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We extend our previously developed scheme to evaluate the static mobility tensors of an arbitrary 
number of spheres in a viscous fluid, to the case of finite frequencies. 

1. Introduction 

A well-known problem in low Reynolds number hydrodynamics 1) is to calculate 
the hydrodynamic interactions between spherical particles moving in a fluid, as 
its solution is necessary for understanding the properties of  suspensions. While the 
first treatment of  such hydrodynamic interactions dates from 1911 when 
Smoluchowski 2) analysed the hydrodynamic friction between two spherical par- 
ticles, there has recently been a revival of  interest in this problem3-1°)t. This 
renewed interest is greatly motivated by recent advances in experimental light- 
scattering techniques in which multiple scattering is reduced, either by using 
scattering cells of  different sizes"'12), or by using a solvent and solute which have 
refractive indices that are not too different~3), or still by using a two-beam, 
two-detector light scattering spectrometerl4). These techniques enable one to single 
out the effects due to hydrodynamic interactions in suspensions, so that a 
comparison between theory and experiment can be made. As an example, we note 
that the experiments by Knops-Werkhoven and Fijnaut ~3) on the mutual diffusion 
coefficient of  dilute silica dispersions were in good agreement with the values 
obtained theoretically by Batchelor 5) and FelderhoPS). 

In general, correction terms to e.g. the diffusion constant can, for dilute 
suspensions, be obtained by taking only hydrodynamic pair interactions into 
account. Since it was doubtful that this is a reasonable approximation for 
suspensions which are not dilute, we recently developed a systematic expansion 
to treat the full many sphere problem~°). This work extended the original analysis 

*Present address: Bell Laboratories, 600 Mountain Avenue, Murray Hill New Jersey 07974, USA. 
tSee refs. 1 and 10 for earlier references. 
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of Kynch 3) of many sphere hydrodynamic interactions. From our results, Been- 
akker and Mazur ~6) determined the concentration dependence of the self- 
diffusion coefficient to second order in the density, and showed that contributions 
from two- and three-sphere interactions were of comparable size*. Their result is 
in reasonable agreement with the values measured by Bau&2). 

Recent experiments by Pusey and Van Megen ~7) also lead to the conclusion that 
many sphere hydrodynamic interactions cannot be neglected in moderately dense 
suspensions. 

The analysis of ref. 10 (hereafter to be referred to as paper I) was performed 
in the static case (frequency zero). In view of the above it seems worthwhile to 
extend the analysis to the case of finite frequencies. This is the purpose of the 
present paper. In considering hydrodynamic interactions at finite frequencies 09 
and low Reynolds numbers, two dimensionless quantities play a role, namely the 
parameters a/R and ax/rf~-/v. Here a is a typical radius of a sphere, R the typical 
distance between spheres and v the kinematic viscosity. As is well known18), the 
quantity (209/v)1/2 is the inverse penetration depth of transverse waves. Our scheme 
will yield an expansion in these two dimensionless parameters and is therefore a 
low frequency (co <~ a2/v) expansion (the parameter a/R is of course always 
smaller than ½; for dilute suspensions a/R ~ ½). For the frequency range of interest 
in most experiments, one has indeed co <~ a2/v. However, even if a/R and 
a(2co/v) ~/2 are small, there are two different regimes, distinguished by the 
magnitude of the ratio of these parameters, R(2co/v) 1/2. To see this, consider the 
solution of the flow field of a single sphere oscillating with frequency co and 
amplitude u0, which has the form ~s) 

v = e-i°'tF A F ^ (f(r)uo), (1.1) 

where 

Of e i , ~ ( r  c2}/r2 (1.2) dr = {cl + i/(ico/v) 1/2) + • 

Here r is the distance from the centre of the sphere and Cl and c2 are constants 
that can be obtained from the boundary conditionst8). Since the imaginary part 
of v/~-~/V is taken positive, the first term in the expression for af/dr is ex- 
ponentially damped. Consequently, for large distances the flow field is of order 
r -3 and not of order r -1, as in the static case (co = 0). It is essentially for this 
reason that hydrodynamic interactions between two spheres at finite frequencies 
will be of order (a/R) 3 if R(co/v) 1/2 ~> 1 and of order a/R if R(co/v) 1/2 <~ 1. As we 
will discuss, the first regime is relevant for dilute suspensions, the second for 
colloidal crystals. 

*Recently 3-sphere hydrodynamic interactions were also taken into account by Philliesl7). 
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In section 2, we review the equations of motion within the context of  the method 
of induced forces19'2°'S'l°). In section 3 we derive, along the lines of paper I, 
equations for the velocities and angular velocities of the spheres up to third order 
in our expansion parameters. Up to this order, the mobility tensors, the 
expressions of which are given in section 4, contain only two sphere interactions. 
In a higher order approximation however, they will contain three sphere inter- 
actions. Some general results, useful to derive such higher order approximations, 
are given in appendices. 

2. Equations of motion 

As in paper I, we consider N macroscopic spheres of masses m/ and radii 
aj ( j  = 1 , . . . ,  N) immersed in an otherwise unbounded incompressible fluid. The 
centres of the spheres have positions Rj(t) at time t. We shall summarize in this 
section the basic equations of motion of the fluid and the spheres on which our 
subsequent analysis of the hydrodynamic interactions is based. 

Contrary to the case considered in paper I, where the analysis was based on the 
quasistatic Stokes equation for the fluid, we shall now consider the more general 
case where the fluid obeys the time-dependent linearized Navier-Stokes equation 
for an incompressible fluid. Within the context of the induced force 
method19'2°'8'l°), this equation reads, for all r 

av(r, t) 
P---O--f-- + e "P( r , / )  = ~ Fj(r, t) (2.1) 

J 

with 

and 

V" v(r, t) = 0 (2.2) 

P=B = P~=P - ~I ~-~r= + dra) " (2.3) 

The notations are essentially those of paper I: v is the velocity field, P the pressure 
tensor, p the hydrostatic pressure and q the viscosity of the fluid. In addition, p 
is the constant fluid density. The index j runs from 1 to N and labels the spheres 
(so do the indices k and / ,  to be used later), and Greek indices run from 1 to 3 
and denote Cartesian components. The induced forces are defined in such a way 
that 

~ ( r ,  t) = 0 forlr - RAt )  I > aj, (2.4) 

so that eq. (2.1) reduces to the linearized Navier-Stokes equation within the fluid. 
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In addition, in the induced force method it is required that 

v(r, t) = uj(t) + Oj(t)  ^ [r - Rj(/)] for ]r - Rj(/)I ~< aj, (2.5) 

so that stick boundary conditions hold at the surfaces of  the spheres, and that 

p(r, t) = 0, for Ir - Rj(t)l < aj. (2.6) 

The velocity uj and the angular velocity fJj of the j th  sphere* obey the equations 
of  motion 

duj(t) f dSP(r ,  t ) ' f i j  + Ky ̀ t (t) =- Kj(t)  + K~xt(t), (2.7) rnj dt = -  
t l  

sj(t) 

L d ~ j ( t )  = - [" dS [ r  - R j ( t ) ]  ^ P " h i +  T } x t -  = T~Xt(t). (2.8) 
J dt  J 

sj(t) 

Here, Kj, Tj, Ky xt, Ty xt are, respectively, the force and torque exerted by the fluid 
on sphere j, and the external force and torque on this sphere. Sj(t)  is the surface 
of  sphere j at time t, r~j a unit vector normal to this surface and pointing in the 
outward direction, and / j  = 2mya2/5 its moment of inertia (where a homogeneous 
mass distribution has been assumed). 

