand, the front is pulled,
then the convergence is so slow (∼1/t) that the quasistatic
approximation is well justified too.

The first step is to create the one-dimensional RD front
by solving Eq. (13) starting from a step function. This front
c0(z, t) has a velocity v(t) at a given time t at which the front
snapshot is taken. In order to compute this front velocity at
time t numerically, we follow as explained above a point of
the front for which, say, c = 0.5, and calculate (numerically)
the instantaneous velocity of this point. Even when the front
velocity and shape are slowly relaxing for pulled fronts, to order
1/t2 all points of the front move with the same speed and the
front shape relaxation is negligible; in other words, to this order
Fig. 7. Dispersion relation for the pulled front, computed at various successive
times starting from an initial step function.

Fig. 8. Dispersion relation for the pushed front, computed at various successive
times starting from an initial step function.

the front shape can be considered as the uniformly translating
front solution associated with the instantaneous speed v(t) [20,
21]. The profile c0(z, t) and the corresponding velocity v(t) are
then inserted into Eqs. (24) and (25) to compute the dispersion
curve at time t .

The dispersion relations calculated this way are shown in
Fig. 7 for the pulled case (6) and in Fig. 8 for the pushed
case (7). The general behavior is indeed very much in line
with what one expects from the scenario described above:
the dispersion relation for the pushed case quickly converges
to an asymptotic shape characteristic of the Rayleigh–Taylor
instability, i.e. to a band of unstable modes ranging from k = 0
to a critical value kc above which all modes are stable [9–15].
The most unstable mode km is such that 0 < km < kc. On
the contrary, the dispersion relation of the pulled front keeps a
strong time-dependence over all times. Moreover, the shape of
the dispersion relation for pulled fronts changes dramatically:
up to time of order 10 it has its maximum at k = 0 and the
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growth rates are an order of magnitude larger than for pushed
fronts, while only at later times does a gradual crossover to
a weak Rayleigh–Taylor finite-wavelength instability relation
become visible.

These results are simple to understand as follows. Note
that according to (11) the velocity of a pulled front is always
approaching the asymptotic value very slowly from below.
Initially, therefore, the large maximum at k = 0 in the
dispersion relation in the quasistatic approximation expresses
the fact that the pulled front is still speeding up, and that the
fastest growing mode of the intrinsic chemical front is the k = 0
mode. Only at very late times, when the asymptotic velocity
v∗ is almost reached, does the underlying Rayleigh–Taylor
instability become apparent.

It is easy to make this idea more quantitative. In the leading
edge of the chemical front, the asymptotic growth dynamics as
a function of the time difference 1t is in leading order as

e(σ
∗
−Dk2)1t−λ∗z (26)

where D is given by (12). Now, in the quasistatic
approximation, we probe the growth dynamics at time t in a
comoving frame z = v(t)1t . In this frame, the emerging mode
(26) behaves as

e(σ
∗
−λ∗v(t)−Dk2)1t (27)

which corresponds to the time-dependent dispersion relation

σ(k, t) ≈ σ ∗
− λ∗v(t)− Dk2

= λ∗(v∗
− v(t))− Dk2. (28)

This expression (with in our case v∗
= 2, λ∗

= 1,
D = 1) fits our numerical data reasonably well within
10%–15% error for not too large times, i.e. before the crossover
to the Rayleigh–Taylor-like behavior. In fact, since this
Rayleigh–Taylor instability is so much weaker (the maximal
growth rate being of order 0.03), we can estimate the crossover
time from the leading term in the asymptotic formula (11) as

λ∗(v∗
− v(tcr)) ≈

3
2tcr

≈ 0.03, (29)

leading to tcr ≈ 50. In practice the crossover time seems to
be about a factor of 2 smaller. This is due to the fact that the
leading-order term in the expression for v∗

− v(t) becomes
accurate only for very late times, and the fact that the next-order
correction term in the expansion is of opposite sign.

