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A scheme introduced recently for the description of non-linear hydrodynamic fluctuations of a 
one-component fluid is extended to the case of a two-component charged fluid. The random 
fluxes which are introduced are assumed to be Gaussian processes with white noise. It is found 
that the usual expressions for the systematic parts of the dissipative fluxes are only consistent 
with this assumption, if the Onsager coefficients are constant. 

1. Iutroduction 

In most approaches to hydrodynamic fluctuation theory, one writes the 
dissipative fluxes as the sum of a systematic part and a random part, which is 
usually assumed to be a random variable with Gaussian white noise’). The 
consistency of such a procedure can easily be checked if one restricts oneself 
to the case in which all equations are fully linearized. However, the above 
approach has usually also been followed in mode-mode coupling calculations; 
in this case, some non-linear terms (usually the convective ones) are retained 
in the analysis. The limitations to the use of this kind of non-linear equations 
for the fluctuations are less wellknown. This led Van Saarloos, Bedeaux and 
Mazur3*4*s) to investigate in two recent papers, to be referred to as papers I 
and II, whether a hydrodynamic fluctuation theory, based on the splitting of 
the dissipative fluxes into systematic and random parts, can be consistently 
set up if one wants to retain all non-linearities. It was concluded that the 
non-linearities due to the presence of reversible convective terms and also to 
the non-linear functional dependence of the thermodynamic functions on the 
state parameters, can all be taken into account. However, there is a severe 
restriction to be imposed on the phenomenological laws for the dissipative 
fluxes, in order to make such a fluctuation theory consistent. Thus, although 
the expressions for the dissipative fluxes are of the usual form found in 
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thermodynamics of irreversible processe@), they are more restricted in that 
the Onsager coefficients (i.e. the viscosities divided by the temperature and 
the heat conduction divided by the temperature squared) should be constants. 

The analysis in papers I and II was based on the equivalence of the 
stochastic differential equations with Gaussian white noise with a Fokker- 
Planck equation. However, the derivation of a Fokker-Planck equation for 
fields is beset with divergency problems inherent in a continuum description. 
To circumvent these, the hydrodynamic equations were discretized first 
according to certain rules, and the continuum limit was only taken in the final 
stage of the calculation. These discretization rules were formulated for 
conserved variables. In the present paper, we investigate a simple case in 
which the state of the system cannot be characterized by conserved variables 
alone: a fluid system consisting of two charged components, in which 
polarization and magnetization effects can be neglected. It is indeed found 
that similar restrictions on the phenomenological laws have to be imposed as 
in the case of an uncharged one-component fluid. 

In section 2, we recapitulate the macroscopic equations describing a charged 
two-component fluid. In section 3 we introduce the stochastic differential 
equations and give the correlations for the random fluxes. On the basis of the 
assumption that these random fluxes are Gaussian, we obtain in section 4 the 
Fokker-Planck equation equivalent with the discretized stochastic equations. 
The form of the dissipative fluxes in the continuum limit, consistent with the 
assumptions made for the random fluxes and the known equilibrium distribution 
for the hydrodynamic variables, is obtained in section 5. Finally, in section 6, we 
indicate how the linear response analysis of paper II can be extended to the 
present case. The relevant fluctuation dissipation theorems for the response to 
an external electric potential are listed. 

2. Fundamental macroscopic laws 

In this section we recapitulate the thermodynamics of irreversible pro- 
cesses for a binary charged mixture in the presence of an electromagnetic 
field. The mixture will be assumed to be unpolarizable and unmagnetizable. 
The total charge of the system will be assumed to be zero. 