For  one sphere, one may neglect within the fully linearized scheme, the time 
dependence of its surface S and its position R**. We shall make the same 
approximation here, i.e. we will also neglect for the case of many spheres the time 
dependences of  the surfaces Sj and the positions Rj of sphere j. In doing so, we 
assume that the sphere-positions do not change appreciably over time intervals of 
interest, or, alternatively, that the spheres perform harmonic motion with small 
amplitudes around arbitrary equilibrium positions. It is then convenient to 
introduce the Fourier-transform with respect to time of  the various quantities, e.g. 

= f d t  ei~°tuj(t). (2.9) uj(o9 ) 

Eqs. (2.1), (2.7) and (2.8) then become 

- kopv(r, o9) + V" P(r,  o9) = ~ Fj(r, o9), (2.10) 
J 

- iogmj uj (o9) = - a s  p (,, o9). ~j + K?' = ~ (o9) + I¢?' (o9), (2.11) 

Sj 

*Here the notation deviates from the one in paper I: O (andnot m) denotes here the angular velocity. 
** Including the time dependence of Sj and Rj in the case of stationary motion of a single sphere, 

amounts in fact to analysing this motion in the Oseen approximation2~). 
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imljl2j (m) = - / dS[r - Rj] ^ P (r, co). hj + T ;  xt (m) ~" rj (m) "Jr- T ;  xt (m). 
t /  

sj (2.12) 

If  one now uses eqs. (2.4)-(2.6), in which the time dependence of  Rj is neglected, 
it follows from eq. (2.10) that Fj(r, m) is of the form 

+£2j(m) ^ ( r - R ) ] O ( a j - l r - R j ] ) = F ~ ( r , m ) +  F](r,m). (2.13) 

Here O(x) is the Heaviside function, and F~(r,m) and Ff(r,m) are the force 
densities induced on the surface of  and within the sphere j,  respectively. 

From eqs. (2.11)-(2.13) one obtains along the same lines as in paper I, section 
2, relations between on the one  side the hydrodynamic force ~ ( m )  and torque 
Tj (to) exerted on the j t h  sphere, and on the other side the component of the force 
F~ which is induced at the surface of sphere j. These relations are 

Kj(m)=-fdSP(r,m)'t}j=- 
sj I, - Rj(t)] <- ay 

? 
dr I 7 " P(r, m) = - J dr F~ (r, m) , 

(2.14) 

Tj@o)= - f dS[r-Rj]  ^ P(r,m)'t~j= - f dr[r-Rj]  ^ F)(m). (2.15) 

sj 

In order to solve formally the equation of  motion of  the fluid we introduce 
Fourier transforms of  e.g. the velocity field, 

v(k, m) = fdr e - i k ' r v ( r ,  m ) .  (2.16) 

We also define the Fourier transform of the induced force density Fj in a reference 
frame in which sphere j is at rest at the origin, 

~o) = f dr e-~'~'-R)Fj(r, m). (2.17) e f t , ,  

The equations of  motion (2.10) and (2.2) then become in wave-vector represent- 
ation 

( -  imp + rlk2)v(k, m) + ikp(k, m) = ~ e-ik'RjFj(k, m) , 
J 

k'v(k,m)=0. 

(2.18) 

(2.19) 
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If one applies the operator 1 - k'~" (where ~ is the unit tensor and ~ a unit vector 
in the direction of k) to both sides of eq. (2.18), one obtains with eq. (2.19) 

( -  icop + ~/k2)v(k, co) = ~ (4 - k'~)- Fs(k , co). (2.20) 
J 

If the fluid would be at rest if unperturbed by the motion of the spheres, the formal 
solution of eq. (2.20) is 

v(k, to) = ~ ( -  icop + r#k2) - '  e-i*'RJ(1 - i f ) .  Fj(k, co) 
J 

= ~ r/-1(~2 + k2)-1 e-ik. sj (4 - • ) "  Fj(k, co). (2.21) 
J 

Here the parameter • is defined as 

= ~ - - p / r / ,  Re ~ > 0. (2.22) 

Its real part represents the inverse penetration length 2 ~  2 ~ p c o  of planar waves of 
frequency cols). It is eq. (2.21) which we shall use to calculate the frequency- 
dependent forces and torques exerted by the fluid on the spheres. 

We will also need an expansion of F~(k, co) in terms of irreducible multipoles 
F~+l)(co), defined by 

OP 
F~ + l )( co ) = (p l)- l ~ d~j ~ f  j( ~s, co ) = (i l asy'(p l)- i [-ffffi F,( k, co ) ],=o (p >, O ) . 

(2.23) 

Here b p is the irreducible tensor of rank p, i.e. the tensor traceless and symmetric 
in any pair of its indices, constructed with the vector b (cf. paper I, section 3, or 
ref. 22). Note also that one has according to eq. (2.14) and (2.15) 

F~L)(CO) = -- Kj(co), FJ2~)(co) = - (2aj)-I ~ . ~(co), (2.24) 

where F (z~) is the antisymmetric part of F (2) and c the Levi--Civita tensor (of. paper 
I, eqs. (3.10)-(3.12)). 

In paper I (cf. eq. (3.14) and appendix A), we have shown that ¥] can be 
expanded as 

. / ~7 sin kaj'X 

Here, the dot C) denotes a full contraction over the first p indices of F (p + 1) and the 
p indices of the term between brackets. This expansion, on which our analysis of 
many-sphere hydrodynamics in the static case was based, will be employed here 
for finite frequencies too. 
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3. Equations for uj(o)) and f2j(oJ) 

We have shown in paper I that one obtains a hierarchy of  equations for the 
force multipoles induced in the spheres by analyzing the so-called velocity surface 
moments. We shall follow here in principle the same procedure. However, if we 
restrict ourselves to contributions to the mobility-tensors up to third order in ea 
and a/R, where a and R are a typical sphere radius and intersphere distance 
respectively, it will be sufficient, as we shall see, to consider only the first two 
moments. This is done in the next subsections. The exact equation resulting from 
the zeroth surface moments is given in eq. (3.3). It is then argued that up to the 
order considered in this paper, this equation reduces to relation (3.24). Similarly, 
in subsection 3.2 it is shown that the exact result (3.26) reduces to eq. (3.39) in 
the same approximation. Eqs. (3.24) and (3.39) yield the expressions for the 
mobilities. 