In conclusion, our results are a nice illustration of the fact
that a pulled front, even if its thickness is small compared
to the typical outer scale (a cell width, or the wavelength of
an expected finite wavelength instability), cannot be mapped
onto a moving boundary approximation. Because of the slow
convergence of the intrinsic front velocity, there is a long
initial transient during which the front is speeding up and has
no finite wavelength instability. This conclusion applies quite
generally, with the crossover time tcr being longer the smaller
the growth rate of the long-time finite wavelength instability
is. These findings contrast strongly with the behavior in the
pushed regime — there the intrinsic front speed converges
exponentially fast to the asymptotic value, and the dispersion
relation becomes essentially time-independent very quickly
(Fig. 6).

One practical implication is that this long crossover
is especially significant near the instability threshold; in
finite-time simulations, this effect may therefore lead to an
overestimation of the asymptotic stability of the front. This
might be a reason for the difference in stability properties
between an order two pulled kinetics and higher-order pushed
kinetics noted by Coroian and Vasquez [18]. Unfortunately,
insufficient information about the simulations in [18] is
available to make quantitative estimates of the importance of
such effects.

6. Conclusions

The pushed versus pulled character of traveling chemical
fronts has long been recognized to lead to different
reaction–diffusion dynamics and also to different sensitivity
to the presence of fluctuations. We have here shown that, in
addition, pulled and pushed RD fronts behave quite differently
with regard to a Rayleigh–Taylor fingering instability setting
in when an unfavorable density stratification acts across the
front propagating vertically in the gravity field. Due to a very
slow relaxation to the asymptotic front profile, pulled fronts
are more sensitive initially to the diffusive mechanisms than
to the convective modes when starting from an initial step
function. As a consequence, their dispersion curves are strongly
dependent on time at the onset of the instability and are
characterized by a most unstable wavenumber centered around
k = 0 before the dispersion curves of the Rayleigh–Taylor
hydrodynamic modes set in at later times. In the nonlinear
dynamics, the pulled system is very sensitive to the presence
of fluctuations which can trigger onset of new traveling fronts
ahead of the initial fronts in the presence of noise. On
the contrary, pushed fronts relax rapidly to their asymptotic
profile which translates into dispersion curves dominated by
the hydrodynamic fingering modes even at early times. The
nonlinear pushed fingers are robust with regard to fluctuations,
which allows their fingering dynamics to be mapped into that
of a sharp interface. This explains why the dispersion curves
for the cubic kinetics of the iodate–arsenous acid reaction
[9,11–13], the fourth-order kinetics of the chlorite–tetrathionate
reaction [10,14,15] and more generally other typical pushed
kinetics of order larger than two [18,19] all have similar
properties. In the same spirit, their nonlinear dynamics
[1–3,16] show similar features that could be mapped into a
sharp interface description independently of the details of the
pushed kinetics. This also suggests why the order two pulled
kinetics studied by Vasquez et al. [18,19] in the framework
of Rayleigh–Taylor fingering of fronts is characterized by
a broader range of stability than the other pushed kinetics
considered by these authors.

It is important to stress that the formal breakdown of the
derivation of a moving boundary or thin front approximation
for pulled fronts is quite subtle [8]. As a result, whether this
result plays an important role or not depends very much on the
problem at hand. Our own results are a good illustration of this:
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while our pulled fronts were found to be effectively stable for
a significant time, in the end, for long times, they exhibit the
Rayleigh–Taylor instability. Other illustrations of this may be
found in discharges [29] and combustion fronts [22,30], where
fronts are pulled but where a moving boundary approximation
in practice works quite well. On the other hand, pulled
fronts may be quite sensitive to noise [20], and small lattice
perturbations may drive a stable pulled reaction–diffusion front
unstable [31]. Clearly, it really depends on the kind of question
which is being asked, whether the fact that the dynamics of a
front is pulled, plays up.

As fingering of pushed kinetics have already been quite
well studied both experimentally and theoretically, it would
be nice to welcome now an experimental analysis of pulled
fronts to verify the predictions we give here. We stress that
our results are not only valid for the specific reaction kinetics
considered in the literature, but they do hold for pulled and
pushed fronts in general. In particular, they immediately carry
over to combustion, a field in which problems similar to those
addressed in the chemical reaction literature have been studied
recently (see [20,30,32] and references therein).
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