For the case under consideration the following conservation laws of mass, 
charge, momentum and energy, hold6) 

g=-V.p, 

aPe= 
at -V - p,v - V - i, 

(2.1) 

(2.2) 
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$=-v.O.u+p-T)-v.zl, (2.3) 

ae, _ at--v*{(e,-fE'-;B*+p)u+cE A B}-t'-(J+n-u). (2.4) 

Here p is the mass density, pc the charge density, g the total momentum 
density of matter and field, u the velocity, j( = pv) the momentum density of 
matter, p the hydrostatic pressure, T Maxwell’s electromagnetic .stress tensor, 
e, the total energy of matter and field, E and B are the electric and magnetic 
field in Gaussian units, and c is the velocity of light, while i, If and J are the 
dissipative fluxes, the conduction current, the viscous pressure tensor and the 
heat current, respectively. The total momentum density g and the momentum 
density of matter are related by 

g=j+iEnB, (2.5) 

and Maxwell’s stress tensor is given by 

T=EE+BB-~(E~+BQ~, (2.6) 

where U is the unit matrix. 
For a complete description the above conservation laws have to be sup- 

plemented with the phenomenological laws for the dissipative fluxes and the 
Maxwell equations, which in the present case may be written as 

aE 
at- - cV A B - p,u - i, (2.7) 

aB 
at- --cVAE, 

V - E = pe, (2.9) 

v-B=O. (2.10) 

In thermodynamics of irreversible processes the phenomenological laws are 
established on the basis of the expression for the entropy production. Of 
course, eqs. (2.2) and (2.7)-(2.10) are not fully independent. If we take the 
divergence of eq. (2.7) and use eq. (2.2), we obtain aV - E/at = ape/at; similarly 
eq. (2.8) implies that aV * B/at = 0. Hence, if eqs. (2.9) and (2.10) are obeyed 
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initially, eqs. (2.2), (2.7) and (2.8) ensure that they are obeyed at all later times. 
We will therefore in this paper consider eqs. (2.2), (2.7) and (2.8) as the basic 
equations describing the time dependence of E, B and pe, while eqs. (2.9) and 
(2.10) will be viewed as equations prescribing initial conditions for these 
fields. The balance equation for the entropy density s, may be derived from 
the above equations and the Gibbs-equation, written in the form 

Tds,=du,---- “z: : rz2 dp, - 
k;11 ;1’2 dp, (2.11) 

1 2 

where T is the temperature, and where ~1, p2, z1 and z2 are the chemical 
potentials and the charges per unit mass of components 1 and 2, respec- 
tively*, while the internal energy density u, is given by 

u, = e, - (ipu2 + iE2 + $B2). 

One obtains 

(2.12) 

(2.13) 

where Jd, and J$ are the diffusion flows of component 1 and 2, and where the 
entropy production u is given by** 

(2.14) 

In thermodynamics of irreversible processes, the entropy production is writ- 
ten as a bilinear expression in the fluxes and forces. In the present case, the 
fluxes are 

. 
1, l-2 and J; 

on the basis of eq. (2.14), one therefore associates 
with 

and 

(2.15) 

the thermodynamic forces 

(2.16) 

*One immediately obtains eq. (2.11) from the more familiar form, viz. T ds, = 
du,- p, dp, - pL2dpZ (where p, and p2 are the mass densities of components 1 and 2) by 
transforming to the variables p = p, + p2 and pe = z,p, + .z*pz. 

** We have eliminated the diffusion flows Jd, and Jd2 from the expression for u given in ref. 6 
with the aid of the equations i = zlJd, + zlJdl and J,,, + Jdr = 0. 
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From these identifications and using symmetry considerations (the Curie- 
principle), the usual linear laws are obtained. We will not give these expres- 
sions, as it is the purpose of this paper to derive the appropriate laws for a 
fluctuating system. This will be discussed in the next sections. 

3. Stochastic diilerential equations 

As discussed by Landau and Lifshitz’), one may obtain fluctuating equa- 
tions for the case under consideration by writing the dissipative fluxes ZI, J 
and i as the sum of systematic and random parts, 

n=ns+nR, J= J”+JR, i = i”+ iR, (3.1) 

where the quantities with a superscript s obey phenomenological laws in 
terms of the fluctuating variables and where the quantities with a superscript 
R are random variables with zero mean, 

n”(r, t) = 0, JR(r, t) = 0, iR(r,=o. (3.2) 

Here we have employed the notation of paper II to denote an average over an 
ensemble of random forces of systems with the same initial conditions for the 
hydrodynamical and electromagnetic fields by a bar. 

