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MANY-SPHERE HYDRODYNAMIC INTERACTIONS
II. MOBILITIES AT FINITE FREQUENCIES
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We extend our previously developed scheme to evaluate the static mobility tensors of an arbitrary
number of spheres in a viscous fluid, to the case of finite frequencies.

1. Introduction

A well-known problem in low Reynolds number hydrodynamics!) is to calculate
the hydrodynamic interactions between spherical particles moving in a fluid, as
its solution is necessary for understanding the properties of suspensions. While the
first treatment of such hydrodynamic interactions dates from 1911 when
Smoluchowski?) analysed the hydrodynamic friction between two spherical par-
ticles, there has recently been a revival of interest in this problem®'°)t. This
renewed interest is greatly motivated by recent advances in experimental light-
scattering techniques in which multiple scattering is reduced, either by using
scattering cells of different sizes''%), or by using a solvent and solute which have
refractive indices that are not too different'), or still by using a two-beam,
two-detector light scattering spectrometer'*). These techniques enable one to single
out the effects due to hydrodynamic interactions in suspensions, so that a
comparison between theory and experiment can be made. As an example, we note
that the experiments by Knops—Werkhoven and Fijnaut!®) on the mutual diffusion
coefficient of dilute silica dispersions were in good agreement with the values
obtained theoretically by Batchelor®) and Felderhof').

In general, correction terms to e.g. the diffusion constant can, for dilute
suspensions, be obtained by taking only hydrodynamic pair interactions into
account. Since it was doubtful that this is a reasonable approximation for
suspensions which are not dilute, we recently developed a systematic expansion
to treat the full many sphere problem'?). This work extended the original analysis

*Present address: Bell Laboratories, 600 Mountain Avenue, Murray Hill New Jersey 07974, USA.
1See refs. 1 and 10 for earlier references.
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of Kynch®) of many sphere hydrodynamic interactions. From our results, Been-
akker and Mazur'®) determined the concentration dependence of the self-
diffusion coefficient to second order in the density, and showed that contributions
from two- and three-sphere interactions were of comparable size*. Their result is
in reasonable agreement with the values measured by Bauer'?).

Recent experiments by Pusey and Van Megen?’) also lead to the conclusion that
many sphere hydrodynamic interactions cannot be neglected in moderately dense
suspensions.

The analysis of ref. 10 (hereafter to be referred to as paper I) was performed
in the static case (frequency zero). In view of the above it seems worthwhile to
extend the analysis to the case of finite frequencies. This is the purpose of the
present paper. In considering hydrodynamic interactions at finite frequencies w
and low Reynolds numbers, two dimensionless quantities play a role, namely the
parameters a/R and a./2w/v. Here a is a typical radius of a sphere, R the typical
distance between spheres and v the kinematic viscosity. As is well known'®), the
quantity Q2w /v)'? is the inverse penetration depth of transverse waves. Qur scheme
will yield an expansion in these two dimensionless parameters and is therefore a
low frequency (w < a?/v) expansion (the parameter a/R is of course always
smaller than i; for dilute suspensions a/R <3). For the frequency range of interest
in most experiments, one has indeed w <a’/v. However, even if a/R and
aQw/v)'"? are small, there are two different regimes, distinguished by the
magnitude of the ratio of these parameters, R(2w/v). To see this, consider the
solution of the flow field of a single sphere oscillating with frequency w and
amplitude u,, which has the form'®)

v=e"F AV A (f(Nu), (1.D)
where

af_ ir,/iofv I 12 2 1.2

2 —{Cle (r +ifi0 )" + e;}/r?. (1.2)

Here r is the distance from the centre of the sphere and ¢, and ¢, are constants
that can be obtained from the boundary conditions'®). Since the imaginary part
of /iw/v is taken positive, the first term in the expression for df/0r is ex-
ponentially damped. Consequently, for large distances the flow field is of order
r~* and not of order r ~!, as in the static case (w = 0). It is essentially for this
reason that hydrodynamic interactions between two spheres at finite frequencies
will be of order (a/R)’ if R(w/v)'”?> 1 and of order a/R if R(w/v)'* < 1. As we
will discuss, the first regime is relevant for dilute suspensions, the second for
colloidal crystals.

*Recently 3-sphere hydrodynamic interactions were also taken into account by Phillies!?).
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In section 2, we review the equations of motion within the context of the method
of induced forces*®%1%, In section 3 we derive, along the lines of paper I,
equations for the velocities and angular velocities of the spheres up to third order
in our expansion parameters. Up to this order, the mobility tensors, the
expressions of which are given in section 4, contain only two sphere interactions.
In a higher order approximation however, they will contain three sphere inter-
actions. Some general results, useful to derive such higher order approximations,
are given in appendices.

2. Equations of motion

As in paper I, we consider N macroscopic spheres of masses m; and radii
a;(j=1,...,N)immersed in an otherwise unbounded incompressible fluid. The
centres of the spheres have positions R(¢) at time ¢. We shall summarize in this
section the basic equations of motion of the fluid and the spheres on which our
subsequent analysis of the hydrodynamic interactions is based.

Contrary to the case considered in paper I, where the analysis was based on the
quasistatic Stokes equation for the fluid, we shall now consider the more general
case where the fluid obeys the time-dependent linearized Navier-Stokes equation
for an incompressible fluid. Within the context of the induced force
method'*?#1%) this equation reads, for all r

ov(r,
p ”g’t Dv-Pe, )= Fr 1) Q1)
J

with

P -o(r, ) =0 .2)
and

dvg  Ov,
Poy=ply— ”(a‘ra + 237,,) : @2.3)

The notations are essentially those of paper I: v is the velocity field, P the pressure
tensor, p the hydrostatic pressure and # the viscosity of the fluid. In addition, p
is the constant fluid density. The index j runs from 1 to N and labels the spheres
(so do the indices k£ and /, to be used later), and Greek indices run from 1 to 3
and denote Cartesian components. The induced forces are defined in such a way
that

