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We explore methods to locate subcritical branches of spatially periodic solutions in pattern forming
systems with a nonlinear finite-wavelength instability. We do so by means of a direct expansion in the
amplitude of the linearly least stable mode about the appropriate reference state which one considers.
This is motivated by the observation that for some equations fully nonlinear chaotic dynamics has been
found to be organized around periodic solutions that do not simply bifurcate from the basic (laminar)
state. We apply the method to two model equations, a subcritical generalization of the Swift-Hohenberg
equation and a novel extension of the Kuramoto-Sivashinsky equation that we introduce to illustrate
the abovementioned scenario in which weakly chaotic subcritical dynamics is organized around periodic
states that bifurcate “from infinity” and that can nevertheless be probed perturbatively. We explore the
reliability and robustness of such an expansion, with a particular focus on the use of these methods
for determining the existence and approximate properties of finite-amplitude stationary solutions. Such
methods obviously are to be used with caution: the expansions are often only asymptotic approximations,
and if they converge their radius of convergence may be small. Nevertheless, expansions to higher order
in the amplitude can be a useful tool to obtain qualitatively reliable results.
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1. Introduction

Many non-equilibrium systems show spatio-temporal instabil-
ities of some kind: ripples on sand, convection rolls in fluids, turbu-
lence in pipe flows, patterns in crystal growth, etc. If they are driven
far enough away from equilibrium (usually quantified by some
control parameter), a homogeneous initial state (say, a flat bed of
sand, a laminar flow or a straight front) becomes unstable with re-
spect to spatial perturbations of a certain wavelength. Often, per-
turbations with a wavenumber around a critical wavenumber start
to grow, and the system ends up in an inhomogeneous state. This
state may feature regular stationary or oscillatory patterns, trav-
elling waves, or even spatiotemporal chaos or turbulence. Such
finite-wavelength instabilities and the patterns they give rise to have
been the focus of much research in the past few decades [1-8].

As is well known, there are a number of ways in which the
transition from a homogeneous state to a patterned state can
occur. Three of the most important ones are depicted schematically
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in Fig. 1. In (a) we sketch the common supercritical transition
scenario, in which a stable pattern branch bifurcates off the
homogeneous state at the point at which the homogeneous steady
state becomes linearly unstable at some critical value of the control
parameter. This scenario occurs frequently when the nonlinearities
in the system lead to saturation. The amplitude of the pattern
vanishes as the control parameter approaches its critical value
from above. Close to the transition point, the amplitude generally
scales as the square root of the distance to the transition point.
A well-known example of this type of transition is the transition
to rolls in Rayleigh-Bénard convection [1]. Fig. 1(b) depicts the
case of a subcritical bifurcation: the system becomes linearly
unstable beyond a critical value of the control parameter, but
even below this point, there are nontrivial finite amplitude pattern
solutions. The amplitude no longer vanishes when the critical
point is approached from above. This type of behavior is found
for example in Rayleigh-Bénard convection with non-Boussinesq
effects [9,5], and in in many other systems without an “up-down”
symmetry, like 2-dimensional reaction-diffusion systems with a
Turing instability [10,5]. In Fig. 1(c) we finally sketch the case
which is sometimes referred to as a bifurcation from infinity [11]:
the homogeneous state is linearly stable for all values of the control
parameter, but for sufficiently large control parameters there
exists a branch of finite amplitude nontrivial solutions which in
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Fig. 1. Typical bifurcation diagrams for (a) a supercritical transition, (b) a subcritical
transition and (c) a subcritical bifurcation from infinity. Solid lines denote linearly
stable states, dashed lines are linearly unstable. Note that in practice the nonlinear
solutions on the upper branch are sometimes not actually stable, but in such cases
they can still organize the dynamics. This happens for instance in the transition to
turbulence in Couette and pipe flow [12,13] and in the equation we construct and
analyse in Section 4.

practice govern the dynamics of the system under some conditions.
The lower (unstable) branch defines a kind of threshold amplitude:
if perturbations are smaller than this amplitude, the system returns
to the homogeneous state; if they are larger, the system ends up
on the upper branch. The best known example of this scenario is
the transition to turbulence in Newtonian fluids in plane Couette
or Poiseuille pipe flow, although the nature of the “stable” and
“unstable” branches is not at all clear in this case [12,13]. Two of
us recently proposed that the same scenario may apply to shear
flows of non-Newtonian viscoelastic fluids [ 14,15]. Note that while
in the figure we indicate the upper branch to consist of stable
solutions, this is often not the case in practice. One example is
given by the exact two-dimensional nonlinear states in the form
of travelling waves that were found in Newtonian plane channel
flow [16]. On the upper branch, these solutions are stable in
two dimensions, but they are unstable when an infinitesimally
small three-dimensional perturbation is introduced [17]. Another
example is Newtonian turbulence in pipe flows where three-
dimensional nonlinear solutions play an important role in the
dynamics, even though they are themselves unstable [12,13].

The partial differential equations that usually describe pattern-
forming systems cannot be solved analytically in general. However,
as the bifurcation diagrams already suggest, near a transition it
is often possible to find a reduced description of the spatially
periodic or travelling-wave solutions in terms of just the amplitude
of the pattern. For supercritical transitions, the amplitude equation
approach has been very successful [1-8].

For strongly subcritical transitions, however, this approach
essentially breaks down. At the transition, the stable branch
already has a nonzero amplitude, and the usual expansion in
principle does not work, at least not for the most relevant
stable (upper) branch. The lower branch of unstable solutions
still grows as in the supercritical case, so unstable states can be
found perturbatively sufficiently close to the transition (and thus,
threshold amplitudes of perturbations). If the subcritical character
is sufficiently weak, it is often possible to adapt the expansion to
find also the stable solutions, as for example in Rayleigh-Bénard
convection with non-Boussinesq effects [9]. The expansion is then
formally no longer consistent, but works in practice because
effectively there is a another small parameter (e.g., the smallness
of the non-Boussinesq effects).

From a more formal point of view, one might argue that one
simply should not use amplitude expansions to probe subcritical
bifurcations and especially the bifurcations from infinity of Fig. 1(c)
that motivate us, since the amplitude expansion, which is only an
asymptotic expansion, can clearly not be trusted to give reliable
results about the existence and stability of finite-amplitude
patterns. In practice, however, such a strict point of view is not
the most constructive one. After all, if one is investigating a
new problem about which not much is known a priori, one does
not necessarily know in advance whether patterns one observes

are due to some supercritical or subcritical transition, or even a
bifurcation from infinity—one actually does a calculation to find
out what the nature of the problem is! Suppose then one finds
in an amplitude expansion that the sign of the cubic nonlinearity
signals that there is no saturation of the pattern amplitude at the
lowest nontrivial level, in other words, that the bifurcation is not
supercritical. Should one then simply stop at that point because the
amplitude expansion formally cannot handle such a situation?

Clearly, such a defeatist attitude is not to be expected from
an applied researcher who is eager to understand the nonlinear
behavior of the problem at hand. In practice, if there is reason
to believe on physical grounds that the transition is weakly
subcritical, even though there may be no a priori small parameter
in the equations that suggests this, such a practitioner of nonlinear
science may want to try, nevertheless, to calculate the next (fifth
order) term in the expansion, in the hope of being able to estimate
how weak the subcritical character really is, and how large the
amplitudes of the nonlinear pattern actually might be. And if such
a calculation is done, one faces the question as to how reliable this
estimate actually is and what the optimal truncation (if any) of the
expansion might be.

Two of us recently faced a similar dilemma in a study of the
nonlinear stability of viscoelastic shear flows [14,15,18] where we
suspected, on physical grounds, the relevance of the bifurcation
from infinity scenario of Fig. 1(c). Motivated by the expectation
that the lower (unstable) branch — which determines the nonlinear
instability threshold - would actually be close to the horizontal
axis for intermediate values of the control parameter, and that
the smallness of the transition amplitude could play the role of
an intrinsic small parameter hidden in the problem, an amplitude
expansion up to eleventh order was performed to estimate the
nonlinear threshold. In this case, it actually does appear that useful
information can be extracted from analyzing the behavior of the
expansion to such high orders.