In order to form a closed set of stochastic equations, the phenomenological 
laws for the systematic parts in eq. (3.1) should be specified, as well as the 
correlations of the random parts. * We will not specify the phenomenological 
laws as yet, as it is the aim of this paper to investigate which form of the 
phenomenofogical laws is compatible with the assumption that the random 

fields IIR, Jt and iR are Gaussian variables with correlations which are 
delta-correlated in space and time. 

The above assumption, together with symmetry considerations, fully 
determine the correlations of the ‘random forces’. Since quantities with a 
different tensorial character cannot be correlated, one immediately finds that 

JR(r, t)nYr’, t’) = 0, i”(r, t)nR(r’, t’) = 0. (3.3) 

In view of the isotropy of the system, the non-zero correlations must be of 
the form (the factor 2k, where k is Boltzmann’s constant, is introduced for 

* Moreover, because of the presence of the term V * (If - u) in the energy equation, one must 
also specify whether the stochastic equations are interpreted in the It6 or in the Stratonovich 
sense’). One may show that either of the two interpretations lead to identical results. As the 
analysis is completely analogous to the one in paper II, where this point is discussed in extenso, it 
will not be given here. Throughout the rest of this paper, we shall adopt the Stratonovich 
interpretation. 
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convenience) 

JT(r, t)Jt(r’, t’) =2kL,,Sj$(r - r’)6(t - t’), (3.4) 

JT(r, t)if(r’, t’) = 2kL,&$(r - r’)S(t - t’), (3.5) 

iT(r, t)i?(r’, t’) = 2kL&&(r - r’)S(t - t’), (3.6) 

(3.7) @(r, t)IZ&(r’, t’) = 2kI+&(r - r’)6(t - t’) 

In these equations, the coefficients L, L,, Lii, L,, and Lqi are phenomenologi- 
cal constants; they do not depend on the fluctuating fields, but may depend on 
the equilibrium quantities of the system. 

In the next section we obtain the Fokker-Planck equation corresponding to 
the above stochastic equations on the basis of which we derive the form of 
the phenomenological laws compatible with the assumptions made in this 
section and the known equilibrium statistical properties of the system. 

4. The Fokker-Planck equation 

It is well known that one may derive in general a Fokker-Planck equation 
from a set of stochastic differential equations of the Langevin-type if the 
noise is Gaussian and white. However, if one tries to derive a Fokker-Planck 
equation from the stochastic differential equations introduced in the previous 
section, one encounters difficulties in the interpretation of some terms in this 
equation as a consequence of the fact that we are dealing with fields. The way 
to avoid these difliculties, which was employed in papers I and II, is to start 
with a derivation of a Fokker-Planck equation corresponding to an analogous 
set of stochastic differential equations for a discrete set of variables, and to go 
over to the continuum limit only in the final stage of the calculations. We will 
now carry out this program explicitly along the lines set forth in papers I and 
II. 

To arrive at a discrete set of variables, we discretize the system in 
coordinate space by dividing the system into cubic cells of size A3. The 
position of a cell is denoted by r = nA, where A is a vector of which the 
components are integer numbers. To every field-quantity considered before, 
there now corresponds a variable defined on the cubic lattice. For instance, 
p,(t) and g.(t) are the mass-density and the total momentum density in the 
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cell with position r = nA, which converge in the continuum limit to the fields 
p(r, t) and g(r, t). The other variables are defined in an analogous way. 

The discretized variables are now postulated to obey equations of motion 
which are of the same form as the equations of the field variables, and which 
indeed reduce to these equations in the continuum limit. These equations are 

ap,=_v 
at 

I * P”U”, (4.1) 

apen _ - - - V, - P~,~u. - V, - i,, 
at 

(4.2) 

af3, _ 
,,--v:(i.o.+p.-T,)-v;n,, (4.3) 

ae,, 
at = - v. ’ KG,” - ;E2, - ;Bf + pn)u. + cE, A B,} - V. * (J. + H, * u,), 

(4.4) 

aE 
- = cv, A B, - P~,~u. - i,, at (4.5) 

a& _ 
at- -cV, A E.. (4.6) 

In these equations, action of the discrete gradient operator on an arbitrary 
quantity A, is given by 