F(r,t)=0 forlr — R,(1)|>aj, (2.4)

so that eq. (2.1) reduces to the linearized Navier—Stokes equation within the fluid.
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In addition, in the induced force method it is required that
o(r,0)=u;(t)+ ;) A[r —R(1)] for|r —R;(1)|<gq;, 2.5)
so that stick boundary conditions hold at the surfaces of the spheres, and that
p(r,t)=0, for lr ~ Rj(t)‘ <a. (2.6)

The velocity u; and the angular velocity €2, of the jth sphere* obey the equations
of motion

mj d'zjift) = — f dSP(r, t) . ﬁ]+ K;Xt(t) = K}(t) + K]qxt(t) , (27)
50
2.
I]d ({t(t) = — f dS[r — R](t)] AP n"j+ Tjgxt = T;xt(t). 2.8)

50
Here, K, T, K™, T;* are, respectively, the force and torque exerted by the fluid
on sphere j, and the external force and torque on this sphere. S;(¢) is the surface
of sphere j at time ¢, A; a unit vector normal to this surface and pointing in the
outward direction, and I, = 2mga}/5 its moment of inertia (where a homogeneous
mass distribution has been assumed).

For one sphere, one may neglect within the fully linearized scheme, the time
dependence of its surface S and its position R**. We shall make the same
approximation here, i.e. we will also neglect for the case of many spheres the time
dependences of the surfaces S; and the positions R; of sphere j. In doing so, we
assume that the sphere-positions do not change appreciably over time intervals of
interest, or, alternatively, that the spheres perform harmonic motion with small
amplitudes around arbitrary equilibrium positions. It is then convenient to
introduce the Fourier-transform with respect to time of the various quantities, e.g.

u(w)= J‘dt e“'u;(1). 2.9
Egs. (2.1), (2.7) and (2.8) then become

—iwpo(r,w)+ ¥ 'P(r,w)=ZFj(r,w), (2.10)

—iomu(w) = — J dSP(r,0) A+ K = K(0) + Ki*(w), 2.11)

S

*Here the notation deviates from the one in paper I: 2 (and not ») denotes here the angular velocity.
** Including the time dependence of S, and R, in the case of stationary motion of a single sphere,
amounts in fact to analysing this motion in the Oseen approximation?).
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— il (w)=— JdS[r —RIAP(r,0) A+ T (0)=T(w)+ T} (0).

]

(2.12)
If one now uses egs. (2.4)~(2.6), in which the time dependence of R; is neglected,
it follows from eq. (2.10) that F;(r, w) is of the form

Fi(r,0)=a; %, 0)o(Ir — R| — a) — iwp[u;(w)
+2;(w) A (r —R)]|O(a;— Ir — le) =F(r,o)+F/(r,o). (2.13)

Here @(x) is the Heaviside function, and Fj(r,w) and Fj(r,w) are the force
densities induced on the surface of and within the sphere j, respectively.

From egs. (2.11)-(2.13) one obtains along the same lines as in paper I, section
2, relations between on the one side the hydrodynamic force K;(w) and torque
T, (w) exerted on the jth sphere, and on the other side the component of the force
F; which is induced at the surface of sphere j. These relations are

K(w)= -JdSP(r, W) H=— J drV -P(r,w)= — Jdr F;(r,w),
S; |r— RLD)| < a;
(2.14)
T(w)=— de[r —R]AP(r,w) A= — Jdr[r —R] A Fi(w). (2.15)

S
In order to solve formally the equation of motion of the fluid we introduce
Fourier transforms of e.g. the velocity field,

v(k,w)=fdr e *ro(r, w). : (2.16)

We also define the Fourier transform of the induced force density F; in a reference
frame in which sphere j is at rest at the origin,

F}(k,a))=Jdr e * " RF(r,w). .17

The equations of motion (2.10) and (2.2) then become in wave-vector represent-
ation

(— iwp + nkHp(k, ) + ikp(k, w) =Y e * BF,(k, ), (2.18)
J

k-vik,w)=0. (2.19)
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If one applies the operator 1 — kk (where 1 is the unit tensor and £ a unit vector
in the direction of k) to both sides of eq. (2.18), one obtains with eq. (2.19)

(— iwp + 1k (k, ) =5, (1 — k) - Fy(k, ») (2.20)

If the fluid would be at rest if unperturbed by the motion of the spheres, the formal
solution of eq. (2.20) is

v(k, w) =} (— iwp +nk?)~"! e * K1 — kk) - F,(k, »)
= 2'7 N+ k) te* R () —kk) - Fi(k, ). .21

Here the parameter « is defined as

a=./—iwp/n, Rea>0. (2.22)

Its real part represents the inverse penetration length /25 /pw of planar waves of
frequency w®). It is eq. (2.21) which we shall use to calculate the frequency-
dependent forces and torques exerted by the fluid on the spheres.

We will also need an expansion of Fj(k, w) in terms of irreducible multipoles
F?* (), defined by

Ff* )= ()" Jdﬁfﬁ?f,m,, ©) = (/ay (Y- [ak,, Filk, w)] ®>0).
k=0
(2.23)
Here 37 is the irreducible tensor of rank p, 1.e. the tensor traceless and symmetric

in any pair of its indices, constructed with the vector b (cf. paper I, section 3, or
ref. 22). Note also that one has according to eq. (2.14) and (2.15)

Fi(w) = — K(w), F®@)=—(Qa) "¢ T(0), (2.24)

where F® is the antisymmetric part of F@ and e the Levi~Civita tensor (cf. paper
I, egqs. (3.10)(3.12)).

In paper I (cf. eq. (3.14) and appendix A), we have shown that F} can be
expanded as

0® sin ka;

Fik,0)= io 2p + NM(/a y(ék" o )OF}"“)(w). (2.25)

Here, the dot © denotes a full contraction over the first p indices of F*V and the
p indices of the term between brackets. This expansion, on which our analysis of
many-sphere hydrodynamics in the static case was based, will be employed here
for finite frequencies too.
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3. Equations for u;(w) and 2;(w)

We have shown in paper I that one obtains a hierarchy of equations for the
force multipoles induced in the spheres by analyzing the so-called velocity surface
moments. We shall follow here in principle the same procedure. However, if we
restrict ourselves to contributions to the mobility-tensors up to third order in aa
and a/R, where a and R are a typical sphere radius and intersphere distance
respectively, it will be sufficient, as we shall see, to consider only the first two
moments. This is done in the next subsections. The exact equation resulting from
the zeroth surface moments is given in eq. (3.3). It is then argued that up to the
order considered in this paper, this equation reduces to relation (3.24). Similarly,
in subsection 3.2 it is shown that the exact result (3.26) reduces to eq. (3.39) in
the same approximation. Eqs. (3.24) and (3.39) yield the expressions for the
mobilities.