This paper is motivated by these observations and by our own
experience, that even though hard and generally valid statements
are difficult to make about the behavior of intrinsically asymptotic
expansions, it is very profitable to get a better feel for how far one
may push amplitude expansions to probe such intrinsically sub-
critical transitions. One of the main aims of this paper is to ex-
plore the possible signatures for failure or success of this prag-
matic approach. Indeed, in studying these issues, we have empir-
ically found that it is sometimes possible to push the expansions
further by focusing on a limited question, like the existence and
nature of a nonlinear (subcritical) branch of solutions. We discuss
this method and its basis, and compare it to the results one obtains
from a more straightforward amplitude expansion. Moreover, in
order to illustrate that such expansion methods can even be useful
in cases in which the nonlinear solutions that one can probe per-
turbatively are unstable but nevertheless important for the dynam-
ics, we introduce a new simple model based on two coupled equa-
tions whose bifurcation diagram corresponds to the “bifurcation
from infinity” case of Fig. 1(c), and which mimics a case in which
Kuramoto-Sivashinsky-like chaos [19-21] is organized around ex-
act periodic solutions. The gross features of the turbulent nonlinear
branch of this equation are indeed captured well with our ampli-
tude expansion, a finding that gives hope for our earlier work on
nonlinear visco-elastic instabilities [15].

We stress here at the outset that our goal is rather limited.
First of all, the equations we study are only used as exploratory
examples. Secondly, we neither aim nor claim to investigate the
full nonlinear dynamics of these equations; instead, we will focus
simply on determining the presence and location of the subcritical
branches of periodic solutions in the approximation so that only
the amplitude of one mode is retained. The stability of the branches
is hence only studied within this subspace of periodic solutions
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that are identified by a single amplitude. Clearly, these solutions
may well be unstable in other directions in function space, so
whether such results have anything to do with the full nonlinear
dynamics of any equation under study cannot be settled without
additional (often numerical) studies. Our discussion in Section 4
of the chaotic dynamics in the coupled Kuramoto-Sivashinsky-like
model equation will illustrate this.

To help the reader better understand our motivation, we
recall again the transition to turbulence scenario in plane Couette
or plane and pipe Poiseuille flow of Newtonian fluids [12,13].
For these cases it has become clear in recent years that the
Navier-Stokes equations admit exact periodic solutions [22-24]
which do not bifurcate off the laminar state. Even though these
solutions themselves are weakly unstable in nontrivial directions,
the turbulent dynamics is organized around these exact nonlinear
periodic traveling wave states (through a so-called Self-Sustaining
Process [13,25] in which the instability eventually pumps energy
back via vortices into traveling wave modes). Probing the existence
of these solutions is clearly a first step in such an analysis.
Moreover, as recent work on turbulent Poiseuille flow illustrates,
once such solutions have been found, they can sometimes be traced
with continuation methods? by introducing an additional driving
term in the equations. But when such solutions do not bifurcate
in a simple way off the base state (the laminar flow state), or
when they emerge via a “bifurcation from infinity”, the amplitude
methods we explore here may be a useful first step. That this
is not just a dream is indeed illustrated by the model equation
we introduce in Section 4: this equation is constructed so as to
have subcritical branches of periodic solutions that conform to the
bifurcation from infinity scenario. We find that these solutions can
be located reasonably accurately by the two expansion methods
we introduce. Moreover, numerical simulations confirm that the
chaotic dynamics is, in a well-defined way, organized around
these branches of periodic solutions — the model equation is thus
a simple caricature of the transition to turbulence scenario in
Couette and Poiseuille flow [12,13].

In summary, then, the main goals of the paper are (i) to
investigate the performance of amplitude expansions in higher
orders by exploring the signals for when the results can or
cannot be trusted; (ii) to demonstrate that besides the usual
amplitude expansion method, there is a second, more restricted
expansion method which focuses immediately on stationary
manifolds. We show that in the examples we consider, this
method II appears to have a finite range of convergence, and we
propose an intuitive understanding of this and of the difference
with the regular expansion method. (iii) to illustrate, with
the Kuramoto-Sivanshinsky-like model we introduce, that the
expansion methods can be of use to approximately locate the
chaotic dynamics around branches that bifurcate off infinity.

Both methods we employ in this paper are variants of the
usual amplitude expansion, aimed in particular at studying the
stability and approximate dynamics of a spatially extended system
with a subcritical finite-wavelength instability. We derive a single
ordinary differential equation that should capture the essential
qualitative features of the transition. The method relies on a direct
expansion in the amplitude of the relevant solutions, rather than

2 Of course, once the existence and rough location of periodic solutions is known,
continuation methods will yield more accurate results regarding their properties.
Expansion methods may be especially of help if one is initially in the dark as to
where to look [23,24] but expects their existence on physical grounds. Moreover,
for nontrivial problems, continuation methods may easily translate into of order
10°-10% coupled equations. Although problems of this size can nowadays be
handled numerically, the conceptual simplicity of an expansion and the fact that
it translates into a few coefficients may give additional insight. Both methods have
their advantages and disadvantages.

in the distance to the bifurcation point. There is some freedom in
the implementation of this idea, and we actually give two distinct
but related versions of the method. Though one of them is based on
the standard amplitude expansion approach and though elements
of the second approach have appeared in other fields [26,27], a
comparison of the two has, to our knowledge, not appeared from
the perspective presented here.

The concepts underlying such amplitude expansions are fairly
general, and they occur in very diverse fields of pure and applied
science. In fact, the use of such amplitude expansions has a long
history in fluid mechanics. It was pioneered by Landau [28],
Stuart [29] and Watson [30], who used such expansions to describe
the subcritical modes in plane Poiseuille flow below the linear
instability threshold of Re =& 5772. This approach was later
explored to high order> by Herbert [31]. A well-known early
monograph on the subject of nonlinear stability theory, including
amplitude expansions, was written by Eckhaus [32]. The field of
what we now usually properly call amplitude equations started
with the seminal work of Newell and Whitehead [33], who
included slow spatial modulations in their equations. We will say
more about the connections with previous work in other fields
further on in this paper. Here we will just mention that since we
expand in the amplitude itself rather than the small growth rate,
our method resembles most closely that of Watson [30], although
formal equivalence between several possible methods has been
established [34-36].

As in these earlier approaches, we will focus in this paper
on expansions in the mode amplitude of periodic patterns with
a given wavelength. There are two reasons for this: the first
pragmatic reason is that we do not want to overly complicate the
analysis. The second, more fundamental reason is that there is no
reason to expect that the slow spatial variation of the amplitude
and wavelength of a pattern, which is such a characteristic feature
of the pattern dynamics just above a supercritical bifurcation,
extends to subcritical patterns—if the complex dynamics of a
pattern forming or chaotic or turbulent problem is organized
around a branch of nonlinear periodic solutions, slow spatial
modulations of these solutions is typically not one of the dominant
characteristic features of the dynamics. Nevertheless, it will be
of interest to extend the analysis to include two or three basis
modes—this may in fact extend the range of applicability of the
expansion for the subcritical Swift-Hohenberg equation, as we
shall see.

A final word about nomenclature: although the word “mode
expansion” is sometimes favored over amplitude expansion for
approaches like ours where the spatial modulation of the patterns
is not studied, we will use the word mode expansion and amplitude
expansion interchangeably here.

The outline of this paper is as follows. We will first give in
Section 2 a general description of the amplitude expansion and
then apply it to two model equations. The first, discussed in
Section 3, is a modification of the well-known Swift-Hohenberg
model for pattern formation [37,1]. This partial differential
equation is one of the simplest pattern-forming systems, and it
is modified so that it shows subcritical behavior instead of the
usual supercritical transition [38,39,5,40]. The second application,
studied in Section 4, is the extended Kuramoto-Sivashinsky-like
equation that we introduce to explore a “bifurcation from infinity”
transition to weak chaos. In both cases we compare the results
of the expansion for periodic solutions with direct numerical
simulations of the full partial differential equations, and explore
the applicability and limitations of the expansion method.