V.A, = 2 & [A,+, - &-,I, (4.7) 

where the &i’s are unit vectors along the Cartesian axes. These equations have 
to be supplemented with the discrete analogues of eqs. (2.9) and (2.10), viz. 

vm - Em = pep, (4.8) 

v, * I?” = 0, (4.9) 

and the equations for the fluxes f7,, J. and i.. The discrete analogue of eq. 
(3.1) is 

n,=n;+zr:, J” =JB,+JZ, i. = ii + i:. (4.10) 

The random parts are again Gaussian random variables with zero mean. In 
analogy with eqs. (3.4)-(3.8), we may write the correlations of these variables 
as 

I~~(t)J;.Jt’) = 2kL,SfiA-3S,,zJ(t - t’), (4.11) 

JfJt)iEJt’) = 2kL,i~tiA-36,,.S(t - t’), (4.12) 
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iFm(t)iF(t’) = 2kLi$jkA,d3S,,,S(t - t’), 

IT~(t)II~(t’) = 2kLju,A-3S,,,S(t - t’). 

(4.13) 

(4.14) 

It should be emphasized that the above discretized equations are pos- 
tulated; they cannot be derived from the field equations. In fact, one can 
introduce different discretized equations which also reduce to the field equa- 
tions in the continuum limit but which would lead to different results in the 
analysis given below. For reasons discussed in papers I and II, the most 
convincing scheme appears to discretize the conservation equations for the 
conserved hydrodynamic variables. It is for this reason that we will take 
below p, pe, g and e, as our basic hydrodynamic variables. The fields E and B are 

of course not conserved. However, eqs. (4.5) and (4.6) appear to be the natural 
discretized analogues of eqs. (2.7) and (2.8), and, as will turn out later, our 
conclusions concerning the phenomenological laws would not be affected if eqs. 
(2.7) and (2.8) would be discretized in a different way. 

We will now derive the Fokker-Planck equation for the density distribution 
function P of the variables p, pe, g, e,, E and B. To do so, it is convenient to 
write these variables as the components of a vector 

a, = (P,, L,., ev,“, g,, E,, B,), 

so that 

a1.n = P.9 a2.n = Pew a3,. = cn9 (4.15) 

a3+j,n s gj,u a6+j,n 3 Ej,w ag+j,n E Bj,mv (for j = 1,2,3). 

With the aid of this notation, we may write eqs. (4.1H4.6) together with (4.10) 
in the compact form* 

Here FE’, and Fz” denote the reversible and irreversible parts of the rates of 
change of the quantities CQ,, respectively. Comparison with eqs. (4. Q-(4.6) 
and (4.10) shows that for eq. (4.16) to be equivalent with these equations, we 
need to define 

Fy; = - V. l pnv., Fsf; = -V. . pc,nv., 

Fyi = - V, 9 [(e,, - %EZ, + B3 + pnh + cE, A B,l, 

FF~,m = - [vm * Cjm~rn •t Pn - Tn)Ij, (4.17) 

F;;,n = c(v, A B,)j - ~c.nxj, F?Y,n = - c(vm h &I, 

* From here on, Greek indices run from 1 to 12, whereas Latin indices can vary from 1 to 3. 
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and 

F+O, FFm = - V, * ii, 

F&=-V~*[II:*u.+J3, Fi;‘+j,n s - (V, * IIDj, (4.18) 

Fi& = - ii,., F~,, ~ 0. 

The quantities MBv8,nng and the ‘random forces’ ffi., give account of the 
stochastic source terms in the conservation equations and the Maxwell 
equations. There is some freedom in choosing these quantities such that these 
terms in eq. (4.16) coincide with the stochastic terms in eqs. (4.1X4.6). We 
will take 

M,,,* s - Vj,mS,, M3jw = - %,dv j,mL’ 

M 35j.m’ E - Vj,mSma, Mc3+j)kl,nn* T - Sj~Vk,nL* (4.19) 

M~~+j~~nn’ E - a&n* 

and 

frk,. = II:,., f4j,n E iG, f5j.n E Jr”* (4.20) 

The other elements of Msya,.., and fsv,. are all zero. In view of eq. (4.20) the 
random forces f also have zero mean; if we write their variances as 

f~*“(r)fsr,.0’) = 2A,,,“JQ - 0, 

we may identify the nonzero elements of A from eqs. (4.11X4.14) as 

Ajklm,m’ s kLju,A -38nn’, 

A sjsl.ns’ s kI-&-3&L*, 

&j41,nd s kLiiA-3Sj$,*, 

A+sl,nn’ = As14j,+n’ E kL~iA-3Sr,S,,~. 