3.1. Zeroth order surface moment 

We first consider the zeroth order surface moment, defined as 

if v(r '~SJ -4ha}  drv(r,  co)6(lr - R j l - a j )  

1 1" sin kaj ik 
- (-~)3 j d k - - e  "sJv(k,o)). (3.1) 

kaj 

Applying the boundary conditions (2.5) and substituting the formal solution (2.21) 
at the right hand side, one obtains the following set of  N equations 

+ c o  

6nqa, uj (co) - - dk ~ (~ - ~fc)" Fj(k, ¢o) 
- o o  

+ao  

f k sin kaj ~,.(s. - s + ~_, ,,_, fdl~ dk I~l~)'F~,(k, to) (3.2) , # j an  j k5~-~5 e J , (~-- . 
- o o  

One may now use the decomposition (2.13) as well as the series expansion (2.25) 
in the integrals on the r.h.s. One then gets 

61tzlaj(uj(co)+~,2.,2~i~(,.l),..,,. 22 (,,2) ) , . , , .oj, t~', Uk(09)+ ~ ~t akll/I}], (to)'~(og) 
k 

= -  ~ B°'" '(og)OF(m)(o))+ ~ ~ A(~,'m'((o)OF~,m'(a)). (3.3) 
m = l  k , ~ j m = l  

This equation is the analogue of  eq. (4.9) of  paper I for finite frequencies. The 
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connectors B°'m)(co), ~ ( I , m ) ( c o ) ,  M ( I ,  I ) ( co )  and M(L2)(co) are defined as 

+or  

B}]'m)(co) = - ( 2 m - 1 ) H ( i ~ m - 1  ~ \ a #  fd¢ f d k  kk 2sin kaj+ a 2 

- o0  t i 
3 ~-I  sin kaj'] 

x (~ - i f )  ~ = ,  kaj ] '  

+oo 

*,-ljkA (l'm)/"°'~\tx,,l = (2m -- 1)!! d/~ dk ~¢T-~ ~-~ 

-oo  

17/~" / ~ m- r sin kak'~ 

+oo a4~2ajf fksinka~rsinka,~-ka', c°ska',] 
.A(I,,),,.,, = _ d~ dk ~ L (k-~k)3 ""ojk tw ,  ' k 2 -F 

-oo 
X e i a ' ( s j  - s k ) ( ' ~  _ £ f ) ,  

+oo 

[ 1 aAo,2)/~.,a _ d~" dk k sin kaj ~ sin ka  k - ka  k cos ka  k 
• -Ojk t~'J ~ a j d  kEq-0¢ 2 Ok (kak) 3 

-oo  

X ~" ~ e i*'(Rj-R*). 

(3.4) 

(3.5) 

(3.6) 

In eqs. (3.6) and (3.7), the function between square brackets arises from the 
Fourier transform of  the @-function in eq. (2.13); ~ denotes, as before, the 
Levi-Civita tensor. Note also that the expressions for B}l'm)(co) and "jkA(l'm)/"'a~'J 
reduce for co = 0 to those given in paper I for the static case (cf. eqs. (C.1) and 

(4.32)). 
We shall now successively discuss the behaviour of  the various connectors. 

(a) According to eq. (3.3) the connectors M (~'1) and M °'z) must in our 
approximation be taken into account to first order in 0ta and a iR .  In appendix 
A, we show that one has up to this order 

2 
- ~ ( 1  - aa + h.o.) f o r j  = k 

M(1,1)/ ' , . , ,~ _ 1 ~ e - ~tRjk(~ "~ rjk6k ) 
jk \ ""1  - -  - -  -6 l 'J  k 

1 / ak 2 r + + - - - - l - T -  ~ -  - -  e -  J q l  2 2 ^ 
• 2 RjkkO~ R j k  \ ~tKjk Ct K jk , I , /  

v~,J [(~((aa)2_p(a/R)p) ' P = O, 1,2 f o r j  ~ k .  (3.9) 

, f o r j  ~ :k ,  
(3.8) 

(3.7) 
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Here Rjk ==_ ]R k - Rj[ is the distance between the centres of sphere j and k, and 
Fjk =-- (Rk -- Rj)/Rjk is a unit vector pointing from spherej  to sphere k. In eq. (3.8), 
we have denoted terms which are of  higher order in eta and a i r  by h.o. The lowest 
order term for j #: k has a coefficient proportional to exp--~tRyk due to the 
exponential damping of  velocity perturbations which decay as 1/r (cf. the 
introduction). That M~'2)(o~) vanishes, simply expresses the well known fact that 
translation and rotation of  a single sphere do not couple. 

(b) For the connectors B°'m)(o~), we show in appendix B that* 

0 f o r m  # 1 a n d m  # 3 ,  

B)I") (m)= ¢(1) f o r m = l ,  (3.10) 

(_9(ctaj) 2 for m = 3. 

B(lm(09) multiplies the multipole moment F(3)(~) which is of  third order in the 
parameters in which we expand. This is best illustrated by the results of  paper I, 
where we have shown that at zero frequency F(3)(0) is of  order ( a / R )  3. The 
extension to the case of  non-zero frequencies follows from the result, to be 
discussed sub (c), that the ordering of  the frequency dependent connectors in a / R  

and ~a is essentially the same as for the static ones. To the order retained here, 
we therefore only need to calculate B°'~)(co) up to order ~t3a 3. One finds (see 
appendix B) 

B('.1)(o9) = - ~(1 - c¢aj + ~c¢2a~ - ½c¢3a~ + . . .  ) .  (3.11) 

(c) Finally, we turn to the behaviour of  the connectors A(l,m)(¢o). We show in 
appendix C that A°")(¢o) is of the form 

AO.~)l,.,~ = ( l ,m) m tJ(L~)l,.,wom+2 ± no.~)t,,, Rj~) " (3.12) jk ~ J  Gjk ( ~ o ) / R j k + , , j k  ~J~--jk ~'-jk ~ ,  

The frequency dependent tensors G~,~)(og) and HJ~'m)(og), which do not depend 
on the interparticle distance Ryk, reduce in the limit o~--*0 to the corresponding 

/~. ( l ,m) Al.d[ ( 1. m) tensors ,-,yk and ,,yk calculated in paper I (eqs. (5.10)-(5.12)). These tensors 
are proportional to a ~ and a m+2, respectively, and have, as is discussed in 
appendix C, a power series expansion in the parameter ct2a 2, so that for small 
frequencies 

R-mt2(I,m)l, . ,x _ 17, -m/2(l,m)t" . . . .  0)(1 + d~(~a) 2) = tP(a/R)m(l  + dP(~a) 2) (3.13) 

Ryk-"- 2H)~'')(w) = eg~ " - 2H}~'')(¢o = 0)(1 + e(~a)2) 

= (_9(a/R)m + 2(1 + d~(cta)2). (3.14) 

* It follows from eq. (3.10) that in the case of one sphere, F ~m~ only couples to F o~. This result is 
implicit in the work of Mazur and Van der Zwan2°). 
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. (1,,,)t... Rjk) strongly depends on the parameter otRjk, The behaviour of the tensor "-jk ~w, 
which is the ratio of the two parameters 0ta and a/R, in which we expand. The 
behaviour in the regime ~R < 1 is essentially determined by the limit (cf. appendix 
C) 

lim (aa) - ]t~' ')(co, Rj~) = constant,  
tg~O 

lim(aa)-2L)~'m)(to, Rjk) = (9(a/Rjk) "-2, m >/2 ,  (3.15) 
fo~O 

while for eR > 1 the behaviour of L (,,m) is governed by the limit 

lim R;/.~l'm)((.o, R j k  ) = - -  G~l ,m) (o . )  ) . (3.16) 
Rj,~oo 

To summarize, it follows from eqs. (3.12)-(3.16) that the connector A}l'm)(to) is 
of the mth order in our expansion parameters if 0tR < 1, while it is even smaller 
for 0tR >> 1, since the most dominant term ofL °'m)(w) then cancels GO")(w). Thus, 
one may again neglect, for the same reasons as given in sub (b), all terms involving 
connectors A(Lm)(og) with m >t 3, as well as the term involving A °,2~)(o9), which is 
that part of A°'Z)(w) which is symmetric in its last two indices.* For A°'1)(o9) 
which couples to the force, we have up to third order (of. appendix C) 

' ) 3 a J ( l +  (a2+a2kla z GJ~'l)(~o)/Rjk = ~ Rjk \ -6 ('0 + ~jk6k), (3.17) 

0 1) 3 aj(a 2 + a 2) (fjkfj k _ 
Hj~," (co)/Rjk= 4 R3 k 1) (3.18) 