3 1t is useful to point out here that the 3D nonlinear traveling wave states that
organize the turbulent dynamics are not the 2D states studied by Herbert [31].
Indeed, the former periodic states exist for Couette and pipe Poiseuille flow as well,
even though there is no linear instability there, as the scenario corresponds to the
“bifurcation from infinity” of Fig. 1(c).
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Fig. 2. Linear growth rate Re o (k) as a function of wavenumber k for systems with
a finite-wavelength instability, slightly below (A) and above (B) the onset of this
instability.

2. Amplitude expansion scheme

In many pattern-forming systems, such as Rayleigh-Bénard
convection or Couette flow, one has to consider the spatial
dependence in both the translation-invariant direction and the
orthogonal (confined) direction. In this paper we shall not deal
with this complication, and we shall concentrate on models
with one (translation-invariant) spatial dimension. For future
reference in our discussion of the mode expansion, we first briefly
summarize the general formal setting of the type of problems we
will analyze.

We consider (1 + 1)-dimensional PDEs of the form

au—£u+f y du 0%u 1)
at TaxTax2T )

where u(x, t) is real. The linear operator £ contains spatial
derivatives; the nonlinear part f(-) is a function of u and its
spatial derivatives. We assume that f is a polynomial consisting of
only a few terms, with no constant term, so that the PDE always
has a trivial solution u = 0. This solution corresponds to the
homogeneous state in a pattern-forming system. We assume that
the linear operator £ and the boundary conditions are such that
the eigenfunctions of £ are plane waves of the form e, with k
real, as is usually the case for translation-invariant systems.

Linear stability analysis around the trivial solution is then
straightforward. Insert the Ansatz

u(x, t) = Ae’tel (2)
into the linearized PDE

ou N

— =JLu, 3
o (3)

and solve for o as a function of k. This gives the (linear) dispersion
relation o (k). The real part Reo (k) is the linear growth rate of
the eigenmode with wavenumber k. We assume that the system
is near a finite-wavelength instability. We will quantify this later,
but for now, assume that o (k) looks roughly as in Fig. 2, where
k. is the wavenumber for which the growth rate is maximal. The
dynamics of the system is then dominated (in a sense that will be
specified later) by the modes with wavenumber close to k.; in a
mode expansion one can derive a single differential equation for
the amplitude of one of these modes. We can just take a k close
to k. and claim that it is the dominant mode, for example because
that is the wavenumber of the finite-amplitude perturbation that
we are interested in. Usually, we shall take k = k. because that is
the least stable mode. The ‘standard’ amplitude equation performs
such a reduction, but as mentioned, only works for supercritical
transitions.

The goal of our expansion is to obtain a reduced description
of the dynamics of the full system near a finite-wavelength
instability (either supercritical or subcritical), as a single ODE for
the amplitude A of the dominant mode:

dA 3 5
L SATOA G (4)

The parameter € determines the linear stability of the trivial
solution, the nonlinear terms form a (truncated) power series
in A.

2.1. Expansion method

To derive an equation of the type (4), we first perform a
Galerkin-type expansion to convert the PDE (1) to a system of
ODEs. This is done by expanding the solution of the PDE in a
discrete set of orthonormal spatial basis functions with time-
dependent coefficients, As basis functions we will choose the
eigenfunctions e of .£ . Having chosen the basic wavenumber k
of the periodic solution that we wish to probe, we concentrate
on solutions that consist of this mode plus modes that can be
generated from it through the nonlinearity. Thus, we expand the
solutions of the PDE as

+00

u(x, ) & Y Un(t) explinkx]. (5)

n=—oo

Because u is real, we have that U_,(t) = U, (t), where the star
denotes complex conjugation. As we already mentioned, unlike
for the supercritical case, for the subcritical case it is not a priori
clear which band of wavenumbers we should expect. In fact,
the expansion itself will typically be used to probe the range of
wavenumbers over which the nonlinear solutions exist, and as
long as we disregard explicit spatial modulations or secondary
instabilities (for example, side-band or Eckhaus instabilities [32]),
we can get away with a mode expansion (5).

The above Ansatz is inserted into the full PDE (1), and the
result is projected onto the different modes. This gives an ordinary
differential equation for each mode. To give an example: suppose
that Eq. (1) has a simple quadratic nonlinearity f(u) = u?. The
ODE for a particular mode, using the expansion (5), then is

du,
dt

= 0uUn(0) + Y Ui(0) Uj(D), (6)

i+j=n

where we labeled the eigenvalues of £ as o, := o (nk), and the
sum runs over all i and j for which i + j = n. Once such a system is
obtained, the standard Galerkin procedure is to assume (or show)
that only the lowest few modes are relevant, and to restrict the
system to these modes, obtaining an approximate description of a
partial differential equation in terms of a low-dimensional system
of ordinary differential equations. Since our goal is to obtain a single
ODE for an amplitude that characterizes the main features of the
periodic pattern, we take a slightly different approach.

To reduce this system to a single equation we assume that
(i) the dominant mode, and the modes that it can generate through
nonlinear interactions, are the only relevant modes, and that
(ii) amplitude and phase of the “generated” modes are at any time
completely determined by amplitude and phase of the dominant
mode. In the supercritical case, this is due to the fact that higher
order mode adiabatically follow (“are slaved to” [41]) the dominant
mode for ¢ <« 1. This is simply due to the separation of time
scales between the dominant mode and the other modes, as the
dominant mode evolves on a much slower time scale than the
quickly decaying slaved modes, that is, | Re o (k)| << |Re o (nk)|
for n # £1. We will clarify this assertion in more detail in the next
subsection, where we give a more geometrical interpretation of
this phenomenon. To emphasize the distinction between dominant
and slaved modes, we slightly change notation and write the
expansion (5) as

ux, t) = p(O)e"™ + ¢* (e ™

o0
+Uo(6) + ) [Un()e™ + U_p(t)e™™]. (7)

n=2
We now assume that the U, can be written as functions of ¢, and
to implement this, we write the U, as a power series in ¢. Note
that the coefficients U, that govern the e™* mode amplitude can
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only be generated by terms of order at least O(¢!"), so U, should
be 0(¢!™) (but Uy = 0(¢?)!). This leads to the expansion

Uo(t) = Up(¢) = ul 11> + ui’ [p[* + ul’|pl5 + - -
Up(t) = Up() == u¢? + us” |pP? + - -
Us(t) = Us(p) == u¢> +ul |p20> + - --

The uf’j are unknown complex coefficients. The constraint that

u(x, t) is real imposes that u(l)l = u,-(")*. Note that terms with u((,3),
(4)

uy”, etc. are absent. Also, no higher-order corrections to the fun-
damental mode are present: all information on the fundamental
mode is in ¢(t). This is in contrast with some other approaches,
e.g., the one of Herbert [31].

All nonlinear terms in the expansion of the full PDE can now be
expanded in powers of ¢. For the ODE that governs ¢(t), we can
expand the right-hand side and collect powers in ¢. That equation
then becomes
d
dif =0 (k)$ + Cs|p1’p + Cslpl'd + Gl °p + - - -, 9)
where the unknown coefficients C; depend on the uﬁﬁ). This is the
central equation of our approach that plays the role of an effective
amplitude equation for the periodic pattern. The main effort in
practice will be to calculate the coefficients C;.

