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A previously developed scheme-to evaluate the (translational and rotational) mobility tensors 
for an arbitrary number of spheres in an unbounded fluid - is extended to include the presence of a 
plane wall. General expressions for the friction tensors and the fluid velocity field are also 
obtained. 

1. Introduction 

The hydrodynamic interactions between spherical particles in a viscous fluid 

play an essential role in the theory of suspensions’). Characteristic of these 

interactions via the fluid is their very long range. As a consequence, the 

influence of boundary walls on properties of suspensions can be of importance 

even in cases where the vessel containing the suspension is very large. The 

velocity of sedimentation, for example, becomes infinite in an unbounded 

suspension - a paradoxical situation (noticed by Smoluchowski*)) which can be 

resolved%) by accounting for the presence of the wall supporting the fluid. The 

effect of boundary walls on Brownian motion has been studied experimentally 

by means of light-scattering in a thin film cel13). Such wall effects may also play 

an important role in recent experiments on two-dimensional ordering of 

colloidal suspensions in this geometry4). 

A second consequence of the long range of hydrodynamic interactions is the 

importance of non-additivity: that two-sphere hydrodynamic interactions do 

not suffice to describe diffusion in a suspension which is not dilute has been 

demonstrated both theoretically5) and experimentally6). Recently a scheme has 

been developed to WSZWI the hydrodynamic interactions of clusters of 2, 3, 4, 

5 ) . . . spheres, and applied to a calculation of diffusion coefficient7) and 

effective viscosity’), valid up to high concentrations. 

The application of resummation techniques in calculating transport proper- 

ties of concentrated suspensions has been made possible by the use of general 
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expressions for many-sphere mobilities in an unbounded fluid, derived in refs. 9 
and lo*). (The latter paper will hereafter be referred to as I.) In part II”) of 
this series the analysis given in I (performed in the static case) has been 
extended to the case of finite frequencies (see in this connection also ref. 13). It 
is the purpose of the present paper to extend the analysis of I to the case of a 
fluid bounded by a plane wall on which the fluid obeys a stick boundary 
condition t . 

The influence of a plane wall on the motion of one single sphere has been 
studied extensively, cf. refs. 1, 14, 15 (and refs. therein); for two spheres only 
partial results, for special configurations, are known*6P’7). An important role in 
these analyses has been played by the work of Lorentz18X’9) who obtained a 
solution to the following problem: given a velocity field o(r) which is a solution 
of Stokes’ equation, find a second solution u’(r) which on the plane z = 0 
satisfies: vi= --z)~, u;= -r+, t): = u,. As we shall see, this result is essential to 
our analysis for many spheres as well. 

In section 2 we formulate the problem of N spheres and a wall, within the 
context of the method of induced forces9,*‘). Using Lorentz’ result one can 
formally solve the problem in terms of force-densities induced on the surfaces 
of the N spheres. In section 3 the moments in a multipole expansion of these 
induced forces are determined along the lines of paper I. General expressions 
for the (translational and rotational) mobility tensors of the spheres are then 
obtained in sections 4 and 5 as an expansion in the two parameters a/R and 
a/(R* + 41*)“*. Here a is a typical sphere radius and R and 1 are the typical 
distances between two spheres and between a sphere and the wall, respectively. 
(The latter parameter may also refer to a single sphere, in which case it equals 
;a//.) These expressions are extensions of those given in I for the case of an 
unbounded fluid. Similar formulae can be obtained for the friction tensors (cf. 
appendix B) and the fluid velocity field (cf. eq. (4.22) and ref. 5). 

Explicit expressions for the mobility tensors to third order are given in 
section 6; to this order the hydrodynamic interactions between at most two 
spheres and the wall contribute. Should the need arise to obtain results valid up 
to higher order in the expansion parameters, then such extensions can be 
obtained in a straightforward way by evaluating contractions of tensors whose 
expressions are given in this paper. All results and notations relevant to the 
reader not interested in the derivation or such extensions are summarized in 

section 6. 