3 aJ ( l  + ~(aZ + a2)o~E)(1--e-'R,*)('fi + ~2k~j,) L °")(~o, Rjk) = -- 4 Rjk 

+:~taj(l+~(a2+a2k)Ot2)(~32-R} k 

( - e -  =RJ* _ - ~ l  + _-T-b-T (~krjk - "O). (3.19) 
\OtRjk O~ Rjk 

For A (l,z~)(~o), that part of A (1, 2)(o ~) which is antisymmetric in its last two indices 
and which couples to the torque, we only need to evaluate G (1, ~)(co) and L o' ~)(o~), 

* According to table I o f  paper I the connectors AO.=)(co = 0) with m >t 3 and A(l'z')(co = 0) give 
contributions to the mobilities of  fourth and higher order in aiR. Since the ordering of  the frequency 
dependent connectors in a/R and aa is essentially the same as for the static ones, we only need to retain 
A"'~)(co) and A(t'~)(co) in eq. (3.3) in an expansion up to third order. 
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since the term involving j l~(l '2)(( .O) is o f  fourth order*. We find up to third order  

( Gj.~, 2~)(co))~#r = ~ alak(rjk#6~7 -- rjk~6~#), (3.20) 

(12a) S ajak (1 -- e-'SJk(1 (/jk' (09, Rjk))=#~ = -- ~-fiT + ~Ry~))(rjk#6~r -- rykr6~#). (3.21) 
Rjk 

F rom the above discussion, sub(a), (b) and (c), it follows that  eq. (3.3) reduces 
to third order  to 

6~t]ajI(1 2 2 2  2 3 3  ~t 2r~2AA(,, 1)/r.. ~ ] -- ~ aj + ~ ay)ul(co ) + ~ " u,(co) ~, ~k,V#jk ~,t.~ I 
k #j 

(1 2 2 2  1 3 3  = - - ~aj + ~ aj - ~ aj)Kj(co) 

_ ~ A o , ~ ) r . . . ~  1 t 2~ • -,jr ,w , "  K , ( c o ) -  ~ --Zlj(~, )(co)'t • Tj(co) (3.22) 
k Cj k ~,j 2ak " " 

Here, use has been made o f  eq. (2.24). The connectors  appearing in this equat ion 
are given in eqs. (3.8), (3.12), (3.17)-(3.21). 

As the term involving/I/ /(Lo in this equat ion is already o f  third order  in our  
expansion parameters  (cf. eq. ( 3 . 8 ) ) ,  w e  may eliminate uk(co) in this term in favour  
o f  Kk(co) to zeroth order,  

ut(co) = - (6nr/at)- ~Kk(m) + h .o . .  (3.23) 

Eq. (3.22) then becomes 

6ntla:(1 2 2 2 2 3 3 - ~ aj + ~ aj)uj(co) 

= - - ( 1  2 2 2  1 3 3  --otaj-.F-~ot aj --~ot a j )K](co)+ E 2 (1,1) ° ot at.ajll/l~ (co) Kk(co ) 
k #j 

_ ~ ~(, ,or. . .~.  ~ 1 glj~,2~)(co): ~ • Tj(co). (3.24) - - , :  t~,J X~(co)--  
k ~j k #j Zak 

3.2. First order surface m o m e n t  

We now turn to the evaluation o f  the first order  surface moment  

3f( ) 3njv(r, w )  sj _~ 4ha] dr v(r, co)6([r - R j [ -  aj) 

_ 3i f d k l ~ v ( k ,  c o ) ( ~ k s i n k a j  ~ 
8n3aj ka~7 ] "  (3.25) 

Along the same lines as for  the zeroth order  surface moment  (of. eqs. (3.2) and 

* Moreover, it turns out that Ho.2)(co) is fully symmetric, cf. paper I, eq. (5.13), so that Ho.z~)(co) 
in fact vanishes identically. 
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(3.3)), we now obtain 

2 2 (2,1) . 2 2 (2,2) ° 6mla~ ~ " 12j(o9) + ~ ~t ak~C~jk ((1)) IIj(O)) "}- Z O~ aklVljk ((D) ~'~k((.D) / k k 

m = l  m = l  kd:j  

with 

(3.26) 

+ o o  

- o o  

[sin kak -- kak COS kakl eik. (R j _ ek) (3.27) 

×L ~ 
+ o o  

f k 2 [O sinkaf~ 

• - . j k  ~ w , = - -  4roe J 

0 [sin kak -- kak cos kak I (3.28) x N L ~ eik '(R'- ' ) '  

+o0  I f _ O'lsin,a,, e}2")(o9) -= ~-~2 d~" dkl~(l-kk)t--~- ~ ~ g )  
- oo  

X(Oksinkaj~ kS (3.29, 

".A (2")'""~"*" _= 9a'~-'i'(2m8n 2 -1).. ;dg I dk ~ ' (1 -  . ) ( O ~  sin ka.'~ J 
- oo  

k 2 (0  sin__ j.'~eik.(,_,, ) k a .  (3.30, 
×k-r4~_ kaj ] 

We briefly discuss the behaviour of these connectors in a similar way as in the 
previous subsection: 

(a) For/kl(~'i)(e)) and/FI(2'2)(co) one finds (cf. appendix A) 

/V/(2.1)t..,~= .~0 fo r j  = k ,  (3.31) 
jk v~.J [(9((ota)2-p(a/R)p), p = O ,  1,2 f o r j ~ - k ,  

~ + (9(o~aj) 2 forj = k, (3.32) 
Iltli 2'2)(t9) = [(9((ota)3-'(a/R)P), p = 0, 1, 2, 3 fo r j  # k .  
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(b) The result for B(2'm)(co), analogous to the result (3.10) for B0'm)(co) is 

[0 for m # 2  and m # 4 ,  
B(2.")(co) = t(9(1) for m = 2,  (3.33) 

[ (9(aas) 2 for m = 4. 

In this case, we may neglect all terms with m/> 4, so that the only connector to 
be retained is B(2'2)(co), which is evaluated in appendix B. The result is, up to order 
(aaj) 3, 

B (2,2)(09) = B (2s,2s)(( o ) --I- O (2a,2a)((.O), (3.34) 

where 

~(~t3#,  + ~t3~,~#~ - ~6=#6~)(1 - ~a u: + ~a u:) ,  (3.35) 

3 1 1 2 - 2 _ 2  1 3 3 (O(2a'~)(og),ara = - ie26~f#r - ~6=r~#~)(1 - ~ uj + : t  a j) . (3.36) 

(c) Finally, we turn to the connectors ,4 (2'm)(tO). For these connectors, it may 
be shown that they are of order m + 1 in our expansion parameters aa and a /R .  
(This follows from the general analysis of appendix A). An analogous discussion 
as in the previous subsection, sub (c) then leads to the conclusion that only the 
connectors ,4 (2'~)(co) and ,4 (2'~')(co) need be retained. Due to the symmetry of the 
connectors (cf. paper I, eq. (4.35)), A (2'' obeys the relation 

(A)~" ')(co))=#,~ = affak(A ~1,2)(c o))~#,, . (3.37) 

The expression for A(2'2a)(fo) is given later. 
The above mentioned properties of the connectors A(2")(co) imply that eq. 