The right-hand side of the equations for the U, can also be
expanded. These equations can then be converted into algebraic
equations in two different ways by dealing with the dU,/dt. We
shall give these methods the rather undescriptive names of Method
I and Method II, because the ideas behind them are rather general,
and they go by different names in different fields.

e Method I — We can consistently implement the assumption
that the U, are functions of ¢ by inserting their power series
expansions into dU,/dt and applying the chain rule. The
d¢p/dt that are then left over, can be replaced self-consistently
with the amplitude equation (9). We are left with algebraic
equations in ¢ for each of the U,, which can be solved order
by order in ¢, to obtain the coefficients C;. The consistent
way in which we expand ensures that within the convergence
domain of this expansion, we approximate a curve (or more
generally a manifold) defined by the functions U, (¢), that is a
trajectory of the infinite-dimensional Galerkin ODE system. If
the initial condition is on this curve, the system will stay on this
invariant manifold. This method is related to the inertial manifold
method of Foias, Sell and Temam [42], Poincaré-Dulac normal
forms [43] and centre manifold methods [44].

e Method Il — We can also follow a different procedure, which is
often used for finite-dimensional systems of ODEs with slaving.
This procedure is called adiabatic elimination by Haken [41]
and is essentially the same as what is known in, e.g., chemical
kinetics as the quasi-steady state assumption [26,27]. It is
also strongly connected with ideas from singular perturbation
theory [45,46]. We explicitly use the fact that one mode varies
much slower than the other modes, and make a distinction
between fast, slaved modes and slow, dominant modes. The
idea is that in the timescale of the fast modes, the amplitude
of the slow mode(s) is essentially constant. This means that
on some timescale shorter than that of the slow mode, the
fast modes converge to a fixed point (dU,/dt = 0) that is
determined by the amplitude of the slow mode. There is thus a
kind of quasi-steady state, which adiabatically follows the slow
mode and is completely determined by the amplitude of that
mode. We can then find U, (¢) by putting dU,,/dt = 0 to obtain
algebraic equations in ¢. These can also be solved order by order
in ¢, in general giving different values for the C; than Method 1.

critical

Fig. 3. Generic representation of a dynamical system near a subcritical bifurcation.
The horizontal axis represents the amplitude of the critical mode, while the stable
modes are lumped together and represented in the vertical direction. The solid
dot at the origin represents a stable stationary solution, while the open circles
denote unstable ones. The separation between the slow manifold and “horizontal”
nullcline, drawn as a dashed line, has been exaggerated for clarity.

2.2. Geometrical interpretation of the methods

To clarify what is going on and to show the difference between
the two methods, we give a geometrical picture. In a two-
dimensional representation, where the x direction represents the
(near-) critical mode and the y direction all stable, slaved modes,
the types of systems that we consider look generically as in
Fig. 3: the system first evolves quickly towards some type of slow
manifold, indicated in the figure as the thick line, and the dynamics
of the system is effectively determined by the dynamics on that
manifold (which can contain fixed points).

The two methods both aim to approximate the slow manifold.
Method I does that by demanding that the U,(¢) approximate an
actual flowline of the effective infinite-dimensional system (6) and
thus attempts to approximate the “true” slow manifold. Method II
puts dU,/dt = 0 for n # 1, and thus approximates the nullcline
where flowlines are horizontal, which is indicated in the figure as
a dashed line. This line is not itself a flowline of the system, but lies
close to it and contains all fixed points connected to the origin. This
geometrical picture will be useful when we analyse the merits of
both methods in Section 5.

Note that in practice, the main goal of a perturbative mode
expansion is often to indicate the existence and main properties of
stationary or travelling wave periodic patterns. In such a case, one
is interested in the existence of a fixed point on the slow manifold.
The above discussion shows that in principle both methods can be
used to try to locate such a fixed point. In practice, however, one
method may give more reliable results than the other—establishing
whether this is true and under what conditions is one of the main
aims of this paper.

3. Generalized Swift-Hohenberg equation

3.1. Description of the model

One of the simplest equations that describes pattern forma-
tion is the Swift-Hohenberg model [37,47,48]. It can be viewed
as a near-threshold approximation for Rayleigh-Bénard convec-
tion [37], but it is usually considered as a simple model in its own
right. As such, it has also received attention in the mathematics
community, in particular with regard to nontrivial stationary solu-
tions [49,50]. In one spatial dimension it is given by the following
fourth-order partial differential equation:

at x4 € 9x2

with u, k. and € real and ¢ < 0. This equation always has the trivial
solution u = 0. It has the form of Eq. (1), with

d 9 92
u —_<u+2k2u+kfu)+EU+Cu3, (10)

K d%u Lo d%u
u=—|— +2k—
ax* “ 9x?

+kju>+eu (11)
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Fig. 4. Linear dispersion relation (a) for original and extended Swift-Hohenberg equations, and corresponding bifurcation diagrams for the original (b) and subcritical

(c) Swift-Hohenberg equation.

and
fu) =cu’. (12)

It is easy to see that after linearization around the trivial solution,
the eigenfunctions of the linear part . u are plane waves e**, with
eigenvalues o (k) = € — (k* — k2?)?, see Fig. 4(a); a transition
takes place for ¢ = 0, where the eigenvalue for the wave with
wavenumber k = k. becomes positive. Without loss of generality,

we can rescale the equation such that k. = 1and ¢ = —1, giving
ou a*u +282u A 3 (13)
—=—— — 4 u €eu—u.

at x4 0x?

With the usual amplitude equation approach, the Swift-Hohenberg
equation can be reduced to the so-called real Ginzburg-Landau
equation (RGLE) [1], which reads, in rescaled form, 3;A = 432A +
€A — |A’AwithA e C.

It is possible to extend the Swift-Hohenberg equation so that it
shows subcritical behavior, by adding a term quadratic in the field
u [38,39,5,40]:

ou 0%u ,0%u 5 3
E:—<w+2kcw+kcu>+eu+bu +cu’, (14)
where b is real. The linear stability of the trivial solution is the same
as for the original Swift-Hohenberg equation, but the nonlinear
behavior is different. In particular, when b?/c > 27/38 (and ¢ <
0), the transition at ¢ = 0 becomes subcritical [40], and we have
the bifurcation diagram of Fig. 4 (c).

3.2. Amplitude expansion

We are now ready to apply the formalism of Section 2.1 to
the extended Swift-Hohenberg equation (14). For convenience we
shall rescale the equation such that k. = 1, and we define:

o =€ — (N’ k* = 1)%. (15)
such that for the eigenfunctions of the linear part we have
f (einkX) = o, einkx. (16)

Because the expressions we get upon inserting Eq. (7) into (14)
rapidly become cumbersome, we shall write out the terms
explicitly only up to third order in the amplitude, and suppress,
in our notation, the explicit time-dependence of the amplitudes.

Doing this, and remembering that U_, = U, we obtain, after
projecting onto the modes nk,

d

£ =01¢+bQpUs +2¢*Us +---) +cBlpl’p+---), (17a)
du,

. = O0Uo D QISP+ )+ (17b)
du.

szazU2+b(¢2+"')+"'v (17¢)
dUs 3
W=03U3+b(2¢Uz+~-)+C(¢ +--0), (17d)

where the dots represent higher order terms, 0(¢*). The equations
for the other modes contain only terms of order ¢* and higher.
We now have a type of Galerkin approximation. The next step is
to substitute Eq. (8) into the equation for ¢. We then obtain

d¢

o =+ [ 20100+ + 267 W9+ 4+ ]

+c[BlglPo+--]. (18)

By collecting the linear and cubic terms, we find an equation of the
form (9),

dé _ Cs|¢|? 9
E—al¢+ 31P1°p+ - -, (19)
with

C3 = 2b(ul +ul’) + 3c. (20)

It is now possible to calculate the coefficients uf) by looking at the
equations for the U;. We find, again up to and including 0(¢3),

du,
dto = (ooug’ +2b)Ipf* + - -+, (21a)
du
dt2 = (21 +b)§? + -+, (21b)
du
dt3 = (o3u5” + 2buy” +O)p* + -+ - (21¢)

Note that we have included here the coefficient u§3) , even though

it is not strictly necessary for determining Cs; this coefficient is
important for the dynamics of the U3 mode.

It is now possible to determine the coefficients ui(’) if we deal
with the dU;/dt in one of the proposed ways. Since from here on
the results depend on which expansion method is used, we treat
the two methods separately.