* A formal treatment of many-sphere hydrodynamic interactions has been given by Yoshizaki and 
Yamakawa”). 

t If the wall is replaced by a plane free surface (on which a perfect slip boundary condition holds), the 

results of I may be applied at once: it is sufficient to consider the influence of image spheres, reflected 

with respect to the surface (cf. ref. 1). 
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2. Formulation of the problem using induced forces 

We consider N macroscopic spheres of radii uj (j = 1,2, . . . , IV) immersed in 
an incompressible fluid with viscosity 7. Contrary to the case considered in 
paper I, we will include in our analysis the presence of a single infinite plane 
wall. We shall represent the position of this wall by r * ri = 0, where ri is a unit 
vector perpendicular to the wall. The centers of the spheres have positions Rj 

and lie in the halfspace r * ri > 0. 
The motion of the fluid in the halfspace r - ri > 0 obeys the quasistatic Stokes 

equation which -within the context of the induced force method9920) - reads 

VP(~) - rlAu(r) = 5 F(r) 
j=l 

for r n > o 
*A . (2.1) 

Here u(r) is the velocity field and p(r) the hydrostatic pressure. The induced 
force densities T(r) (j = 1,2, . . . , N) are to be chosen in such a way that 

4(r) = 0 forlr-RjJ>uj, (2.2) 

u(T)=u~+w~A(~-R~) forIr-Rjlsuj, (2.3) 

P(r)=0 forlr-Ril<uj, (2.4) 

so that eq. (2.1) reduces to the homogeneous Stokes equation within the fluid, 
supplemented by stick boundary conditions on the surfaces of the spheres. In 
eq. (2.3) uj and wj are the velocity and angular velocity of sphere j, respec- 
tively. On the fixed wall we also prescribe stick boundary conditions* 

u(r)=0 for r-h =O. (2.5) 

It follows from the above equations that the induced forces are non-zero on 
the surfaces of the spheres only and are of the form 

q(r) = u;2fi(hj)S(lr - Rjl - uj), (2.6) 

with tij a unit vector normal to the surface of sphere j and pointing outwards 

* We remark that boundary conditions (2.3) and (2.5) uniquely determine the pressure on the 
surfaces of the spheres and on the wall. 
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(cf. ref. 20). In the remainder of this section we shall construct the solution 

u(r), p(r) of eq. (2.1) and of boundary condition (2.5) on the wall, in terms of 

these - as yet undetermined - induced forces. 

We first note that the solution pi, pi(r) of eq. (2.1) for all r satisfies the 

homogeneous Stokes equation for r. P < 0 by virtue of the fact that the 

induced forces are zero outside the spheres and the fact that all the spheres lie 

in the halfspace r * ri > 0. We now pose the following problem 

Vp(r) - Van = 0 

I 

for r.ri<O, (2.7) 
V-u(r)= 0 

u(r) = -S-q(r) forr*ri=O, (2.8) 

where S - t),(r) is the reflection with respect to the wall of the vectorfield o,(r) 

defined above, that is to say 

s3 l-2iiri. (2.9) 

Here 7 is the unit tensor. The solution oZ(r), p2(r) for r * ri < 0 of problem 

(2.7)-(2.8) is given by Lorentz”), 

2)*(r) = -s * ur(r) - 2( r * ii)Vq(r) * a + ?j-yr * iq2Vp,(t), (2.10) 

p2(t) = pr(r) + 2(r * fi)ri * Vp@) - 4171i - Vfqt) * ii . (2.11) 

That u2(r) given by eq. (2.10) satisfies (2.8) is obvious; using the fact that q(r), 

pi(r) satisfy eq. (2.7) one may verify by substitution that 02(r), p2(r) are also a 

solution of eq. (2.7). 

It is not difficult to see that u3(r), p3(r), given by 

W = S * u2(S - r) , p3(r) = p2(S . r) , (2.12) 

are for r * ii > 0 a solution of the homogeneous Stokes equation, with q(r) = 

-q(r) on the wall. For every set of induced forces the solution u(r), p(r) of 

(2.1) and (2.5) is therefore given by the sum 

u(r) = udr) + Q) 9 P (r) = PI(r) + P3(r) . (2.13) 

In order to give an expression for u(r) and p(r) in terms of the induced 

forces, it is convenient to introduce Fourier transforms of fields defined for all 
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r, as for the velocity field 

u,(k) = I dr e-""q(r) (2.14) 

and similarly for the pressure field. The Fourier transform of an induced force 

density Z$(r) is defined in a reference frame in which sphere j is at the origin 

q(k) = J‘ dr e-‘““‘-‘?j’l$(r) . (2.15) 

In wavevector representation one then has 

ikp,(k) + vk*v,(k) = i e-“+Bj(k) , 
j=l 

(2.16) 

k * u,(k) = 0, (2.17) 

with k = ]kI. If one contracts both sides of eq. (2.16) with the tensor 1- kk 

(where k = k/k is the unit vector in the direction of k) one obtains with eq. 