(3.26) reduces to, using also eq. (2.24), 

6~r/a](1 - - ~ 2 a ] ) ( ' 1 2 , ( f o )  9(1 2 2 2 , 3 3 (z,) = - ~  aj + ;~ aj)F) (co) 

1 33~ 
4~j( 1 -- ~2a2aY+~°~aj)~'T:(co)-~,2-~A(:~'z~)(co):''Tk(o)),,,j * 

- ~ Aj(~'l)(o)) • K,(co). (3.38) 
k # j  

This is an equation for a tensor of rank 2. Its symmetric part yields an equation 
for F~2')(co), which explicitly shows, as was indicated before (cf. after eq. (3.10)), 
that F(2')(o)) is of second order in our expansion parameters. Since F~2~)(o9) appears 
in eq. (3.3) multiplied by a connector of second order, it need not be considered 
here. We obtain the antisymmetric part of eq. (3.38) by contracting with ~ and 
using the fact that ~:~ = -2~ .  We get 

8fir/a](1 -- ~2a])12,(co) = -- (1 -- ~=2a] + ½=3a3)T:(co) 

I a: ~ 2 .,-,:~ ~ , /  K,(co). (3.39) + ~  :A~(~'z~)(~o):~E" T,(¢o)+ E '3aJ f'Al(2a'l)t'''" 
k # j  
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For the connector A (2a '23)(0)) ,  w e  find in appendix C up to the order considered 

9o~2aZak =s /" 2 ~ ) ( ^  ^ ~ ) 
- -  e -  ~ / 1  + + :A}~"~)(¢°):~ = 4 R,k \ ~ ry~rj~ -- 

4 -32 c(Za~ak e-'S~*(~ _ f~k#~,). (3.40) 

The two equations (3.24) and (3.39) yield to third order the frequency dependent 
mobility tensors which are further analyzed within the next section. 

4. Frequency-dependent mobilities 

Eqs. (3.24) and (3.39) may be written in the form 

. , ~ )  = - E . ~ ( ~ ) "  x~ (~ )  - E #~" (~ )  • r X ~ ) ,  
k k 

(4.1) 

f]j(og) = -- ~ p~kT(tO) • Kk(¢O) -- ~/i~kR(CO) " Tj(Og). (4.2) 
k k 

One finds to third order the following expressions for the various mobility tensors 

8 . . 2 - 2  7 . .  3 - 3"~ 

× aj l + ~ - f f +  +~2 Rjk +&&) 

I9 aj a3 _~9_ a_L(1 ct2(a~ +a2)'~ l ~t2a3k) 
+(1-~,k) ~.~-~.~ + + ) +~-~7~ Rjk RJk [ 4 R j a \  6 

2 2 ^^  
xe - 'R '* ( l+-~k jk+~)] (Okr jk - -½1  ) , (4.3) 

a 2 
2 TR 2 ~RT - -  otRjk ) ~ e-=RJk~ • ^ , (4.4) 8xrlajl~kj (o9) = -- (1 fjk)(1 + rjk 8xr/ajPjk (¢o)= Rig 

8n~/a3p~a(to) = 6,k(1 , 2_2 , 3 3 3 ctEa] e_=S,, 

× l + ~ j k +  t R j k  

(4.5) 

Here/iRv(o~) denotes the transposed of t~m'@o). The expressions for the diagonal 
terms (j = k) of these mobilities are in agreement with the well-known results for 
one sphere~9'~3). 
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The above results greatly simplify in the two regimes [~[Rjk >> 1 and [~[Rjk a 1. 
Let us first analyze the case Iot}Rjk >> l, which is the case at sufficiently large particle 
separations. In this regime, the mobility tensors reduce to 

( 7 0 6~qaj~jkrr(o~) = 1 -- eaj + ~ e2a~ -- ~ e3a ~jkl 

9 aj a~'~ [ .  ^ 1 "~ 
+(1--3jk)  ~-2-d]-o3 +-~T~lrykryk--~ l ,  ]~lRjk'>l, (4.6) 

J~jk , , j k /  \ -" / 

p~kR(CO) = ~T(co )  ~-- O, I~]Rjk >> l ,  (4.7) 

- ~:  u+ + ~:  a+)+, ]:]R+k >> 1. (4.8) 

In this regime, therefore, translational and rotational motion do not couple to 
third order, nor do the rotational motions Of different particles. Note that the first 
of the two two-particle interaction terms in OTr(W) is smaller than a term of first 
order in a / R ,  since 1/o~2R2k ~ 1 in the regime considered, but larger than the term 
of order (a/Rjk) 3, since 1/~t2R2k = (a/Rjk)2x  l/ct2a ~ and we have assumed that 
I la < I. 

If, on the other hand I~t}Rjk ~ 1 and if one wants to retain terms up to third order 
in the expansion coefficients, one has to take into account terms like ~t3aR~ since 
Rjk >~ aj + ak so that such contributions are larger than a term 0da 3. For simplicity, 
we will only give the resulting expressions to first order in ~ta and a/Rjk. To this 
order, TR /~jk, iU~ T and /~R for j # k all vanish; f o r / t ~  we get 

6~qaj/tj~Tr(o~) = ~ (4 d-r)l~rjk)--o~aj], j # k ,  }~tlRjk.~ 1. (4.9) 

This expression shows that at sufficiently small frequencies the mutual mobilities 
TT /J~, j ~: k, have a contribution proportional to c~ ~/~, just as the direct mobilities 

,u~7 r. Consequently the velocity correlation function of two different particles also 
possesses a t -~/~ long-time tail. 

It should be clear from the above analysis that, whether effects connected with 
the derived small frequency behaviour will manifest themselves, strongly depends 
on the experimental conditions, in particular the particle concentration and the 
frequency range under investigation. In recent experiments on the long time tail 
by Paul and Pusey24), the frequency interval is such that 
3 x 10~cm - '  ~<[~]~< 3 x 10~cm -~, while the suspension is such that the mean 
distance Rm between particles is approximately 7 x 10- ~ era. In these experiments 
therefore, one has for the parameter lalRm 

2 ~< [~tlR m ~ 20. 

Thus, their measurements are typically in the regime where the hydrodynamic 
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interactions are a factor 1/~2R~ smaller than the static interactions would be at 
the same mean particle separation (cf. eq. (4.6) and the discussion thereafter). 
Moreover, the typical particle radius in the experiments of Paul and Pusey is 
1.7 x 10 -4  cm, so that their suspension is extremely dilute. Therefore, our analysis 
supports Paul and Pusey's 24) statement that "it seems extremely unlikely that 
interparticle interactions would have a significant effect in such a dilute sus- 
pension". On the other hand, when studying the dynamics of colloidal crystals 25'26) 
for which the distance between neighbouring particles is about 1.5 x 10-4 cm, and 
for the same values of ~ as in the experiments of Paul and Pusey, one has for the 
parameter otR 

005 I IR 0 .5  

Under these circumstances, one is therefore in the opposite regime where eq. (4.9) 
holds to lowest approximation, and where effects due to the long time tail in the 
velocity cross correlation should play a role. 