(4.21) 

(4.22) 

We now turn to the derivation of the Fokker-Planck equation for the 
density distribution P({a.}, t) in the “phase space” of of discretized variables. 
Since we viewed, as explained in section 2, eqs. (2.9) and (2.10) as initial 
conditions to be satisfied by the solutions of ‘eqs. (2.1X2.8), we will also 
tacitly assume that the distribution functions we consider are consistent with 
the initial conditions (4.8) and (4.9). As is well known’), the stochastic 
differential equations (4.16), interpreted in the Stratonovich sense, are 
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equivalent to the Fokker-Planck equation 

With the aid of the identity* 

z, 5 MB.y,s,,n”n,~Aysy,s.,n,n~(~” MBys.nn~) = 0, 
If+ y’s’ 

B’ 

(4.24) 

which follows in a straightforward way from the explicit expressions for A4 
and A, the Fokker-Planck equation (4.26) can be rewritten in the form 

Here we have introduced the matrix II,,.,,,. defined by 

(4.25) 

(4.26) 
8 

For the elements of this matrix, one finds with the help of the explicit 
expressions (4.19) and (4.22) 

D 22,M’ = kLiiAe3V, * V,,S~.*, 

D 23.m’ - - D32.n’n = kL,iA-3Qv, . V,,S,,,, 

D~+i),nn’ = Dc6+i~,n’n = kLA-3V~,n~~~~, 

D 33,““’ = kL,,A-‘V, - V,.S,,t + 2kLA-3V,v, : ~ss,,,s 

+ kL,A-3V.S’, : v.vn&~, 

%+i),nn’ = %+jp,n*n = kA-3(2LV, - V,.a:.S,,. + L,V,V,, - v&~,)~, 

&.+j),nn = &+j)3,n’n = kL&-3Vi,.Sm,~, 

(4.27) 

*As eqs. (4.19) show, only M3Panf depends on the variables; this is a consequence of the 
appearance of the 0 * (lTR * u) term ‘in the energy equation. Since this term is the same as in the 
pure hydrodynamic case (no electromagnetic fields), we refer to appendix A of paper II for an 
explicit verification of eq. (4.24). As is also discussed there, it is this equation which ensures the 
equivalence of the ItB and Stratonovich interpretations in this case. 



FLUCTUATIONS IN CHARGED FLUIDS 227 

D (3+jM3+k),mm' = D(3+kX3+j),n'n = kA-3(LUV, . V.,S,, + (L, + fL)V,V,.S,&, 

Df6+j)(6+k).ru’ = &+k~6+j),n’n = kL@-3L~~ 

All the other elements of D are zero. In these expressions, the discrete 
gradient-operators act on all factors at their right. 

The Fokker-Planck equation can be rewritten once more, using the fact 
that 

(4.28) 

To verify this equation, one should notice that for p = 1 - 6, FE’, does not 
depend on the variables (Y, in cell n, due to the definition of the gradient 
operator (cf. eqs. (4.17) and (4.7)). In taking the derivative with respect to Ei,, of 
FgJj,,. the field B, is kept fixed. Hence the term arising from curl B in F$:j~,~ does 
not contribute in taking this derivative (of course this term also vanishes as a 
consequence of the definition of the discrete gradient operator); for similar 
reasons the term arising from curl E in taking the derivative of F$Jjj,m with 
respect to Bj,, does not contribute. To evaluate the contribution from the term 

- Pe,nrj,n in F&,,; we have to write ui,” in terms of our basic variables (Y,, i.e. 