3.1. Zeroth order surface moment

We first consider the zeroth order surface moment, defined as

— 1
o(r, )’ = o ,w)5(r — R| — a)

! fdk SINKS xRk, ) G.1)

- @ny ka

4
Applying the boundary conditions (2.5) and substituting the formal solution (2.21)
at the right hand side, one obtains the following set of N equations

6m1a; (@) =2 jdk‘ f dkksmka’(ﬂ kK) - F,(k, »)

k sin ka, e ®-R)(1 — k). F(k,w). (3.2)

v Y dffdk

k#j

One may now use the decomposition (2.13) as well as the series expansion (2.25)
in the integrals on the r.h.s. One then gets

6nr]a,(uj(a)) + Z CaiMPN(w)  u(w) + Z CaiMGE N w) - Q(cu))
- Z B () O F™(w)+ ). Z AG"(0)0 Fi™(w). (3.3)

k#jim=1

This equation is the analogue of eq. (4.9) of paper I for finite frequencies. The
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connectors B4 (w), AL (w), M*Nw) and M*D(w) are defined as

B(lm)(w)__(zm_l)"(a)m 183 fdle J"dkksmka

k2+ 2
m=1 sin ka;
x(ﬂ—EE)( —— ) (3.4)
s \m—1
AYm () = (2m—1)"< ) 3 Jdk‘ fdkksmka
0"~ sinkac\ . g,
x (1 _EE)<6k—’":T—k—a:—>e = Ri) (3.5)
k sin ka; | sin ka, — kay cos ka,
M:D dk dk kX i
@)= [ kapy
x e""(“f"‘k’(ﬂ - EE), (3.6)
+ o
1D — ia, k sin ka; i sin ka, — ka, cos ka,
M) = -4 4r’q, d k*+ o’ Ok (kay)’
x ke &R 3.7

In egs. (3.6) and (3.7), the function between square brackets arises from the
Fourier transform of the @-function in eq. (2.13); € denotes, as before, the
Levi-Civita tensor. Note also that the expressions for B{™ (w) and A} (w)
reduce for @ =0 to those given in paper I for the static case (cf. egs. (C.1) and
(4.32)).
We shall now successively discuss the behaviour of the various connectors.
(a) According to eq. (3.3) the connectors M®" and M®? must in our
approximation be taken into account to first order in aa and a/R. In appendix
A, we show that one has up to this order

2
——1](1—<xa+h.o.) forj=k
1a
M) =1 —= Tk a—aRy(] ,
O e A
la / 2 R 2 .
_Eﬁ’i(a_R__e R]k(l_*_aR R ))( rjk—§1]),for] #k,

(3.8)
0 forj=k,

M) = |
O(oa)~"@a/RY), p=0,1,2 forj#k. 3.9
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Here R, =|R, — R| is the distance between the centres of sphere j and &, and
fx = (R, — R)/R; is a unit vector pointing from sphere j to sphere k. In eq. (3.8),
we have denoted terms which are of higher order in aq and a/R by h.o. The lowest
order term for j#k has a coefficient proportional to exp —aR; due to the
exponential damping of velocity perturbations which decay as 1/r (cf. the
introduction). That M{-?(w) vanishes, simply expresses the well known fact that
translation and rotation of a single sphere do not couple.
(b) For the connectors B"™(w), we show in appendix B that*

0 form#landm+#3,
B'""(w)=10(1) form=1, (3.10)
O(xa)* form=3.

B"-3(») multiplies the multipole moment F®(w) which is of third order in the
parameters in which we expand. This is best illustrated by the results of paper I,
where we have shown that at zero frequency F®(0) is of order (a/R)’. The
extension to the case of non-zero frequencies follows from the result, to be
discussed sub (c), that the ordering of the frequency dependent connectors in a/R
and aa is essentially the same as for the static ones. To the order retained here,
we therefore only need to calculate B™""(w) up to order «3a®. One finds (see
appendix B)

B w)= —1(1 —ag+ 2%’ —l’a’ + .. ). (3.11)

(c) Finally, we turn to the behaviour of the connectors A™(w). We show in
appendix C that AY"(w) is of the form

Al ™(w) = G™(@)/ R} + Hj™(@)/RE*? + Li™(w, Ry) . (3.12)

The frequency dependent tensors G4 ™(w) and H§™(w), which do not depend
on the interparticle distance R;, reduce in the 11m1t w—0 to the corresponding
tensors G4 and H{™ calculated in paper I (egs. (5.10)~(5.12)). These tensors
are proportional to a™ and a™*?, respectively, and have, as is discussed in
appendix C, a power series expansion in the parameter «’q? so that for small
frequencies

Gy (w) = Ri"G (0 = 0)(1 + O(xa)?) = O(a/R)"(1 + O(aa)?), (3.13)
Rj;’"‘ZH},i"’"(w) = Ri"2H{"™(w = 0)(1 + O(aa)?)
= 0(a/R)"*¥(1 + O(aa)). (3.14)

* It follows from eq. (3.10) that in the case of one sphere, £ only couples to F£©. This result is
implicit in the work of Mazur and Van der Zwan?).
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The behaviour of the tensor ¢ §"™(w, R;) strongly depends on the parameter aRy,
which is the ratio of the two parameters aa and a/R, in which we expand. The
behaviour in the regime aR < 1 is essentially determined by the limit (cf. appendix
)

lim(aa) ~'L§ Y, Ry) = constant ,

w—0

lim(aa) 2L G (w, Ry) = O(a/Ry)" "% m=2, (3.15)
w—0
while for aR > 1 the behaviour of L"™ is governed by the limit