As a final remark we stress that the mobility tensor matrix contains up to third 
order only two-body-hydrodynamic interactions. This is not the case for the 
friction tensor matrix, which is its inverse, and which to third order already 
contains three and four sphere contributionsS). 
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Appendix A. General results for the connectors A)~")(co) 

Though the general connector AJ~'=)(to) has not been given in the text, 
comparison with eq. (4.32) of paper I shows that the general expression for this 
connector reads 

A~;,m)(co) = 

+ o o  

3 a j ( 2 n - 1 ) t l ( 2 m - 1 ) t ! ( - i y - l ( i ~ ' - l l  l 
r f f  d k  - -  

8'/~2 k aj / \ak/ 
- - o 0  

/ 't3 "- l' sin ka,\ ' m 1' sin kak~ 
e - ' k ~ , - -  - -  J l , , -  ff)(-~-_, x \Ok "-1 kaj ,]" kak ,]" 

k 2 
k 2 d- ~t 2 

(n.1) 

Here, as in paper L ~jk ---- ?jk" k" is the cosine of the angle between the unit vector 
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~k and  k'. In pape r  I, cf. eq. (3.16) and  appendix  A, we have shown that  

. . [ O " s i n k a j ' ~  ~.f ( a~k 2 ) 
(2n + 1)!!(-- aj)- ~O-k" k ~  ) = a'/k" 1 4 n - + 6  t-d~(a~) 4 

-l~"S.(a~),  n>~O. (A.2) 

Thus,  the S.(ak) are essentially polynomials  in 2 2 a j k .  Rewrit ing eq. (A.1)wi th  the 
aid o f  eq. (A.2) yields 

_ 3aj .._ _ ff)  7 ~[(~'m)(o))- ~-1 '(--i) m-1 
+ ~  

1 f k 2 x 2--~ dk e-ik¢~'SJ*S,,_ l(ajk)Sm_ l(akk) k2 + 0{ 2 , (A.3) 

- oo 

The following analysis is based on an extension o f  the a rguments  given in section 

5 o f  pape r  I. According to eq. (A.2), the p roduc t  S,(a~k)Sm(akk) has an expansion 
in powers  o f  k o f  the fo rm 

S . ( a / c ) S . ( a , k  ) = ~ v ( z . ) ~ . + . +  :,  ~ ' j k  r~ 
p = O  

where r,-(o) n m •'jk = ajak and ..j,~(2) = -- a'ja'~(a2/(4n + 6) + a2/(4m + 6)). 

integral in eq. (A.3), we obta in  with the aid o f  this expansion* 

+ a o  

1 f k 2 Ij,(~j,) - ~ dk e-~*¢J*"~S._ ,(a~)S,._ ,(akk) k2 + ct 2 
- o o  

+oo  

/ i \ .+, .+2p On+m+2p 1 f e--ik¢~RJk = f¢" ( 2 p ) / _ _ /  
,-o "* k R, J dk ~'~jk 2~ k 2 + e 2 

o~ / i X~n+m+2p 0 n + m + 2 p  1 
= p:oZ KJ2')(~.., } \  jk/ O¢Tk+m+2" 2--~ e-'S~l¢~l " 

Using the fact that  O0(x)/Ox = 6(x) ,  one readily shows that  

0 2e- l~xl 
Ox 2 __ ~ 2 e - #lxl _ 2,8~ ( x )  , 

For  

(A.4) 

the k -  

(A.5) 

(A.6) 

so that  for  p / >  1 

02p+2 02 
Ox2p+----~e-#[xl = fl2p+ 2 e-#[x[ -- 2fl2P+l~(x) -- 2fl2p-l ~x2 t~(x) + h.o. . (A.7) 

* The intermediate step of eliminating the powers of k by taking derivatives with respect to ~ is 
necessary in order to arrive at an integral which is convergent for all values of ~jk. The integrals in 
the first line of eq. (A.5) that are obtained by substituting eq. (A.4) are divergent for ~jk = 0. 
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Here, h.o. stands for higher order derivatives of the delta function. Using this 
result to work out the 2/) + 2 derivatives with respect to ~jk in eq. (A.5), one gets 

/jk(~jk) = K}~.)(i~)2p . + , , ,  - 1  z ; ~ .  + ,,, - 2  
p = 0 Rjk tJ%jk 

i.+,. ~.+m 
--  "~'jk t ' ' l  ~x2RTk+m+l + h . o .  

p=l  

i "+" S,,_l(iotaj)gm_l(i~ak) 0 "+"-2 F1 "~ '¢' ] 
='-g]k+m-I ( i~)n+m-2 ~,~"+" 2L~<R~ke- # l j k l - -~ (~ jk )  

3 
i"+m (s,,-l(iotaj)Sr,,-l(io~ak) ,,_l~,,,_ ) 

) 0"+" 6 <,j ,-~ (~jD + h.o. o~2RTk+m+1 ~ - 2  -- ~ " t,'%jk 

(A.8) 

In the second line, use has been made of eq. (A.4) and the fact that ,,skY(°) = ajak . .  m 
If we substitute this result into eq. (A.3), the terms indicated by h.o. in the above 
equation do not contribute t o / I  ("'m)(o~), for reasons also discussed in paper I after 
eq. (5.9). For, in a reference frame in which the z-axis is parallel to the unit vector 
~ ,  we may write d/c" = -  d~s~ d~by~, where qSj~ is the other polar angle. After 
integration over 4~s~ in eq. (A.3), any element of ~-7(~ -~)~-L-57 will be a 
polynomial in ~x~ of which the highest order term is proportional to ~]+m. 
Consequently terms containing higher derivatives of 6 (~sk) then the (n + m)th, do 
not contribute. We therefore have the exact result 

AJ~,")(~0) --- 6J~,")(<o)/Ry~ + " - '  + #'tJ~'m>(o)/R;'~ + m +, + tJ t . ,>(O, R i D ,  (A .9 )  

with 

S._l(i~aj)Sm_l(i~ak)(- 1) "-1 3 . m-I 
G)~'m)(O9) ~ (i~aj)n - l(iOtak)m - 1 4~ aya k 

x dk" 'Q - i f ) J r " -  1 ~ .  + . ,_  2 ,~(<.~jk) 
'- '~jk 

S. _ l(io~aj)Sm_ l(i~ak) #:. (,,,m) (A. 10) 
= (i~aj)"- l(i~ak) m- 1 "jk , 

(S"-~(i~as)S"-l(i~ak) ) 1)"-1 4n3 ajak " m I~ 2 
HJ~'m)(~°) --- \ (i~as).-l(i~ak)m-I 1 ( -  - -  - - 

I ~ 0 n+m 

(Sn - l ( i~a j )Sm - l(i~ak) 
= ~ (i~aj)n - l(iotak)m - 1 

)} 
JL\4n  + 2 (A.11) 
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3 a]aT-I S._ ,(iaaj)S,._ l(iaak) 
£}~'")(o9, Rjk) = (-- 1)" 

4n..jk'"+"-I (iaaj).-l(iaa~).-i 

,,-1 0"+~-2 /1  ~ e _ ~ g ~ l  \ . )  (A.12) 

Here, G ~,~ a n d / 4  ("'m) are the frequency independent  connectors  on which the 
analysis o f  the static case was based (cf. paper  I, eqs. (5.11) and (5.12)). As was 
asserted for the case n = 1 in section 3, sub c, eqs. (A.10) and (A.11) show that 
the tensors G~"")(w) and H("'m)(og) are just the frequency independent  connectors  
G ("'") and H ~"'") multiplied by a frequency dependent  forefactor.  As can easily 
be checked with the aid o f  the properties o f  the polynomials  S, (cf. eq. (A.3)), these 
forefactors go to 1 in the limit o9 ~ 0  (~ ~ 0 ) ,  as it should. Moreover ,  G ("'')(o9) and 
H(".")(og) have an expansion in powers o f  (~a) z, not in powers of  ~a. 