(2.17) 

nk’u,(k) = i e-“.R’(I - kk).k$(k). 
j=l 

(2.18) 

Similarly, a contraction of eq. (2.16) with k gives 

ikp,(k) = 5 e-“‘qk * E;(k) . 
j=l 

(2.19) 

Eqs. (2.16) and (2.17) therefore have a solution 

u,(k) = 7-l 5 e-ik'Rjk-2(7 - ii) - F(k), 
j=l 

p,(k) = -i 5 e-ik’Rjk-lk -E;(k) . 

j-1 

(2.20) 

(2.21) 

According to eq. (2.10) one has for u,(k) 
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u,(k) = -Se v,(k)+ 2ii *i [ii * v,(k)k] - iv-‘ri -5 ri *i [kp,(k)] . (2.22) 

Substitution of eqs. (2.20) and (2.21) into eq. (2.22) yields an expression for 

u*(k) in terms of the induced forces. 

From eq. (2.12) one readily finds 

v3(k) = S - u,(S - k) . (2.23) 

The solution v(r) of eq. (2.1) with boundary condition (2.5) on the wall-for 

given induced forces -is therefore, according to eq. (2.13) given by 

u(r) = uO(r) + (2~))~ 1 dk e”“[v,(k) + v3(k)] , 

with 

u,(k)+ 2r3(k) = 7-l i [e-ik’~k-2(7 - kk)*l$(k) 
j=l 

-e -ik’S’Rjk-2( 1 - (S . ff)(S . k)) . Ii;(S . k) 

-2lii[e- ik’S.Rjk-lki -( 7 - (S * k)(S - k)) - Fj(S - k)] 

,. a 
--n---n 

ak 
A . i [e-ik’S’4j& . s . qs . k)l) . 

(2.24) 

(2.25) 

In eq. (2.24) v&r) is a solution of (2.1) and (2.5) in the absence of induced 

forces on the spheres and is therefore the velocity field unperturbed by the 

presence of the N spheres. For convenience we shall assume that the un- 

perturbed fluid is at rest, 

uo(r) = 0 (2.26) 

(see however in this connection the concluding remarks of paper I). 

We shall now proceed to determine the induced force density on the surfaces 

of the spheres which follows from the requirement that u(r) satisfies stick 

boundary conditions on these surfaces. Note that for this purpose knowledge of 

the pressure field p(r) is not required. 
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3. Determination of the induced forces 

To determine the induced forces on the surfaces of the spheres we shall use 
the general scheme developed in paper I. By analyzing the velocity surface 
moments 

one obtains a hierarchy of equations for the irreducible force multipoles 

F!p+l) 3 qyp!)-1 
I 

1 dr (r - Rj)” E;(r) = (p!)-’ I d6j$r$(lij) , (3.2) 

In the above equations the notation 2 denotes an irreducible tensor of rank p 

(i.e. a tensor traceless and symmetric in any pair of its indices) constructed 
from the p-fold ordered product of the vector b*. We shall give an outline of 
this procedure below. For a more elaborate exposition one is referred to paper 

Since u(r) should satisfy eq. (2.3) on the surface Sj of sphere j, one finds for 
the velocity surface moments (3.1) the set of equations 

(3.3) 

Here Q is the Levi-Civita tensor. 
The induced force may be written in terms of the irreducible force multipoles 

(3.2) by means of the expansion (paper I, appendix A) 

- 

q(k) = p$O (2p + l)!!ip (& si”,:“, 0 Flp+i) . 
I I 

(3.4) 

Here (2p + l)!! = l-3.5 * . . . * (2p - 1). (2p + 1) and the dot 0 denotes a full 
contraction of the first p indices of Ftp+‘) (which is a tensor of rank p + 1) with 
the p indices of the tensor between brackets. The surface moments (3.1) may 
also be written as 

* For p = 1, 2, 3 one has e.g. (cf. ref. 21) 

& = bM, ‘b,b: = b,,b, - ib*S,,v, &i& = b,,b& - fb2@,h + &b, + &b,J > 

where b = IbJ and p, v, A denote Cartesian components. 
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I 4 

q-&) -” = (-i)P(2m)-3 1 dk (Gsi”,,:“) e”“Qu(k). 