RETOO RRLG™(, Ry) = — GH™(w). (3.16)
To summarize, it follows from eqs. (3.12)~(3.16) that the connector A} (w) is
of the mth order in our expansion parameters if R < 1, while it is even smaller
for aR > 1, since the most dominant term of L *™(w) then cancels G""(®). Thus,
one may again neglect, for the same reasons as given in sub (b), all terms involving
connectors A™(w) with m > 3, as well as the term involving A **)(w), which is
that part of A"?(w) which is symmetric in its last two indices.* For A"Y(w)
which couples to the force, we have up to third order (cf. appendix C)

G V(w)/R, 4 R (1 + - (a2 + apa >(1] + Fafi) 5 317
H Yoy Ry = ~3 B g - 3, (3.18)

T4

1,1 3 —aRy

L (w’Rjk)=_ZR 1+~ (a + aida? J(1 — e *Rr)(1 + Fufye)
9

1 2 D\ 2 2
+ i aaj<l + 5 (aj + apa )(a’R}k

e Ly 2 2 N ] 3.19
aR; dzR}k a3RJ3k (rjkrjk_‘3"u). (3.19)

For A%"*)Y(), that part of A®P(w) which is antisymmetric in its last two indices
and which couples to the torque, we only need to evaluate G*(w) and L* ) w),

* According to table I of paper I the connectors A%"(w = 0) with m >3 and A%2)(w =0) give
contributions to the mobilities of fourth and higher order in a/R. Since the ordering of the frequency
dependent connectors in a/R and aa is essentially the same as for the static ones, we only need to retain
AN w) and A"2)w) in eq. (3.3) in an expansion up to third order.
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since the term involving H"?(w) is of fourth order*. We find up to third order

(G w Duty = 3 A(FigOny — TiiyOup) » (3.20)
aq
(L, Ri))og, = — %;Tzk (1 — e~ "% (1 + aR)N"iks0s, — T, 0,p) - (3.21)

From the above discussion, sub(a), (b) and (©), it follows that eq. (3.3) reduces
to third order to

Gnnaj[(l — 5%} + j’adufw) + Y aal MG w) u (a))]

k#j
=—(1-oa+3%?—la ‘a)K(w)
- Y AL0) K@)~ Y, zi W w)e Tw). (3.22)
kAj k#j <l

Here, use has been made of eq. (2.24). The connectors appearing in this equation
are given in egs. (3.8), (3.12), (3.17)-(3.21).

As the term involving M®" in this equation is already of third order in our
expansion parameters (cf. eq. (3.8)), we may eliminate 4 (w) in this term in favour
of Ki(w) to zeroth order,

uw) = — (6nna,) 'K (w)+ h.o.. (3.23)
Eq. (3.22) then becomes

6nna(l —da’a} + Ju’adufw)

= — (1 —ag;+3a’a} — a’a)) K(w) + Z CaaMi-Nw) - K(w)
-3 Al V(w) - K(w) — Z 2 AL w):e- T(w). (3.24)
k#j k#j
3.2. First order surface moment
We now turn to the evaluation of the first order surface moment

—s. 3 — R,
3Ap(r, w)’ = I fdr(r P ’) v(r, )d(|r — R|—a)
j

J

3 0 sin kq;
=~8najfdkfv(k )(6k = ) (3.25)

J

Along the same lines as for the zeroth order surface moment (cf. egs. (3.2) and

* Moreover, it turns out that H"-3(w) is fully symmetric, cf. paper I, eq. (5.13), so that H-2(g)
in fact vanishes identically.
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(3.3)), we now obtain

61ma}<e ‘Q(w)+ Z ’aiM G (w) - u{w) + Z aiMGH () Qo ))

- Z B (@) © F™(w) + Z Y AG™(w) O F(w) (3.26)
m=1k#j
with
+ o
K2 .
M§(0) = ?2“" de J ak £t — 6) (;k S‘Z:“)
9 sin ka, — ka, cos ka, @ R (3.27)
ka}
+
3a k? 0 sin ka;
MG k
(@)= -5 jdl? jdkk‘k‘ € (ak ka )
0 [sinka, —ka,coska, | 4. a &,
il ik - (R; 3.28
Xak[ kKal e (3.28)
+ o —
9al~"2m — H™ o™~ " sin ka,
(2,m) = J
B%"(w) o J‘dk‘ jdkﬁ(ﬂ fE)( & kg )
o sinka)\ Kk? )
* ka K+ ad (3.29)
+ w 7
9a7~1i"2m — 1) o™~ 'sinka
@.m), — _ 7%k _ k
AG™(w) = o J dk jdkl?(ﬂ Ek‘)( F a, )
k? 0 sinka)\ .z s,

We briefly discuss the behaviour of these connectors in a similar way as in the

previous subsection:
(a) For M®Y(w) and M®?(w) one finds (cf. appendix A)

0 forj=k
@.D(p) = ’ '
M @) {0((aa)2_"(a/R)"), p=0,1,2 forj#k, o0

1 2 ;
.0y — J15€ + Oaa)y forj= k, 32
M (w) {@((aa)S—p(a/R)P) , p=0,1,23 forj#k. (3:32)
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(b) The result for B®™(w), analogous to the result (3.10) for B*(w) is

0 form#2andm #4,
B®(w)=10(1) form=2, (3.33)
O(aa) form=4.

In this case, we may neglect all terms with m > 4, so that the only connector to
be retained is 8 ®?(w), which is evaluated in appendix B. The result is, up to order
(aaj)a’

B®Y(w) = B () + B%»(v), (3.34)
where

(B (@))upys = — 16(3020p, + 102085 — 30:p0)(1 — 50°a} +30°a}) (3.35)

(BO2@),g,5 = — Y43us89, — o)1 — o'} +ia'a) (336)

(c) Finally, we turn to the connectors A?™(w). For these connectors, it may
be shown that they are of order m + 1 in our expansion parameters aa and a/R.
(This follows from the general analysis of appendix A). An analogous discussion
as in the previous subsection, sub (c) then leads to the conclusion that only the
connectors 4%Y(w) and A%*(w) need be retained. Due to the symmetry of the
connectors (cf. paper 1, eq. (4.35)), A®Y obeys the relation