In the limit o f  large [o t lR jk  , we may use for I(n'm)(og, Rjk ) the (asymptotic) 
expansion 

1 0 2 
taRjk e -'RjklCj*l = 6(~jk) + 2 ~  ~ 6(~jk) + . . . .  (A.13) 

Rj~ 0~jk 

Upon  substitution of  this expansion into the expression for /. ("")(o9, Rjk), one 
immediately obtains 

lim t~jk"" + m - , t . j ,  . . . .  )'to9, Rjk) = -- GJ~'m)(w) . 
Rj,~oo 

(A.14) 

For  n = 1, eq. (A.14) reduces to eq. (3.16). The next term in the expansion (A.13) 
yields for  large I IRj,, together with eqs. (A.9)-(A.14) and the explicit result for 
H)~, 'm) (paper I, eq. (5.12)), 

a"a'~ - l , , 

A7~")(o9)-~ ( -  1) " -1  (2n + 2 m  - 1)0 J F "+m • " ~ 1  jk ([~lRjk>> I ) .  (A.15) 

For  n = m = 1, one recovers in this regime the correction to the translational 
mobility, given in the second line o f  eq. (4.6). Eq. (A.15) also shows that  
corrections to eq. (4.6) in the regime I lRjk >> 1 are extremely small, since then 
terms o f  the form A(l.2)Q,tl  (2,1), which yield fourth order  contr ibut ions in the 
static case (cf. paper  I, table I), are propor t ional  to a4/~t4R s. 

If  la IRjk ,~ 1, the integrand in the expression for £ (".")(o9, Rjk) may be expanded 
in powers o f  a. For  m = n  = 1, one finds in a straight-forward way that 
t (I' 1)((0, R j k )  becomes o f  order  aa, whereas it becomes o f  order  a 2a" + " -  l/Rjkn + "  - 3 
if m # 1  or n # 1 .  In both cases, L("")(o9, Rjk) is of  order  n + m - 1  in our  
expansion parameters,  as indicated in eq. (3.15). 
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Appendix B. Evaluation of the connectors A4 (co) 

We first consider h//J~'l)(09), given by eq. (3.6), f o r j  = k. In this case, the angular 
integration can be readily performed (cf. appendix B of  paper I). the k-integration 
can be done by splitting sin ka = (e ika - e -  ika)/2i, and closing the contour involving 
e ika in the upper half-plane and the other one in the lower half-plane. Since the 
term between square brackets has a regular expansion around k = 0, there are 
only poles at 4- i0t, so that 

2 / k I-sin kaj - kaj cos kajl" ~ 
/14~l'~)(~o) = - ~1 "2 Res/~.2-y-7-25_2 e '~q  

,,-i, \k  + ~ L ~a--~ _JJ 

= 3 (1 - ~aj - e-2~"J(1 + eaj) 

2 
= - ~1(1  - ~ a j + . . . ) .  (B.l)  

To calculate M(l ' I ) ( ( 2 ) ) ,  w e  write 

+oo 

"''jkAA(t'l)/'z"'~\w / ---- -- dg¢(1 -- f~') dk e-ik~j*R,*So(a~k)S'(akk)-k~2 

- o o  

(a.2) 

Here, we have employed the notation of appendix A, and we have defined 

sin kak - -  kak cos kak 1 

S'(ak k) = 3 (kak)3 = 1 -- a2k 2 + . . . .  (B.3) 

Obviously, M~'1)(o9) is of  a similar structure as glJ~.t)(~o), cf. eq. (A.3). Therefore, 
the analysis of the k-integral in appendix A also applies to the one appearing in 
eq. (B.2), if we identify S '  in eq. (B.2) with Sm_t for m = 1 in eq. (A.3). 
Accordingly, to lowest order one may neglect the terms arising in the second line 
of  eq. (A.8), and take So(itzay)S'(iotak) ~-- 1. Upon combining the results, one then 
gets up to the order considered 

M ( , ,  o,....,, = a*fdl~( ,_l~f f j )(~otRjke-~Sjk(¢j , ,_6(~j , )) .  jk \t° l 6 ~ j  k (B.4) 

This tensor must be of the form 

J ~ ( l , l ) / ~ . , ' ~  = ak j,, ,~,, ~ (,,'~ + b6,/~,,). (B.5) 
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Contraction with the unit tensor gives 

2n + 1 

f ~" ,az /'1 ~ a  e-~S,,g~l 3a + b = 2n d~)jk J 'a'~Jk~-2 t'ad'~Jk 
0 --1 

while contraction with ~k~jk yields 

1 

a + b = - 2e-,sj,  _ 2ctRjk 

For the integral, one finds 

1 

f 2 - ~,Rj, ¢~ d~]j.,¢j, e 

0 

(B.6) 

(B.7) 

; ( 2 
~Rjk d~jk¢2k e-~Rj,¢j~ =_:~T~2 _ e 2  -~sj, 1 + = J(~Rjk). (B.8) 

Rj, ~R-~jk + 
0 

The solution of  eqs. (B.6), together with eq. (B.8), is a = - e x p ( -  o~Rjk) + J(~Rj,), 
b = - e x p ( -  ~Rj,) - 3J(~RjD. Substitution of  these values into eq. (B.5) leads to 
the result (3.8). 

Next, we consider M(~'2)(~o) and M(2'l)(co), given by eqs. (3.7) and (3.27), 
respectively. Since M(2.'(co) is of  a similar structure as M(1"2)(co), its analysis is 
analogous to the one of M(1"2)(co), and we will therefore only discuss this 
connector. For j = k, eq. (3.7) shows that the angular integration and the 
k-integration decouple and that the angular integration is of  the form S d~'~'. 
Obviously, this integral vanishes and thus M~'2)(¢o)= 0. To evaluate the con- 
nector in the case j # k, we may again use the result of  appendix A. If we now 
define the polynomial 

3 ( s ina~k-kakc°skak - '~ :a~k (1 -1a~2+ '), (B.9) 
- 15-  k3a  ] . . .  

the analysis of  the k-integral in appendix A applies if we identify S" with Sin_ l 
for m = 2 and take n = 1. The result in the second line of  eq. (3.9) then follows 
directly from eq. (A.8). 

Since the discussion of/~2"2)(co) for j # k again parallels the one of  0 2) 
fo r j  # k, we will only evaluate this connector fo r j  = k. In this case we obtain from 
eq. (3.28) 

+co  

M~2'2)(°9) = -  3,~n d;d~'~'k'" el~ sinkaJFkc°skaJ}aj 
-co 

O Isin kak -- kak C°S kak I ( n .  l O )  
x - - ~  k3a3 . 
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The angular integration is easily performed. Moreover, if we split the sine and 
cosine in the term between curly brackets into exponentials, the contour for the 
terms exp(iakk) may be closed in the upper half plane, whereas for the terms with 
e x p ( -  ikak), the contour may be closed in the lower half-plane. Since the term 
between square brackets has a regular expansion around k = 0, there are only 
poles at + i0t. One then gets with the aid of eq. (B.9) 

M}2,2)(co) = ~- - Res e~k~J(1 -- iajk) - ajk + ~(ajk 2) 
aj k~ie 

1 
- 15 ~ + ('9(~2aj)2' (B.11) 

which is the desired result. 