=_!a 
[ aim - c -1 

at,” ’ 
3 ~jkP(6+k),nq2+l),n 9 1 

(4.29) 

Here l ikl is the Levi-Civita symbol. One easily sees that the derivative of the 
right hand side of eq. (4.29) 
establishes the result (4.28). 
expressions for D, that 

with respect to a(6+j),l vanishes. This finally 
Similarly, one may show from the explicit 

(4.30) 

Using eqs. (4.28) and (4.29), we may rewrite the Fokker-Planck equation (4.25) 
in the form 

ap (W, 0 
at =IsF [-FE:&+& 

’ ( - Fb + 2 2 %I~.~~~ &)]P({am}, t). 
“’ p’ B’.“’ 

(4.31) 

In the next section, expressions for the systematic parts of the dissipative 
fluxes will be obtained from this Fokker-Planck equation. 
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5. The form of the dissipative currents 

VANSAARLOOS 

We will now obtain the form of the dissipative currents, compatible with 
the assumption made in section 3 for the random fluxes. We will require that 
the solutions of the Fokker-Planck equation satisfy detailed balance. This is 
ensured for a Fokker-Planck equation of the form (4.31) if the following two 
conditions are fulfilled*) 

(5.1) 

(5.2) 

Here Peq is the equilibrium distribution for the variables an. The above 
conditions will be analysed in the continuum-limit, in which the discretized 
variables (Y, approach to the fields a(r). In this limit, the terms FE’, converge 
to the reversible parts of the rate of change of the fields a(r), e.g. 
lim,, FTi = - V . p,(r)u(r). We will therefore write 

lim FK’, = Fr(r), (5.3) 
A4 

where Fr(r) is the rate of change of a(r) in the ideal case (no dissipative 
effects). With this notation, eq. (5.1) becomes in the continuum limit 

(5.4) 

Here S/&+,(r) denotes a functional derivative. According to eq. (5.4) Pq must 
depend on the variables a via quantities that are conserved in the case of 
ideal flow.* In particular, the Einstein equilibrium distribution for a materially 
and energetically isolated system, 

P”({a(r)}) - eS(C(r)JWk, 

where S is the total entropy of the system, defined by 

(5.5) 

S(&(r))) = 1 dr s,(r), (5.6) 

obeys eq. (5.4) since the total entropy is conserved in the case of ideal fluid 

* In the pure hydrodynamic case’*“), where we had Poisson-bracket expressions for Fr, the 
analogous statement was that Peq should be a stationary solution of the Liouville-equation. In this 
connection, it should be noted that the first condition is only valid in the form (5.1) if eq. (4.28) holds. 
The latter equation expresses the incompressibility of the ideal flow in phase space. (cf. paper I, 
section 4). 
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flow. We will base our subsequent discussion on the equilibrium distribution 
(5.5). 

The second condition, (5.2), determines the form of the dissipative fluxes. With 
the definitions 

F:(r) = lim Fg”, D&r, r’) = lii Dsev,..o, (5.7) 
A-4 

we may write eq. (5.2) in the continuum limit as 

(5.8) 

From the definition (5.7) and (4.18), one obtains for F:(r) 

F$(r) = 0, Fy(r) = -V * i”(r), 

Fir(r) = - V * [W(r) * u(r) + J”(r)], (5.9) 

Fkj(r) = -i;(r), F&(r) = 0, 

while, according to eqs. (5.7) and (4.27), the non-zero elements of Daa(r, r’) are 
explicitly given by (as before, the gradient operators act on everything to the 
right of them) 

Du( r, r’) = kLiiV l V’S( r - r’), 

Du(r, r’) = D&r’, r) = kLqi V * V’S(r - r’), 

Dzca+j$r, r’) = Dth+jp(r’, r) = kLEV$(r - r’), 

D&, r’) = kL,,V l V’6(r - r’) + 2kLVa(r) : ~‘u(r$(r - r’) 

+ kL,V’V : o(r)o(r’)b(r - r’), 

&+j)(r, r’) = Do+dr’, r) 
I 1 

= k(2LV’ *Vo(r)S(r - r’)+ L,V’V - u(r)S(r - r’))j, 

Dxa+j)(r, r’) = D(6+m(r’, r) = kL,iV$(r - r’), 

Do+rXr+&, r’) = Do+kW3+i)(r’, r) 

(5.10) 

= k 
( 
LUV l V’S(r -r’)+(Lv+iL)VV’G(r-r’))i*, 

D(6+jxbtk)(r, r’) = Dce+kx&r’, r) = kL&d(r - r’). 