(Aj(lf 1)(60 ))aﬁy = j/ak(A g’ 2)(60 ))yﬁa . (337)

The expression for A% w) is given later.
The above mentioned properties of the connectors A®™(w) imply that eq.
(3.26) reduces to, using also eq. (2.24),

6mna’(l — 35 a’al)e - Qw) = F(1 — 2a’a? + }oa’a})F P (w)

3 2 2,2 1 3,3 . 1 (2,2a), .
‘ 4a<1 saaj+30’a} e T(w) kgjz—akAjk (@):€* Ti(w)

3
- Y AN w)  K(w). (3.38)

k#j
This is an equation for a tensor of rank 2. Its symmetric part yields an equation
for F®)(w), which explicitly shows, as was indicated before (cf. after eq. (3.10)),
that F®(w) is of second order in our expansion parameters. Since F*Y(w) appears
in eq. (3.3) multiplied by a connector of second order, it need not be considered
here. We obtain the antisymmetric part of eq. (3.38) by contracting with ¢ and

using the fact that e:¢ = —21. We get

8nna(l — sa’a})Rw) = — (1 — ie?a? + joa’a}) T(w)

1 g - 2
+ Y ——a—’e:A}f"'z“)(w):e ‘T(@)+ Y g6 AP w) K(w). (3.39)
3a, iz 3

k#j
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For the connector A% (), we find in appendix C up to the order considered

9 «2a’a 2 2 1
€A INw)ze = ~ZFRJ—k's_mﬂ(lJ”azR Y R; ><"r"_§1]>
3ala’a
3 Rf Lo (1 — Fuf) - (3.40)

The two equations (3.24) and (3.39) yield to third order the frequency dependent
mobility tensors which are further analyzed within the next section.

4. Frequency-dependent mobilities

Eqgs. (3.24) and (3.39) may be written in the form

u(w) = — Zﬂfir(w) K(w) - Zﬂ Nw): T{w), 4.1)

2w) = - Zﬂ,T(w) K(w)— Zﬂﬁk(w) T{w). 4.2)

One finds to third order the following expressions for the various mobility tensors

6nnauil(0) = 0, 3(1 — ag; +§a’a} — Jo’a)) + (1 — )
3 Ta? ,ai | e
24 i 1 .
x[4a,<l+a(18+6>)+a6 R;k( + Fufu)
Y P Py
¢ R AR, 6 2R,

—aRy _2_
‘e (‘“ﬂm ; sz)]( 1), @3)

a "

8mnaiuit(w) = 8nnaj i (w) = — (1 — §;)(1 + aRy) R_] e "Ree - 7 4.4)
jk

a}

J e Rk

BrnalpiR(w) = 8,(1 ~ je’a? +jola)t + (1 —

2 2 .1 1 a’a e Ri(] —
<l+aR M 2R2>< ik 5“) 3R, ¢ )
@.5)

Here ji®"(w) denotes the transposed of uR™(w). The expressions for the diagonal
terms (j = k) of these mobilities are in agreement with the well-known results for
one sphere'®?).
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The above results greatly simplify in the two regimes |«|R, > 1 and |«|R, < 1.
Let us first analyze the case |a|R, > 1, which is the case at sufficiently large particle
separations. In this regime, the mobility tensors reduce to

8 7
6mnau; (0) = (1 —aaq; + 5 w’a} — 9 az3af>5jk1l

a\/.. 1
+(1- Jk)( 2R3 R—l;) (rjkrjk - §ﬂ), |oc|Re > 1, 4.6)
uiRw) = (@) ~0, |2|R,>1, 4.7
8nnaiuii(w) = 8;(1 —jaal +jda}), |«|Ry>1. 4.8)

In this regime, therefore, translational and rotational motion do not couple to
third order, nor do the rotational motions of different particles. Note that the first
of the two two-particle interaction terms in u™ () is smaller than a term of first
order in a/R, since 1/a’R} < | in the regime considered, but larger than the term
of order (a/R,)’, since 1/a’R} =(a/R;)* x 1/a’a® and we have assumed that
|xfa < 1.

If, on the other hand |a|R, < 1 and if one wants to retain terms up to third order
in the expansion coefficients, one has to take into account terms like a’aR} since
Ry > a;+ a, so that such contributions are larger than a term o’a*. For simplicity,
we w1ll only glve the resulting expressions to first order in aa and a/R,. To this
order, X, uRkT and ukR for j # k all vanish; for u}T we get

6nna y,k(w)————(ﬂ+ Py —aal, j#k |a|R,<1. 4.9)

This expression shows that at sufficiently small frequencies the mutual mobilities
n, j #k, have a contribution proportional to w'?, just as the direct mobilities

TT. Consequently the velocity correlation function of two different particles also
possesses a ¢ ~*? long-time tail.

It should be clear from the above analysis that, whether effects connected with
the derived smali frequency behaviour will manifest themselves, strongly depends
on the experimental conditions, in particular the particle concentration and the
frequency range under investigation. In recent experiments on the long time tail
by Paul and Pusey®), the frequency interval is such that
3x 10?em~' < |a| €3 x 10°cm ™!, while the suspension is such that the mean
distance R, between particles is approximately 7 x 10~*cm. In these experiménts
therefore, one has for the parameter |a|R,

2$,a|Rm§20.

Thus, their measurements are typically in the regime where the hydrodynamic
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interactions are a factor 1/x2RZ smaller than the static interactions would be at
the same mean particle separation (cf. eq. (4.6) and the discussion thereafter).
Moreover, the typical particle radius in the experiments of Paul and Pusey is
1.7 x 10~ *cm, so that their suspension is extremely dilute. Therefore, our analysis
supports Paul and Pusey’s?) statement that ““it seems extremely unlikely that
interparticle interactions would have a significant effect in such a dilute sus-
pension”. On the other hand, when studying the dynamics of colloidal crystals?*?)
for which the distance between neighbouring particles is about 1.5 x 10~* cm, and
for the same values of « as in the experiments of Paul and Pusey, one has for the
parameter aR

0.05 < |«|R £0.5.

Under these circumstances, one is therefore in the opposite regime where eq. (4.9)
holds to lowest approximation, and where effects due to the long time tail in the
velocity cross correlation should play a role.