Method I. If we use Method I, we find

dUo d ) 2 2) d¢* *dd)
o _ ¢ )= - )+, (22
dt — dt (uo o1+ ) U\ @ dt e a )t (22)

which, upon inserting Eq. (19), becomes

du,

o =20 @ (23)
Analogously, we find for the other modes

du

Ts :2u§2)(a1¢2+--~)+---, (24a)
du

T: :3u§3)(61¢3+"')+"'. (24b)

We can then begin to separate each equation for the U; in orders of
¢. Since these equations are supposed to hold for arbitrary ¢, they
should be satisfied for all orders of ¢ separately. In this particular
example we only display terms up to third order, and we find
only one order of ¢ for each equation, but to higher order we find
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Plotted along the vertical axis is the amplitude |¢| (actually, 2|¢|) of the mode with wavenumber k = 1. The numerical results are indicated by the circles (see text).

different orders of ¢ occurring in each equation, and we can then

successively calculate all u,@ and C;. Combining the ¢? parts of
Egs. (21a) and (23) gives

uy) = 2b/(201 — o), (25)
and doing the same for (21b) and (24a) we find
u? = b/ (201 — 02). (26)
From Eq. (20) we then deduce that
G = 2b(uy” +us”) + 3¢
5 2 1
=2b + + 3c. (27)
201 — 0p 201 — 0

Note that this means that C3 depends on €. To lowest order, the
transition is subcritical if C3 > 0 at o7 = 0. This implies that

€= (K =1)> (28)

and

2 b2 2 1\

——>—|—+— . (29)
3¢ (o) (o))

Inserting the expressions for oy and o5, we find

C; = 2b° 2 + ! +3c (30)
> e+1 €+9

and the condition for subcritical behavior of the least stable mode
becomes Eq. (29) ate = 0,

b?/c > —27/38.

For ¢ = —1, this means that we need |b|
subcritical behaviour.

Method II. For Method II, we put the left hand side of Egs. (21a)-
(21c) to zero. We then find

2b 2b
u® = 2

(31)
> 0.8429... for

= (32)
(o} 1—¢€
and
b b
2)
= — = , 33
e [op) 9—¢ ( )
giving
C 2b 2b + b +3
= e ——— c
’ 1—¢€ 9—¢
3 2 1
1—¢€ 9—¢

The transition to subcritical behavior takes place at the same b?/c
as for Method L.

3.3. Results for both methods up to ninth order

The results for this order and higher order (up to ¢°) are
represented graphically in Fig. 5, where we plot the amplitude of
the k = 1 mode as a function of the control parameter €. The lines
represent the stationary (either stable or unstable) solutions for the
amplitude expansion (9); the circles denote the numerical results.
The latter were obtained using a second-order Crank-Nicholson
semi-implicit finite-difference scheme [51,52]. We used a domain
x € [—25m, 257, which was discretized into 2000 points, giving
a spatial stepsize Ax ~ 0.079. Periodic boundary conditions
were used. The initial condition was sinusoidal, with wavenumber
k = 1, and it was integrated with a timestep At = 0.1. For the
stable branch, we started with an initial condition with relatively
large amplitude, which was integrated until the solution was
(almost) stationary. On this state we performed a discrete Fourier
transformation to extract the amplitude of the k = 1 mode. The
points of the unstable branch were determined by finding the
minimal amplitude for which the initial condition grew instead
of decaying; they represent a kind of threshold amplitude. This
threshold was determined manually to an accuracy of 0.01 in 2|¢|.

We see that both expansion methods have difficulty approxi-
mating the “true” bifurcation diagram. To order ¢ they both give
qualitatively correct results, but to higher orders, the quantitative
performance does not improve, and the qualitative behavior actu-
ally becomes worse. This holds in particular for Method I, but also
Method Il starts to show spurious solutions, zeros and divergences.
Most of these problems can be explained, but we shall postpone
that until after we treat the next example, where similar problems
will be encountered.

We do note already at this stage, however, that in Method II
the upper branch of nonlinear stable stationary solutions always
ends rather abruptly in a divergent way. A similar divergence was
also observed in the analysis of nonlinear travelling wave solutions
in parallel viscoelastic flows [14,15]. The present analysis lends
support to the idea that such a divergence is nonphysical, and
simply due to the breakdown of the present mode expansion.
Numerical analysis suggests that the values of € at which these
divergences occur, converge for high orders. The divergences
appear to be related to unexpected zeros in the the highest-
order coefficient in our expansion. However, we have not further
investigated the cause of these divergences, and their possible
significance.

4. Subcritical transition to weak chaos

In this Section, we consider a much richer system, where we
encounter a subcritical transition to weak spatiotemporal chaos
of Kuramoto-Sivashinsky type. Our motivation for doing so is
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the following. As we explained in the introduction, quite often in
complex spatiotemporally extended systems the (weakly) chaotic
or turbulent dynamics is organized around exact spatially periodic
solutions; in parallel shear flows in Newtonian fluids, where this
also happens [13,12], the laminar base flow shows no linear
instability so the phase diagram is reminiscent of that of Fig. 1(c),
what we termed the bifurcation from infinity scenario. Our recent
attempt [14,15] to establish a similar scenario for visco-elastic
fluids using an amplitude expansion for the periodic travelling
wave solutions led us to investigate this approach in a simpler
situation with subcritical spatiotemporal chaos.

The outline of this Section is as follows. We will first present the
“classical” Kuramoto-Sivashinsky equation, and we then construct
an extension of which one can easily convince oneself that it
will show a subcritical transition from the trivial solution to
spatiotemporal chaos. We investigate the phenomenology of this
equation using numerical simulation, and we find that it indeed
shows a subcritical transition. We then apply the amplitude
expansion to the equation, and we find that while Method II
faithfully reproduces the subcritical behavior, Method I seems to
perform rather less well, even if the least stable mode is close
to criticality. A more detailed analysis of both expansions reveals
that the failure of Method I is related to the resonances that
occur in Poincaré-Dulac normal forms for ordinary differential
equations [43,44,4]. This may have implications for the analysis
performed in [14,15].

4.1. Construction of the equation

The Kuramoto-Sivashinsky (KS) equation is a partial differential
equation that has been studied extensively as a model for one-
dimensional spatiotemporal chaos, both as a (crude) model for
physical and chemical processes [19-21,53] and as an interesting
model equation inits ownright [1,53].Itis a fourth-order equation,
given in its “differential” form as

u d%u 0%u u 35
ot Vo O[8)(2_'—”8x' (35)
The coefficients « > 0 and y > 0 can be thought of
as determining a long-wavelength instability («¢) and short-
wavelength dissipation (y) [54].

A linear damping term can be added to this equation, and it can

be rescaled to bring the linear part into “Swift-Hohenberg form”.
The resulting damped or stabilized Kuramoto-Sivashinsky equation
then reads [1,55,56]
du 0%u 5 d%u du 36
TR R o 7 (36)
This equation shows a supercritical (forward) bifurcation to a
regular periodic pattern at e = 0. This state becomes unstable with
respect to secondary instabilities at ¢, ~ 0.7 (depending on the
wave number) [57,55], giving rise to chaotic behavior. For € = 1,
we have the KS equation proper. Our aim is to find a modification
that shows a subcritical transition from the trivial solution to a
chaotic state. Adding a lower-order nonlinearity, as we did for the
Swift-Hohenberg equation in the previous section, does not work.
Instead, we supplement the system with an auxiliary equation,
to obtain the following system of two coupled partial differential
equations:

ou o Zazu u+eu—+ (1 ) ( )u+u8u (37a)
—=———2— — € —of (v —,

ot x4 0x2 0x

0 92

2 _pZY R (37b)
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Fig. 6. Typical behavior of the extended damped KS equation as demonstrated
by space-time plots for u and v. The initial periodic state undergoes a secondary
instability to spatiotemporal chaos, then decays to the trivial state.

where f (v) is a function of v that we will describe below, D > 0
and R > 0 are constants. The rationale behind this construction is
that we would like to have an equation that approximates the KS
equation for relatively large amplitudes, and yet is linearly stable
(that is, for small amplitudes).

The equation for v contains a diffusion term with a diffusion
constant D, which we assume to be large. In the limit D — oo,
we would have v(x, t) constant in x. There is a linear decay term
and a driving term Ru?. Hence, for large D, the auxiliary field v
is effectively determined by (u?)(t), where (-) denotes a spatial
average. Since v is more or less constant in ¥, it effectively modifies
the linear term in Eq. (37a), through the function f (v).

It should now be possible to choose R and f (v) such as to obtain
subcritical behavior. Without loss of generality, we can choose
R = 1. To obtain a linearly stable trivial solution for ¢ < 0, we
require that f (v) = 0 for v = 0.Then, a self-consistent assumption
would be that for the v ~ (u?)(t) corresponding to a chaotic
solution of the original KS equation on a large interval, f ((u?)) ~ 1,
so that Eq.(37a) assumes the traditional KS form. To ensure that the
system does not “run away”, we also require that that for v larger
than some maximal vy, we have f(v) < 0.