To determine the derivatives of the logarithm of the equilibrium distribution, we 
write the entropy density as a function of our basic variables a(r) with the aid of 
eq. (2.12): 
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s,(r) = S”(U”9 P, P3 
=s ( e _~(g-c-‘EAB)* 

” ” 2 P 
--~~*-~B*,p,p~). (5.11) 

From eq. (5.11) and the Gibbs-equation (2.1 l), we now obtain for the deriva- 
tives of the equilibrium distribution (5.5), which are used in the evaluation of 

eq. (5.8), 

SlnPWCk_, 6s 1 

Wr) se,(r) 
= k-’ I’ 

6 In PCs =k-, SS -_=- 
h+j(r) &j(r) 

k-1 t)io 
T(r)’ 

S1nP”P_k-L a’ __ 
hs+j(r) SEj(r) 

k_, E(r) + c-b(r) A B(r) 
T(r) 

(5.12) 

Upon substitution of eqs. (5.9), (5.10) and (5.12) into eq. (5.8), one obtains the 
following equations for the systematic parts of the dissipative fluxes (In 
checking these formulae, it is important to realize that the gradient operators 
in the elements of D act on everything at their right): 

Fiz”(r) = -V - i”(r) 

- LqiV2L 
T(r)’ 

Fin(r) = -V * (W(r) - u(r) + F(r)) 

= L v2 k(r)- cL2b) 
d 

(2, - zJT(r) I - LWv2 Ttr) 

- 2LV * o(r)V [’ (~j.u’r)]-L”v.[u(r)..v(~)] 
+2LV.[V($$y.u(r)]+LvV.[v(r)V.($$)] 

(5.13) 

_ L ,v . E(r)+ c%9 A B(r) 
91 

[ T(r) I 
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E(r) + c%(r) A B(r) II 
- LJ * v -A-. 

T(r)’ 

FtJj(r) = - (v * W)j 

(5.14) 

=2+-m j bu(ri] + Lvvj [hid], (5.15) 

F&(r) = - i; 

1 
= - Lqivj T(r) + Lii v 

H 

k(r) - ~2(r) E(r)+ c-It)(r) A B(r) _ 63 - z2)W) T(r) 
These equations lead to the following identification for IIS, J” and is: 

n”(r) = - 2L!GJ- L,u E._# (5.17) 

E(r)+ c-‘u(r) A B(r) 
T(,.) I 9 t5'18) 

mW- clAr) 1 
is(r) = Lqiv T(,.) _ E(r) + c-‘u(r) A B(r) 

(~1 - ~2) T(r) I T(r) . 
(5.19) 

The expressions for the dissipative fluxes are of the same form as the laws 
that are derived in thermodynamics of irreversible processes on the basis of 
eq. (2.14)6). However, the above laws are less general than those found in 
thermodynamics of irreversible processes: in the present fluctuation theory 
the Onsager coefficients L, L,, L,, Lii and L, (i.e. the quantities which couple 
the fluxes and conjugate thermodynamic forces in the entropy production 
(2.14)) are constants which do not depend on the fluctuating fields, whereas in 
thermodynamics of irreversible processes these Onsager coefficients are al- 
lowed to depend on the state variables. 

It should also be noted that in thermodynamics of irreversible processes, 
additional requirements (invariance of the terms in the entropy balance 
equation under a Galilei-transformation, the requirement that the entropy 
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production u should vanish in equilibrium) are imposed in order to separate 
the convection and production terms in the entropy balance equation (2.13) in 
a unique way6). In the above fluctuation theory, these requirements are not 
explicitly imposed in order to obtain the laws (5.17~(5.19). 

The above analysis was confined to a system which is materially and 
energetically isolated, so that the equilibrium distribution (5.5) applies. 
However, the same expressions for IIs, J” and i” are found upon substitution 
into eq. (5.8) of the appropriate equilibrium distributions for systems which 
can exchange energy and/or mass with a bath. 