As a final remark we stress that the mobility tensor matrix contains up to third
order only two-body-hydrodynamic interactions. This is not the case for the
friction tensor matrix, which is its inverse, and which to third order already
contains three and four sphere contributions?).
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Appendix A. General results for the connectors A{"(w)

Though the general connector A$™(w) has not been given in the text,

comparison with eq. (4.32) of paper I shows that the general expression for this
connector reads

+ o
o 3a(2n — DN@m — DN [ — i\ L2
A}k’ )((D) = 81!2 (“;_) ;k dE dk m

J

0" ! sink o™ 1 sink
kg [ O Sinka _ m=! sin ka, Al
x e~ "o ﬁ(ak"“_—kaj (1 — kK) ke ) (A1)

Here, as in paper I, & =7 ° k is the cosine of the angle between the unit vector
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F. and k. In paper I, cf. €q. (3.16) and appendix A, we have shown that

'_n| H — 212
@n+ 1~ a,-)-"(‘l sin ""“f) - E"a}'k"(l Gk, @(a,ky)

k" ka; n+6
=k"S,(ak), n>0. (A.2)
Thus, the S,(ak) are essentially polynomials in a’k®. Rewriting eq. (A.1) with the
aid of eq. (A.2) yields
Ap™(w) = i—‘:i""(—i)'”"l Jdk‘k‘"—l(n — kkykm—1
+ o0

x% j dk e~ KeReS, (ak)S,_ (@)

—

k2
Frod A3
The following analysis is based on an extension of the arguments given in section
5 of paper I. According to eq. (A.2), the product S.(ak)S,(ak) has an expansion
in powers of k of the form

S{ak)Sak)= 3 K@Pkr+m+, (A4)
p=0
where K=alay and KP = — alaj(a}/(4n + 6) + a}/(4m + 6)). For the k-
integral in eq. (A.3), we obtain with the aid of this expansion*

+ o
2

1 . k
L&) = b f dk e_lkcjkkjksn—l(a]k)Sm—l(akk)m

+
_ i K(Zp) L n+m+2p an+m+2p ,i dke—ik{;kkjk
Jk R aél{;(+m+2p n k2 + a2

p=0 \k
© - i \n+m+2 an+m+2p 1 Ralix|

= K —_ —— — e~ *Rikloikl | A.5
RIS (x,.) o5 ¥ ¢ @9

Using the fact that 4@ (x)/dx = 6(x), one readily shows that
aze_ﬂM
0x?

=pre M —285(x), (A.6)

so that for p > 1

62p+2

2
We—f"*' =p¥+2e~FH _2p%+15(x) — 2p% ! % 3(x)+ho.. A7)

* The intermediate step of eliminating the powers of k by taking derivatives with respect to &y is
necessary in order to arrive at an integral which is convergent for all values of - The integrals in
the first line of eq. (A.S) that are obtained by substituting eq. (A.4) are divergent for &i=0.
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Here, h.o. stands for higher order derivatives of the delta function. Using this
result to work out the 2p + 2 derivatives with respect to ¢, in eq. (A.5), one gets

in+m 6n+m—2 l:I

L&)=Y K@) Ry e *Rloil — 5(‘511:)]

=) Rym-1ogntm-2| 2
_ ,,21 K}ﬁ")(ia )ed TR;::’"_“L—‘ ;n:mm 6(¢s) + heo.
_ le: Sy (21))s,:.n - iza) 666";;: ? [ % aRy - Reknl — 52 k)]
- ,’zktﬂ <S"‘ ) gpmtap- ) ;g:m 5(&0) +h.o.

(A.8)

In the second line, use has been made of eq. (A.4) and the fact that K@ = aja;.
If we substitute this result into eq. (A.3), the terms indicated by h.o. in the above
equation do not contribute to A™™(w), for reasons also discussed in paper I after
eq. (5.9). For, in a reference frame in which the z-axis is parallel to the unit vector
i, We may write dk = — d¢, d¢,, where ¢, is tlll_e_g}her polar angle. After
integration over ¢, in eq. (A.3), any element of £"~'(1 — Eﬁ)f’” U will be a
polynomial in £, of which the highest order term is proportional to ;"™
Consequently terms containing higher derivatives of 4(£;) then the (n + m)th, do

not contribute. We therefore have the exact result
A(n m)(w) _ G(n m)(w)/Rn+m 1 (z m)(w)/Rn+m+1 + L m)(w jk) , (A9)
with

n l(la )Sm l(laak)(_ l)” ! 3 —a'am —1
(o)~ '(aa,)" ! 4n IOk

jdl?E" ‘(n—EE)Em !

Gy™(w) =

n+m 2

aénﬁ—m 25(élk)

Sn ~ l(iaaj)Sm - l(iaak) (n,m)
= hlth A.10
(oa)"~ 'Goa)y" ! A ( )

(,. m)( )= ( n—l(iaaj)sm~l(iaak)

(loa)" ™~ '(iaa )™~

3
)( l)n 1 naak la—2

y Jaﬁ?gn——?(u _ RRy R aaé "5

— n— l(iaaj)Sm l(iaak)_l)[( aj + aZ )]_l —2H§’rc|,m),
—< ()"~ '(xa)" " an+2 am+2)| Al
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3 ajay~' S, _\(i0a)S, _ (ioa,)
4n R (o) (o) !

L™, Ry) = (= 1)

n+m-—2
0

‘[dEW(ﬂ _EE)WW(I (ZRke_“RJklfM) (A12)

Here, G™™ and H™™ are the frequency independent connectors on which the
analysis of the static case was based (cf. paper I, egs. (5.11) and (5.12)). As was
asserted for the case n =1 in section 3, sub c, egs. (A.10) and (A.11) show that
the tensors G ™™(w) and H™™(w) are just the frequency independent connectors
G™™ and H®™ multiplied by a frequency dependent forefactor. As can easily
be checked with the aid of the properties of the polynomials S, (cf. eq. (A.3)), these
forefactors go to 1 in the limit w —=0 (« —0), as it should. Moreover, G ™™(w) and
H™™(w) have an expansion in powers of (xa)? not in powers of aa.