An explicit form for f (v) that can meet these requirements is

f(v) =av+bv? witha> 0andb < 0. (38)

In practice, choosing a and b requires some experimentation,
because not only should there be a persistent chaotic solution,
but the regular periodic state that appears first needs to have a
secondary instability that takes it to the chaotic solution. We will
fix a and b, and use € and R as control parameters.

4.2. Phenomenology of the coupled Kuramoto-Sivashinsky-type
equation

Afirst impression of the dynamics of the equation is obtained by
numerical simulation using the NDSolve function of the computer
algebra system Mathematica. For definiteness, we chose D = 40.0,
a=0.125,b = —0.004, ¢ = —0.1 (subcritical), R = 1.0. We used
a domain x € [—12m, 127] with periodic boundary conditions,
and initial conditions u(x,0) = 2.0cosx + 0.03 cos((11/12)x),
v(x,0) = 0.0. The second term in the initial condition for u
serves to ‘precipitate’ the secondary instability to spatiotemporal
chaos. Plots for u(x, t) and v(x, t) are given in Fig. 6, and confirm
the ‘usual’ scenario: first, for sufficiently large initial conditions
with a certain wavenumber, a regular patterned state with a
constant amplitude (not shown in the plot), then this state starts
to show a secondary instability (the wiggles on top of the regular
pattern around t = 250). At some point, a phase-slip occurs,
and a spatiotemporally chaotic state appears. Especially on short
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Fig.7. Diagram summarizing the behavior of the extended KS equation. Squares are
‘threshold amplitudes’, corresponding to an approximate solution that is unstable.
Circles are (at least initially) stable solutions that may show a secondary instability.
The gray dots indicate the amplitude of chaotic states (see text).

domains, such as here, this state is prone to sudden extinction.
Around t = 300 we see such an event nearly happening. Around
t = 450, the pattern completely disappears. If the initial condition
has a lower amplitude (in this case, smaller than about 2) the initial
pattern does not grow but decays; the value 2 is then close to the
threshold amplitude.

For a more thorough and reproducible investigation, we
again used a second-order Crank-Nicholson semi-implicit finite-
difference scheme [51,52]. We investigated the behaviour for a
range of R between 0.0 and 6.0, at ¢ = —0.1 (other parameters
as above). The finite-difference grid consisted of 2000 points on
a domain of length 967 (that is, Ax & 0.151), the timestep was
fixed at At = 0.1. The results are summarized in Fig. 7. Open
squares denote unstable approximate solutions (threshold), the
circles correspond to 2|¢|, with ¢ the amplitude of the k = 1
mode as determined by taking a discrete Fourier transform of the
regular pattern to which the equation initially converges, and their
filling indicates whether the resulting chaotic state is persistent or
transient. All cases are prone to secondary instabilities, but only for
R < 1.1is the pattern with k = 1 unstable. In the other cases, only
lower wavenumber patterns are unstable.

For 1.0 < R < 2.0, persistent spatiotemporal chaos can occur,
and the gray “blobs” in the graph are a rough indication of the
average amplitude of these chaotic states. These averages were
obtained by sampling chaotic waveforms at certain time intervals
and averaging over their root mean square (RMS) amplitudes.*
They are drawn rather large to indicate that on short and
intermediate domains this value can fluctuate appreciably.

For lower R, transient chaos may appear but it will eventually
decay to the trivial solution. For larger R, it will decay to a regular
patterned state, if chaos appears at all.

There is one additional phenomenon that warrants attention.
For smaller diffusion constant (D &~ 10), transient chaos may for
lower R decay either to the trivial solution or to a state consisting
of uniformly travelling pulses. There are single pulses as well as
multi-pulse solutions called bound states in the terminology of
Malomed et al. [58], who observed pulses in a different extension
of the KS equation. As shown in Fig. 8, the pulses that we find
are approximate homoclinic orbits, and their structure resembles
the homoclinic orbit solutions (homoclons) [59] of the complex
Ginzburg-Landau equation and the so-called Shil'nikov loop [44]
(actually, an ‘inverse’ Shil'nikov loop [60,61]: at a certain point in

4 Actually, the symbols denote /2 times the RMS amplitude, to make this
compatible with the 2|¢|, which for the k = 1 mode is also /2 times the RMS
amplitude.

space, as the pulse passes, the field first oscillates, then comes back
to zero again). Such loops appear to be connected to the emergence
of spatiotemporal chaos [62] and strange attractors [44,60,61].

Since secondary instabilities, chaos and pulses are phenomena
that cannot be captured by our amplitude expansion formalism,
we shall not say more about these. The numerical analysis clearly
indicates that our extension of the KS equation shows the behavior
sought for (i.e., a subcritical transition to weakly spatiotemporally
chaotic states), and we proceed to investigate to what extent we
can capture the gross features of these chaotic branches with a
simple mode expansion.

4.3. Amplitude expansion

The extended KS equation that we consider can be reduced to an
amplitude equation because it has a clear separation of time scales
for |e| < 1. The linearly least stable eigenmode of the linear part
of the equation is u(x) = e%, v(x) = 0, which decays as e¢. Of
course, modes with slightly different wavenumber will have only
slightly smaller eigenvalues, but in the spirit of this expansion,
we choose a mode, and perturbatively probe periodic solutions
with the same wavelength. The higher order harmonics that are
generated from the basic mode through the nonlinear interactions
are well separated from the near-critical mode, and therefore, a
description in terms of the amplitude ¢ of the near-critical mode
may work.

For the amplitude expansion, the present equation is consid-
erably more complicated than the generalized Swift-Hohenberg
equation from Section 3: there are two equations, and there are
more nonlinearities. We will carry out the expansion explicitly to
order Cs, and rely on a computer algebra system to go to higher
orders.

First, we have to deal with the fact that here we have two fields
instead of one. A transparent way to deal with this is to consider
the U, and the ul-(’) as vectors instead of scalars. We can then write
the relevant equations as

w(x, t) = (u(x, t), v(x, t))
= p(OY1e™ + ¢ (OY_ e

+Wo(0) + Y [Wa(0)e™ + W (e ™™],  (39)

n=2

where W, = (Uy, V,,) and Y;e"™ is a (near-) critical mode with
Y; = (1, 0). Note that we chose (1, 0) since that is the least stable
eigenvector for the linear part of the system. Furthermore,

Wo(t) = Wo(9) = w |¢> +wi|pl* + - (40)

analogous to the equations from Section 2, but in vector form. We
can also write this in a more ad hoc component notation using

ui(’) and vi(’), especially since there are no eigenfunctions of £ that
involve both the u and the v component. At any rate, there will not
be any “V;” terms.

Including all equations and terms necessary for computing Cs,
we find

d

d(:) =€ +iUop +iUsp" + (1 — €)aVop + (1 — €)aVagp* + - - -, (41a)
dUy

L =(e—DUg+--- 41b
a (e YUo + ( )
du;

o =€ +ig 4 (410)
dV,

—2 =RIpP = Vo+---, (41d)
dt

dv.

— 2 _Rp2—V, — 4DV + - -. (41e)

de
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Fig. 8. For smaller diffusion constants, pulses may arise out of transient chaos. The pulses we find are uniformly translating, they appear to be stable, and they may occur
alone or in groups. The lower two plots show the spatial structure of the single pulse at a fixed time, as a parametric plot in x, for two different projections. The structure is
an approximate homoclinic orbit, reminiscent of a Shil'nikov loop, but reversed. Parameter values used were D = 10.0,R = 0.97,¢ = —0.1,a = 0.125 and b = —0.004.

For an expression for C; we write out the equation for ¢ in terms
of ui(’) and vi(’):

do . .
5 = et iy |p1%¢ + iul |¢12p

+(1—avl1pPo + (1 — )avy [p1¢ + - -- (42)
and we find
G =il +u?) + (1 — e)a@ + vi?). (43)

We can then calculate this using both Method I and Method II.
Expanding the right hand side of Eqs. (41a)-(41e) as well as the
time derivatives, we find to order ¢?