We finally remark that the discretization rules which were introduced in 
papers I and II have led without modification to unambiguous results also in 
the present case, in which it is impossible to characterize the state of the 
system by conserved variables alone. The reason is that the analysis of the 
terms in eq. (4.28) containing quantities which are not conserved, did not 
depend on the discretization rules explicitly (cf. the discussion after eq. 
(4.28)). 

6. Linear response 

In paper II, the fluctuation-dissipation theorems for the response of an 
uncharged one-component fluid to an external potential were derived. For the 
response of a charged binary fluid to an external electric field similar response 
formulae hold, the derivation of which completely parallels the analysis of 
paper II. Therefore, we only briefly indicate here the changes to be made in 
the latter analysis in order to arrive at Green-Kubo relations for the linear 
response to an external electric field. 

In the presence of an external electric potential c$(r, t), the field equations 
(2.3) and (2.4) become (the other equations, eqs. (2.1), (2.2), (2.5)-(2.10) and 
(3.1) remain unchanged) 

(6.1) 

ae,= 
at 

-v*{(e,-fE2 -;E’+p)o+cE AB)-V.(H.u+J)-p,o .V+. 

(6.2) 

It should be noted that the total energy density is from now on given by 
e, + p& ; hence e, is the total energy density minus the potential energy of the 
charge density. On the other hand, E now denotes the total electric field, i.e. 
the sum of the external field and the field generated by the charges. 

The presence of the external potential only adds two extra reversible terms 
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to eqs. (2.3) and (2.4). Accordingly, only the terms F” are changed in the 
Fokker-Planck equation. Therefore, we neglect for the moment the dis- 
sipative terms in the Fokker-Planck equation, and investigate the reversible 
terms in it in the continuum limit. In this case the distribution function 
P({cr(r)}, t) obeys the evolution equation 

aP 
at=- fi 21 ( dr F;‘(r& + F;“‘(r, t&)P, 

B B 
(6.3) 

where F’,“‘(r), defined in eq. (5.3), contains the terms also present in the 
absence of the potential, while Ff;“‘(r, t) is defined by 

F$“‘(r, t) = - p,(r)u(r) l V4(r, t), (6.4) 

F$“(r, t) = -p,(r)V&(r, t). 

The other components of Fb*” are zero. One may now verify that 

(6.5) 

- T f dr (FP(r& + Fl;“‘(r, f &) 

X exp( - j&--j dr’[ e,(r)) + p,(r’)+(r’, t) - T&r’)]) = 0. 

! By expanding this result up to linear order in r#~, one obtains 

= -&-z fdrF;(r)& 
0 B B 

u dr’ p,O9~(0#4r’, 0 PYIdr)D) 

= &I dr 4(r, Ov - p,(rMrYYMr)D, (6.7) 

(6.6) 

where Pe9 is the equilibrium distribution for a system in contact with a heat 
bath in the absence of an external potential 

PcQ - exp ( - &I dr(e,(r) - T&r))}. (6.8) 

Eq. (6.7) is the immediate analogue of eq. (6.12) of paper II. Comparison of 
these equations shows that the formal linear response analysis of the Fokker- 
Planck equation given in section 6 of paper II also applies to the response of 
the system to an electric potential provided that we change in all the formulae 
after eq. (11.6.12) the momentum density j into the charge density current 
je = p,u and the potential V into 4. If #(r, t)+O for t + - m and if the system 
initially was in equilibrium, the analysis of paper II consequently yields for 
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the linear response of the variables a+ (cf. eq. (11.6.24)) 

Abdr, t)) = & I dt' j dr’ (q(r, t)V’ . je(r’, t’)),, +(r’, t’) 
-m 

1 
1 

=kTo I I dt’ dr’ (q(r, f)jJr’, t’)& * dr’, t’). 
-m 

(6.9) 

Here (. .)es denotes an equilibrium average in the system without an external 
potential and A(cy& = (cY~) - (c&,, and c(r, t) = - Vc$(r, t) is the applied elec- 
tric field due to the external potential. Eq. (6.9) represents the fluctuation- 
dissipation theorem for the response to an external field. 
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