In the limit of large |«|R,, we may use for L™"(w, R,) the (asymptotic)
expansion

l

bRy 0wl = 6(5) + —or = 30+ (A.13)

66

Upon substitution of this expansion into the expression for L®™(w, R,), one
immediately obtains

lim R~ 'Ly™(w, Ry) = — G4™(w) . (A.14)

Ry~

For n =1, eq. (A.14) reduces to eq. (3.16). The next term in the expansion (A.13)
yields for large |x|Ry, together with eqgs. (A.9)—(A.14) and the explicit result for
H3™ (paper 1, eq. (5.12)),

m—1

YA L (a|Re> 1), (A15)

A(@)~(—1)"" 3 (2n +2m — 1)"—27”—"; 3
For n =m =1, one recovers in this regime the correction to the translational
mobility, given in the second line of eq. (4.6). Eq. (A.15) also shows that
corrections to eq. (4.6) in the regime |x|R; > 1 are extremely small, since then
terms of the form A"? ® A2 which yield fourth order contributions in the
static case (cf. paper I, table I), are proportional to a*/a*R®,

If |a|R, < 1, the integrand in the expression for L®™(w, R;) may be expanded
in powers of . For m=n=1, one finds in a straight-forward way that
LY, R;) becomes of order aa, whereas it becomes of order «’a"+™~!/Rj*" 3
if m#1 or n#1. In both cases, L™™(w, R,) is of order n +m — 1 in our
expansion parameters, as indicated in eq. (3.15).
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Appendix B. Evaluation of the connectors M (w)

We first consider M§ '), given by eq. (3.6), for j = k. In this case, the angular
integration can be readlly performed (cf. appendix B of paper I). the k-integration
can be done by splitting sin ka = (¢ — e ~%4)/2i, and closing the contour involving
¢* in the upper half-plane and the other one in the lower half-plane. Since the
term between square brackets has a regular expansion around k =0, there are
only poles at + ia, so that

2 I si — ka. .
M) = — 51] 9 R_)elf<kz k e,ka; [Sln ka; (k]:)l; cos ka{l)
J

1

=3 )3(1 “’ehm(lﬂa))

=—§1](1—aaj+...). (B.1)

To calculate M%), we write

+

M) = — =~ j ak — Eﬁ)_ J dk e~k Ri Sy(ak)S  (ark ) ——

- T

2

e (B2)

Here, we have employed the notation of appendix A, and we have defined

sin ka, — ka, cos ka, —1— 1, akit. ... (B.3)

S'(ak) =3 Ty 5

Obviously, M{-"(w) is of a similar structure as A} (), cf. eq. (A.3). Therefore,
the analysis of the k-integral in appendix A also applies to the one appearing in
eq. (B.2), if we identify S’ in eq. (B.2) with S,,_, for m =1 in eq. (A.3).
Accordingly, to lowest order one may neglect the terms arising in the second line
of eq. (A.8), and take Sy(ixa;)S’(iza,) ~ 1. Upon combining the results, one then
gets up to the order considered

(1 1)( )_

j dk(1 — k‘E)( aR e *Rilid — §(¢& k)) (B.4)

This tensor must be of the form

M) = % (al + biuky). (B.5)
ik
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Contraction with the unit tensor gives

la+b== J dy j dg,k< Ry e~ *Rukxl — 5(@)) = — de"x, (B.6)

while contraction with 7,7, yields

1
a+b=—2""R —2aR; jdfjk{]k e~ Rl (B.7)
0

For the integral, one finds

1

2
aR; jdfjkéfk e~ Rulx = 2’R2
0

-k

—e~ <1+%+ ; ) J(aRy) . (B.8)
The solution of egs. (B.6), together with eq. (B.8), is a = — exp(— aR;) + J(aR;),
b = — exp(— aR;) — 3J(xR;). Substitution of these values into eq. (B.5) leads to
the result (3.8).

Next, we consider M®?(w) and M?®(w), given by eqs. (3.7) and (3.27),
respectively. Since M®Y(w) is of a similar structure as M®?(w), its analysis is
analogous to the one of M"J(w), and we will therefore only discuss this
connector. For j =k, eq. (3.7) shows that the angular integration and the
k-integration decouple and that the angular integration is of the form j'dE k.
Obviously, this integral vanishes and thus M{-?(w)=0. To evaluate the con-
nector in the case j # k, we may again use the result of appendix A. If we now
define the polynomial

S"ok) = — 152(8111[11;]( _ka"COSkak)=akk<1—%aikz+...), (B.9)

ok ka}

the analysis of the k-integral in appendix A applies if we identify S” with S,,_,
for m =2 and take n = 1. The result in the second line of eq. (3.9) then follows
directly from eq. (A.8).

Since the discussion of M%?(w) for j # k again parallels the one of M§ 2(w)
for j # k, we will only evaluate this connector for j = k. In this case we obtain from
eq. (3.28)

+

3 1 1 sin ka;
(..2’2) = — — . —_ —
M@ (w) 4nfdl€ff € fdkk2+a2{ - +kcoska}

J

— 00

0 [sin ka, — ka, cos kak}

X = el (B.10)
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The angular integration is easily performed. Moreover, if we split the sine and
cosine in the term between curly brackets into exponentials, the contour for the
terms exp(ia.k) may be closed in the upper half plane, whereas for the terms with
exp(— ika,), the contour may be closed in the lower half-plane. Since the term
between square brackets has a regular expansion around k& = 0, there are only
poles at =+ ix. One then gets with the aid of eq. (B.9)

M (w)=¢- gRes [k2 : e*4(1 — ia; k)( : —ak + 0(q k2)>]

k—»laz

l
_-—l—se—i—(ﬁ(a a), (B.11)

which is the desired result.