2u€lp)’ = (e — Du’ oI, (44a)
2P ed? = (e — NuY¢? +igp?, (44b)
2v7e|g|* = RlgI* — v |61, (44c)
20 ep? = Rp? — v ¢? — 4Dvi? p2. (44d)
For Method I we solve these equations, to obtain
@ @ i @ R
u = 0’ u - > = T
0 2 To9xe 0 Tt
R
0)
45
2 T 1 24D (45)
and
C ! + (1 —€)aR ! + ! (46)
=—— —€ .
T T9te 142  1+2e+D

For Method Il we put the left hand side of the equations to zero, and
we find

i
(2)
. 2@ =
9—¢€ 0

R
u;” =0, uéz) = R, vf) =1:p D (47)

and

c3=—L+(1—e)aR(1+;>. (48)

9—¢€ 1+D

For higher orders, as mentioned, we have to resort to computer
algebra programs. We will not give explicit analytic expressions for
the coefficients: these can easily be obtained, but they add little to
our understanding of what goes on.

For the values chosen in our numerical analysis (D = 40,R = 1,
a = 0.125,¢ = —0.1) we have compared the amplitude expansion
to the numerics, up to and including ninth order in the amplitude
and this is shown in Fig. 9. It is clear that the threshold amplitude
(that is, up to third order) is predicted quite well by both methods.
At fifth order, however, we clearly see that Method I breaks down
completely—going to higher order does not improve this in any
way, as we already observed for the extended Swift-Hohenberg
equation. Method II, on the other hand, performs very well: both
branches are accurately determined for all values of R shown.

5. Discussion

In the previous sections we analyzed the application of the
amplitude expansion to two different systems in two different
forms. At first sight these results may look rather inconsistent or
inconclusive. Indeed, there is a sharp contrast between the success
of Method II on the extended Kuramoto-Sivashinsky equation and
the complete failure of Method I on that equation.

There are two possible general explanations for this: (i) the
concepts of slaving, separation of timescales and slow manifolds
do not apply to these systems or (ii) the concepts are valid,
but the problem is in the actual approximation of the slow
manifold. In the cases we considered, the problem is definitely
in the actual approximation. That the concept of slow manifolds
is valid, can be seen from Fig. 10. We followed the behavior of
the extended Swift-Hohenberg equation for a variety of initial
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Fig. 9. Comparison of our amplitude expansions Method I and Method II with numerical results. The left plot shows our results up to ninth order for Method I, the right one
for Method II. The numerical data is the amplitude of the k = 1 mode, as obtained by a discrete Fourier transform of the actual waveform, while the expansion data shows
¢ + ¢*, which is 2|¢| for this case. The gray blobs again indicate the amplitude of chaotic solutions (+/2 times the RMS amplitude).

conditions consisting of the k = 1 mode plus some admixture of
harmonics (k = 0, 2, 3), and we separated the spectral content as
a function of time into the basic mode (k = 1) and the harmonics.
To be more specific: starting from the initial conditions, the actual
waveform can be written as

+00

ulx,t) = Z U, (t) explinkx],

n=—0oo

(49)

where U; corresponds to the amplitude ¢. We can now define a
root mean square amplitude of the dominant mode as

Av®) = VUL + U2 = V/2|Uy 2.

The total amplitude is defined as the £, norm of u(x, t) on the
domain x € [—m, 7] at time ¢, so we have

Aotal (1) = [lulx, )|
= \/Ug(t) +2lU1 (D> + 2[U2(O) P + 2[Us (O + - -~ (51)

and we define the effective amplitude of the modes other than
k=1as

Agther(t) = Afotal(t) - A%(t)'

In Fig. 10 we plot on the horizontal axis the amplitude of the
dominant k = 1 mode, A;(t), and on the vertical axis the total
effective amplitude of the other modes, Agther(t), as well as the
approximate fixed points. The coefficients U;(t) were obtained by
numerical integration of the extended Swift-Hohenberg equation
and applying at certain times a discrete Fourier transformation to
the discretized waveform. It is clear that there is a slow manifold
to which all solutions converge, at least between the origin and the
stable nontrivial solution.

What then is the problem with the approximation of this
manifold? What the two methods have in common, is that they
both attempt a power series approximation. While this seems
a natural approach, there is no guarantee that the radius of
convergence of such series is sufficiently large to capture the
relevant amplitudes, or indeed that they converge at all. In fact,
even though we are focusing on a mode expansion - not on a full-
fledged amplitude equation which allows for spatial modulation -
we should keep in mind that amplitude descriptions are typically
asymptotic methods, that is, the radius of convergence is formally
zero and beyond some point, the results get worse as more terms
are included in the expansion [63].

That power series expansions in amplitude approaches are
problematic, was realized earlier by Herbert [31], who attempted a
high-order amplitude expansion for the nonlinear stability of plane
Poiseuille flow, and by Fraser [26] in the context of slow manifolds

(50)

(52)

Slow manifold for the extended
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0.3 |r
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Fig. 10. Existence of the slow manifold for the extended Swift-Hohenberg equation
(14) with e = —0.05,b = 1.5,¢c = —1.0, on adomain x € [—, ], with t running
from 0 to 20. Along the horizontal axis we plot the amplitude of the k = 1 part of the
solution as a function of time, while along the vertical axis the effective amplitude of
all other harmonics is plotted, see text. Solutions clearly converge to a slow manifold
for a variety of initial conditions. The open circles indicate (approximate) stationary
solutions.

for chemical kinetics, without, however, giving a satisfactory
explanation for the occurrence of these problems.

More insight into this can be gained if we realize that, at
least formally, the amplitude equation (9) may also have complex
solutions, even though they are not physical (the amplitude
equation can be separated in a part for the modulus and the
argument of the complex amplitude, and these solutions would
correspond to a complex modulus). Looking then at Fig. 11, we
see that problems, such as the spurious zero in the left panel (¢ =
—1/3) and the spurious divergence in the right panel (¢ ~ 0.52),
are literally connected to these complex solutions.

5.1. Method I: Connection to normal forms and resonances

For Method I, an interpretation can be given in terms of
Poincaré-Dulac normal forms. Although the method is not strictly
the same as a normal form reduction, the underlying idea is the
same: to find a nonlinear coordinate transformation that simplifies
the system such that nonlinearities essentially only occur in
one variable [43], in our case the amplitude ¢. However, such
transformations suffer from resonances: if eigenvalues of the linear
part of the equation satisfy certain relations, the method breaks
down, and this appears to be precisely what happens here. The
first example of this can be seen in our expansion to order ¢3:
the explicit expansion of the time derivative of mode Uy causes

the denominator of the corresponding coefficient uéz) to be zero
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Fig. 11. Results for the amplitude expansion of the extended Swift-Hohenberg equation with b = 1.5 and ¢ = —1.0, for Method I and Method II. Now, also the complex

(unphysical) solutions are included. Note that the order is different for both methods (orders 5 and 7, respectively). The complex solutions for method I are clearly connected
to the resonances discussed in the text. For method II, the complex solutions are related to (unphysical) divergences in the amplitude that are caused by spurious zeros of
the G; as functions of €. The connection to the subcritical “nose” of the bifurcation diagram is of course correct, and unavoidable.
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Fig. 12. Results for Method II applied to the extended Swift-Hohenberg equation,
up to order ¢?', without distinguishing the different orders. We clearly see
problems at € = 1.0 and € ~ 0.5. However, the behavior of the expansion suggests
that for € < 0.5, the series does converge and has a finite radius of convergence,
roughly indicated by the gray area, which is a guide to the eye.

at ¢ = —1. This becomes more severe for higher orders: for
example, for 0(¢>), a term with denominator 3¢ + 1 appears,

when on the left hand side of Eq. (23) a term 4u(()4)01 |¢|* occurs.

Zero denominators lead to infinite values for coefficients uf), and
hence to unwanted infinities in the G, leading in turn to spurious

zeros for the amplitude ¢. The resonance condition corresponding

to the ugl) case would be o7 = 407 + 0y, and the resonance
is then of order 5 [43]. Indeed, looking back at Fig. 5, we can
clearly see the resonances “marching in” from the left, at ¢ =
-1,-1/3,—-1/5, —1/7, ... as we go to higher order.