A p p e n d i x  C .  T h e  c o n n e c t o r s  B (co)  

Employing the functions S, defined in eq. (A.2), we may write for B(l'm)(o9), 

given in eq. (3.3) 
+oo 

3 f  (2 ~-~)r------~ _ f k s i n k a j  B°")(09) = - ( - i )  "-~ dE -~ i~m_ t 1 dk k 2 + ~  2 S,,,_,(a~k). 
(C.1) 

Here, we have used the fact that ~¢ = ~/~" - ~ .  According to eq. (5.4) of Hess and 
K6hler 2z) (cf. also eq. (A.8) of paper I, where their explicit expression for the case 
l = m is also quoted), one has 

1 t" ,--,,-, 
J d ~ ' l ~  :m = 0 if l #: m.  (C.2) 

This result immediately implies that BJ~'m)(co) vanishes for m 4:1 and m #: 3. 
Furthermore, by closing the contour for the k integral in the complex plane in the 
same way as was done in appendix B, one has 

+~ 

1 ( d k k S i n k a j _  
- J ~ s,,_ ~(a/c) = e-  ~ajSm_ ~(i~aj). (C.3) 

--CX3 

In view of the fact that Sz(io~aj) is of order c(2aj2 (cf. eq. (A.2)), we immediately find 
that B0'3)(C0) is of order 2 2 aj. For m = 1, we obtain, using the fact that 
So(k) = sin k /k 

sin i°taJ -- -- ~(1 °taJ + 2 2 2 1 3 s ) . - -  - -  ~ t a j - - ~ o t a j + " .  . ( C . 4 )  B(I" 1)(('O)= --'~ e--CtaJ l~aj 3 

This concludes the evaluation of B°'')(co). 
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Eq. (3.32) for B(2"n)(co) may be derived along similar lines as above. After 

writing k'(~ -~'k') in terms of~-~-Tand combinations of k" and the unit tensor, it 
immediately follows from eq. (C.2) that B<2,m)(to) is only non-zero for m = 2 or 
m = 4. Furthermore, it is easy to demonstrate by using complex integration that 
B(2'4)(fo) is of order ct2a 2. As for 8(2,2)(0)), we have 

-9f 
B(2'2)(o9) = ~ d~'~('0 - i(,~'),( 

+ o o  3f x ~a~ dk ( - sin kaj + kaj cos kaj) sin~kaj~.,]. (C.5) 

- o o  

The angular integration in the first line has been calculated in paper I, cf. eqs. 
(4.13), (4.16)--(4.20). For the k integral, we get 

3 + kajcos kaj)(-~- k sinkaj~ ~a 2 f dk ~ ( -  sin kaj kaj ,] 
- o o  

6 V e~aj ( 1 1 ) ]  
= aj- Res  ,= [fv-C  ( -  1 + ikaj) - 5 kaj + - "  

2 22 1 33 - 1 - ~  aj + ~  aj . (C.6) 

Eqs. (C.5) and (C.6) together with the results of paper I for the angular integral, 
lead to eqs. (3.34)-(3.36). 

Appendix D.  Explicit  evaluation of  some connectors A (~o) 

In this appendix we calculate with the aid of the results of appendix A, the 
connectors A°'1)(o9), A t1'2~)(co) and A <2~'~)(co) explicitly up to the third order. 

a) We first consider A~'l)(co), using the splitting (3.12) (cf. eq. (A.9)). As shown 
in eq. (A. 10), the tensor GtL~)(co) is proportional to G °'l) given in paper I, eq. (6.5). 
Upon expansion of the ~t dependent forefactor in eq. (A.10) up to second order, 
one then immediately arrives at eq. (3.17). Similarly, eq. (A.11) shows that up to 
the order considered, H(l'l)((.O) may be approximated by H °'1), which may be 
found in eq. (6.20) of paper I. Finally, for L°'~)(og), we have according to eqs. 
(A.13) and (A.2) 

jk v~,, --4Rjk 1 + 6  -(a2+a2) "2--~ d~'(~--~)ctRjke-=R~l¢~l" (D.1) 

To calculate the angular integral, we note that it must be of the form a~ + b~.k~k. 
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Contraction with the unit tensor then gives 

1 

3a + b = 4ctRjk |d~jk e-  ~sj, ejk = 4(1 -- e-  ~Rj,), (D.2) 
t /  
0 

whereas contraction with rjkrjk yields 

1 

a + b = 2~tRjk ~d~jk(l -- ~2k) e-~R~J k = 2(1 - e-~RJk) _ 2J(~Rsk) ' (D.3) 
i i /  

0 

where the function J is defined in eq. (B.8). The solution of eqs. (D.2) and (D.3) 
is a = 1 - exp ( -  ~tRjk) + J(otRjk), b = 1 - exp ( -  ~Rjk) -- 3J(~tRjk). Taking all these 
results together, one arrives at eq. (3.19). 

b) Next, we consider A(L~)(og). Since G(I.2~)(o~), has, as discussed in section 3 
sub c and in appendix A, an expansion in powers of ~t2a 2, and since the term 
involving G(l'Ea)(o9 = 0) is already of second order in our expansion parameters, 
it is sufficient to approximate G(l'U)(o~) by G °'2a), as given in eq. (6.11) of paper 
I. For £0'2a)(¢0, Rig), one has according to eq. (A.12) up to third order 

3 ~  ~ ~RjkI~I). (D.4) t t  O.2a)t,., ajak _ d/~(6~akr - 6~ka) ~ (~Rjk e -  ~'-jk ~ , ,  Rjk))~a7 = gEk 1 

Obviously this element of /(1.2~)(e~, Rjk) must be of the form C(6~a~jkr- ~r~k,). 
Contraction with ~a~k~ then yields 

l 

3 ajak ~d~jk~jk a 2C = --~ RE k d ff~kjk~tR~ke-~S~J ~ 
0 

3 aja k (CtRyk e -  ~ + e-~J~ 1), (D.5) 
4 R~ 2 

in agreement with eq. (3.21). 
c) Finally, we evaluate ,4 (2~'2a)(co). Also here G(2a2~)(¢o) may be approximated by 

the static value, which can be found in eq. (6.33) of paper I. For £ (2~.2")(¢o, R~k), 
one finds from eq. (A.12) to lowest order 

2 3 f '  ~2 
. . t ( 2 a , 2 a ) , r . . ,  Rjk):£ =. ajak J d ~  : ~ l ~ :  - - t X R j k  e-~y~l~l 
~..-~k ~ ,  R~  8n ~ 0~ 

a~a k 3 f dl~¢~ d: 
V~jk 
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In the last line, use has been made of eq. (A.6). Let us write 

I f d~'($ - fc~)(~Rjk e -~Rjklejkl -- 26(~jk))= d(~ - ~k~k) + e(~k~k -- ~1). (D.7) 

By taking the trace of the last equation, one gets 
1 

2d = 2 [" d~jk(o~Rjk e -'R'klej*l - 26(¢jk)) = 4e-~RJk, (D.8) 
i /  
-1 

while contraction with ~,~, yields 

+1 

5e = d~j,(l - ¢},)(~Rjk e -'"j*lCj*l -- 26 (¢j,)) = 2e-'"J* -- 2J(~Rj,), (D.9) 

-1 

with, as before, J given by eq. (B.8). Upon substitution of eqs. (D.7)-(D.9) into 
eq. (D.6), one arrives, together with the result for G ~2a'2a) of paper I, at eq. (3.40). 

Note added in proof 

After having submitted this paper to Physica, we learned that I. Piefikowska 
in a recent article in Archives of Mechanics 33 No. 3 (1982) has evaluated 
frequency-dependent friction tensors, taking into account many-sphere hydro- 
dynamic interactions. Her analysis was based on an extension of a method for the 
calculation of many-sphere friction tensors, developed by Oshizaki and Yam- 
akawa (J. Chem. Phys. 73 (1980) 578). In as far as a comparison could be made, 
Piefikowska's explicit result agrees with our formula (4.9). 
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