Appendix C. The connectors B (w)

Employing the functions S, defined in eq. (A.2), we may write for B®™(w),
given in eq. (3.3)

+

tm _ "n-li 20N 11 ksmka,
BO™(w) = — (— i) 8n'fd/€<3uﬁﬁ>£ nfdk Tt - ,(a;c)(cn

Here, we have used the fact that k& = Kk — 1. According to eq. (5.4) of Hess and
Kohler?) (cf. also eq. (A.8) of paper I, where their explicit expression for the case
! =m is also quoted), one has

ifdﬁﬁﬁ=0 if I #m. (C2)
4n

This result immediately implies that B{™(w) vanishes for m #1 and m # 3.
Furthermore, by closing the contour for the k integral in the complex plane in the
same way as was done in appendix B, one has
+ o

1 k sin ka; .

p f dk——— g m_i(ak) =e"*S, _(ixa) . (C.3)
In view of the fact that S,(ina) is of order «’a? (cf. eq. (A.2)), we immediately find
that B®w) is of order a’a?. For m =1, we obtain, using the fact that
So(k) =sink/k

sin iog; 2 1
B @)= —1 e—“f———iaaj = —1}(1 — aa +-3—a2a} - §a3a} + - ) . (CH

This concludes the evaluation of B®"(w).
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Eq. (3.32) for B®™(w) may be derived along similar lines as above. After

writing K(1 — kk) in terms of kK 'and combinations of £ and the unit tensor, it
immediately follows from eq. (C.2) that B®™(w) is only non-zero for m =2 or
m = 4. Furthermore, it is easy to demonstrate by using complex integration that
B®¥w) is of order a’a*. As for B®?(w), we have

B®(w) = f dEk( — kK

3 1
X— f dkm( sin ka; + ka; cos ka)(

(C.5)

na;

—

0 sin ka)

j

The angular integration in the first line has been calculated in paper I, cf. egs.
(4.13), (4.16)-(4.20). For the k integral, we get

+ o0

3
7
na;

—

6 eikaj 1
=a_]£{_.e|§ I:kz ( 1 +lka)< ka +Eaj3k3 )]

2 1
=1 ——S—aza}-f-goc]af. (C.6)
Eqgs. (C.5) and (C.6) together with the results of paper I for the angular integral,
lead to eqs. (3.34)—(3.36).

: 0
m( sin ka; + ka;cos ka )( sin ka)

ka,

Appendix D. Explicit evaluation of some connectors A (w)

In this appendix we calculate with the aid of the results of appendix A, the
connectors A" N(w), AT (w) and A% w) explicitly up to the third order.

a) We first consider A§P(w), using the splitting (3.12) (cf. eq. (A.9)). As shown
in eq. (A.10), the tensor G""(w) is proportional to G "V given in paper I, eq. (6.5).
Upon expansion of the a dependent forefactor in eq. (A.10) up to second order,
one then immediately arrives at eq. (3.17). Similarly, eq. (A.11) shows that up to
the order considered, H""(w) may be approximated by H"Y, which may be
found in eq. (6.20) of paper 1. Finally, for L*(w), we have according to egs.
(A.13) and (A.2)

3a;
4R,

LD (w) = —

(1+—(aj+ak)) JdE(ﬂ—EE)aRke Rl (D.1)

To calculate the angular integral, we note that it must be of the form a1 + b7 7.
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Contraction with the unit tensor then gives

1
3a +b =4aR;, Jdéjk e~ Rk = 4(1 — e *Rk) (D.2)
0

whereas contraction with 7,7, yields

1
a+b=2R, fdzjk(l — &) e Rutk = 2(1 —e~ ") — 2J(aR,), (D.3)
0

where the function J is defined in eq. (B.8). The solution of eqgs. (D.2) and (D.3)
isa =1—exp(— aRy) + J(@Ry), b = 1 — exp(— aR;) — 3J(aR;). Taking all these
results together, one arrives at eq. (3.19).

b) Next, we consider A"*(w). Since G"?)(w), has, as discussed in section 3
sub ¢ and in appendix A, an expansion in powers of a%z? and since the term
involving G%?¥w = 0) is already of second order in our expansion parameters,
it is sufficient to approximate G (w) by G, as given in eq. (6.11) of paper
I. For L™, R;), one has according to eq. (A.12) up to third order

aak

( (1 Za)(w, Rjk))aﬂy 16

dE(éaﬂk 6a'ykﬂ) 6—2_ (aRjk e ‘IRjklél*l) . (D'4)
jk

Obviously this element of L("Z“)(w R;) must be of the form (8,57, — 8,y up)-
Contraction with .47, then yields

1

3a-ak _a ’
[}
3aa, aR, .
- le{*ﬁc(aR,-ke Ri g~k — 1), (D.5)

in agreement with eq. (3.21).

¢) Finally, we evaluate A®%)(w). Also here G *>)(w) may be approximated by
the static value, which can be found in eq. (6.33) of paper I. For L@2(w, R,),
one finds from eq. (A.12) to lowest order

€:Lj(£a,7a)(a), Rjk):c = — ﬁ_fdge k1K e — 52 aRke Ry 16|

aRak jdE {a- kk ) W o Rjk e~ Rl
Jk

=o’ala, & fdm — kk) @Ry e *Rkrl —25(¢,)).  (D.6)
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In the last line, use has been made of eq. (A.6). Let us write
1 . . s
P jdE(ﬂ — KEY @Ry e ~*Rulkl — 25(£,)) = d(1 — Fify) + e(Fyf —31) . (D.7)
By taking the trace of the last equation, one gets
1

2d =2 J dé,(aRy e~ Rilil — 25(&,)) = de~*Rx (D.8)
-1
while contraction with FyF; yields
+1
Se = j déu(l — ffk)(“Rjk e *Rulul — 26 (&x)) = 2e ™Rk — 2J (aRy) (D.9)
~1

with, as before, J given by eq. (B.8). Upon substitution of egs. (D.7)~(D.9) into
eq. (D.6), one arrives, together with the result for G of paper I, at eq. (3.40).

W~

Note added in proof

After having submitted this paper to Physica, we learned that 1. Pienkowska
in a recent article in Archives of Mechanics 33 No. 3 (1982) has evaluated
frequency-dependent friction tensors, taking into account many-sphere hydro-
dynamic interactions. Her analysis was based on an extension of a method for the
calculation of many-sphere friction tensors, developed by Oshizaki and Yam-
akawa (J. Chem. Phys. 73 (1980) 578). In as far as a comparison could be made,
Pienikowska’s explicit result agrees with our formula (4.9).
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