In fact, even if the resonances occur at € substantially away
from the region of interest, these resonances may destroy the
approximation. Already in Fig. 11, we see that the “nose” of
the diagram is “pulled down” by the complex connection to the
resonance. This is even more dramatic in the case of the application
of Method I to the extended Kuramoto-Sivashinsky equation:
although for order O(¢°) there is only a resonance at € = —1/4,
already for e = —0.1 the approach completely breaks down, in the
same way as for the extended Swift-Hohenberg equation.

5.2. Method II: Convergence and spurious zeros

For Method II, these resonances do not occur since the time
derivative is not expanded, and no higher multiples of ¢ occur.
However, for the extended Swift-Hohenberg equation we clearly
see two problems: there appears to be a finite range in ¢ that

can be reliably approximated, and there appear spurious solutions
and spurious behavior, for example the unphysical solution in the
upper left corner of Fig. 5 or the sudden increase of the amplitude
fore ~ 0.5.

The first of these problems has to do with the convergence of
the method. It is not clear whether the expansion converges at all.
However, Fig. 12 indicates that the series may actually converge.
We plot the stationary solutions for expansions up to and including
order ¢?!, without distinguishing the different orders. The results
are consistent with a finite radius of convergence that depends on
¢, and would be around |¢| ~ 0.8 for ¢ = 0. This, however, is
still smaller than the amplitude of the nontrivial stable stationary
solution, and this stable branch cannot be captured numerically
accurately by pursuing the expansion to high order. Despite the
indications that the series may converge, it is difficult to actually
show this. The coefficients C; seem to jump around unpredictably,
atleast in the subcritical region of interest, and simple convergence
tests do not apply. More sophisticated methods such as Padé
approximants [63] may be able to shed more light on this, and
for reference we have listed numerical values of the coefficients
in Appendix, for Method II as well as for Method I.

In any case, the expansion clearly does not get us very far
since (i) the Uy mode has a relatively slow linear decay, and
(ii) it has a rather large forcing through the u? term. Both aspects
are important, and simple linear considerations cannot predict this
behavior.

Then there is the problem of spurious divergences in the
amplitude, as in the right panel of Fig. 11. Clearly here too
the spurious behavior is associated with an unphysical complex
solution. This behavior is caused by unexpected zeros of the
coefficients C;: these coefficients depend on € and for certain values
of €, one or more of the ; becomes zero. If the highest C; at the
order we are considering becomes zero, that leads to an unphysical
infinity of the amplitude. It is not a priori clear where these zeros
occur, or what precisely causes them. One way of dealing with this
problem would be to explicitly remove the € dependence of the
C; by taking € — 0 after calculating the coefficients and keeping
€ only in the linear part of the amplitude equation. However, that
does not solve the convergence problem, and it still may limit the
range in € that can be covered.

5.3. Methods without power series

Especially in problems of chemical kinetics (such as combustion
and reactive flows) methods have been devised to circumvent the
problems with power series expansions of the slow manifolds.
These sophisticated methods are quantitatively accurate, and
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Table A.1
Coefficients for subcritical Swift-Hohenberg equation, Method I, for different €.
e=—-14 e=—-04 e =0.0 e=04

Cs —24.9079 12.5233 6.5 3.90729
Cs 86.5722 1693.07 —166.961 —50.3805
G 237.125 105095 6936.5 546.23
Cy —51001.3 9.82861 x 10° —465375 —7930.86
@ 1.96347 x 10° 9.62723 x 108 4.09738 x 107 133298
T —5.59912 x 107 1.02842 x 10! —4.34026 x 10° —2.44041 x 106
Ciis 1.34439 x 10° 1.14367 x 1013 5.28829 x 10! 4.72549 x 107
Ci7 —2.76036 x 10'° 1.31755 x 10'® —7.21751 x 10"3 —9.51949 x 108
Cio 4.63707 x 10" 1.55593 x 10'7 1.0847 x 10'6 1.9749 x 100
Ca —5.3405 x 10" 1.87464 x 10 —1.77413 x 10'® —4.19115 x 10"
Table A.2
Coefficients for subcritical Swift-Hohenberg equation, Method I, for different €.

e=—-14 e =-0.4 e =0.0 e=04
(& 1.18269 3.90729 6.5 12.5233
Cs —14.5037 —32.6767 —49.2383 —52.3656
G 33.3087 62.0359 7.16139 —406.853
Cy —32.7639 206.779 893.679 —3447.39
Cn —98.0557 —1294.58 1277.23 —18512.5
Ci3 509.173 —1922.02 —32780.8 122961.
Cis —730.749 32236.7 —126699. 5.40599 x 108
Cy7 —2184.14 —6537.84 1.38485 x 10° 9.11323 x 107
Cio 13516.4 —841285. 9.92885 x 10° 9.49964 x 108
Ca —21533.6 1.63677 x 10° —5.66105 x 107 3.11774 x 10°

are often based on an iterative scheme of some kind [26].
However, our aim is different: eventually we would like to apply
amplitude expansion methods to fluid dynamical problems which
are defined by two- or three-dimensional partial differential
equations. It is not a priori clear that these iterative schemes can
be successfully generalized to partial differential equation without
the computational cost becoming excessive. Furthermore, we do
not necessarily aim at a quantitatively accurate answer; we would
in principle just like to know whether a finite-amplitude instability
is to be expected for a given system. These approximation schemes
do not seem an obvious choice for that purpose.

6. Conclusions

In this paper, we have explored two explicit implementations
of an amplitude expansion method for partial differential equa-
tions with a clear separation of timescales, with the aim of getting
some insight into the interpretation of results of such expansions
in complex spatiotemporal problems where one suspects a sub-
critical bifurcation or a bifurcation from infinity [15]. We have in-
vestigated and tentatively discussed the limits of the applicability
of the methods by applying them to two different systems with a
subcritical nonlinear instability. While the methods cannot in gen-
eral be used for obtaining quantitatively accurate nontrivial sta-
tionary solutions, and even the qualitative performance may com-
pletely break down at high orders in the amplitude, the methods
(in particular the one we call Method II) can be of good use if one
needs limited, qualitative information, and provided it is applied
with caution. Most importantly, for low orders in the amplitude
(third or fifth order) Method II gives robust results when it comes
to predicting the possible existence of nonlinear (finite-amplitude)
instabilities. This works because the concept of the so-called slow
manifold is meaningful for these systems and, at low order in the
amplitude, the method does not yet run into the problems associ-
ated with high-order amplitude expansions.

By comparing Methods I and II with the exact solutions
for simple model equations, where such solutions could be
found without much effort, we wanted to assess whether those
methods could be used for predicting exact non-linear states in

hydrodynamic problems, especially in parallel shear flows of both
Newtonian and viscoelastic fluids. There, exact states are often
travelling waves of the form v = v(x — ct), where c is the
wave speed of the solution. Our present analysis focuses on
stationary bifurcations (c = 0) and therefore cannot be applied
immediately to traveling waves. It would be of interest to
extend our analysis - and in particular method II - to nonlinear
travelling waves like those studied in [15]. In the cubic and quintic
complex Ginzburg-Landau equation for travelling waves near the
supercritical or subcritical instability scenarios of Fig. 1(a) and (b),
the “renormalization” of the wave speed c and the group velocity
vgr with amplitude is a well-known phenomenon [64] and occurs
through the imaginary parts of the coefficients in these equations.
This procedure is very much like that in method I and this suggests
that the extension of our method I to travelling waves will proceed
along similar lines as the analysis in this paper. A preliminary
study in the context of the viscoelastic flow problem [ 15] indicates,
however, that a straightforward extension of method II to traveling
waves that bifurcate off infinity (the scenario of Fig. 1c) is highly
nontrivial and may even be impossible.
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Appendix. Coefficients for the extended Swift-Hohenberg
equation

Tables A.1 and A.2 list the numerical values for our expansion of
the Swift-Hohenberg equation up to 21st order in the amplitude,
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for different values of the control parameter ¢, for both Method I
and Method II. We again used b = 1.5, ¢ = —1.0, for both
methods.
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