I I 

We notice here the useful identityz2) 

7 sin k 
- - = F(- l)PjP(k) , 
akP k 

(35) 

(3.6) 

with jP a spherical Bessel function*. 
If one evaluates the surface moments (3.5), using eqs. (2.24)-(2.26) and (3.4) 

and equates these moments to the values given in eq. (3.3), one obtains the 
following hierarchy of equations (i = 1,2, . . . , IV) 

&-7p,q = 5 c (At*m’+ W;;-“‘) Q FI”’ , 
j=l m=l 

m 

0 = 5 2 (Ar’ + W;;““) Q FI”’ (n = 2s, 3,4, . . .) . 
j=l m=l 

The so-called connectors A!Rm) and W!?“‘) Y Y are defined by 

A$.“) = ~p-*a,(-i)“-“(2n - 1)!!(7m - I)!! 1 dk e-ik’(Rj-Ri) 

x k-*j,_,(aik)j,_,(ujk) F(7 - k&)F, 

(3.7) 

(3.8) 

W$T”‘) = -ire2 ai(-i)“-“(2n - 1)!!(2m - I)!! 
I 

dk eik’Ri 

(1 _ (S.&S. ~))~eeii'b'R'k-2j,_l(~jk) 

+ 2ri -& [iri . (7 - (S * i)(S. 6))‘(se-if’s’4k-1jm_l(a,kn 

a 
il.-&i * i [f(S * i) p e-i”s.RJj,,_l(n,k)]} , (3.9) 

* me function j&) is related to the Bessel function of order p + 1 by j&x) = &~/x)“~-$+&). 
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where we have also made the substitution (3.6). The dot 0 in e.g. A:“’ 0 Fy’ 

prescribes an m-fold contraction with the (nesting) convention that the last 
index of the first tensor is contracted with the first index of the second tensor, 
etc. For example 

(A(ls3) 0 Fc3’), = 2 At&F& . 
lw 

(3.10) 

The connectors A?“’ and W, (“,*) defined above are tensors of rank n + m 
which are irreducible in their first n - 1 and last m - 1 indices. The connectors 
A do not depend on the position of the wall and were given in paper I where 
the case of an unbounded fluid was considered. The stick boundary condition 
(2.5) on the wall is accounted for by the connectors W. In eq. (3.7) we have 
decomposed these connectors for n = 2 as follows 

A:“’ = A’,?“,“’ + A’?“‘, WFrn) = W$,f’*m) + W;jvm) , (3.11) 

where A’2”*m’, Wc2”*“’ are antisymmetric and A@,“‘, W’z”vm’ are symmetric in the 
first two indices. We remark that both A”*“’ and W(29m) are traceless in the first 
two indices. This property follows from the fact (cf. paper I) that in view of eq. 

(2.1) 

tij - u(r) -5 = (4+i drV* o(r) = 0, (3.12) 

Ir-RjlS+ 

irrespective of the boundary conditions. 
As in paper I, it is convenient to separate the set of connectors Acm)- which 

do not depend on the positions of the spheres- from the connectors A’?“’ with 
i # j. We therefore define 

Bh” = _Af.‘“) 
7 

C;;m) = Atm)(l - aij) + W;Tm) . (3.13) 

According to eq. (3.8) B’“*“’ is given by 

B(w”‘) = -zn-*(2n - 1)!!(2m - l)!!(-i)m-n 
I 

dfs(1 - ii) F 

m 

x dL(U,&) . I 
(3.14) 

0 

Obviously, Btern) = 0 if n is even and m odd, or the other way around, since in 
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that case the first integrand is an odd function of k. On the other hand, if both 

n and m are even or odd, the k-integration gives zero for n # m, by virtue of 

an orthogonality property of Bessel functions”). One therefore has 

B’“*“’ = 0 if n # m , (3.15) 

as asserted in paper I. 

4. Sphere mohilities and fluid velocity field 

The force Kj and torque Tj exerted by the fluid on sphere j are given by 

where the ljressure tensor P has components 

(4.1) 

(4.2) 

In terms of multipoles of the induced force one has (cf. eqs. (I-3.10)-(1-3.12)) 

F;?’ = -Kj, FP”’ = -(2uj)-‘E . q, (4.3) 

where F”’ is the antisymmetric part of F$. 

Using eqs. (3.13) (3.15) and (4.3) one may write the hierarchy of equations 

(3.7) in the form (i = 1,2, . . . , N) 

6nvq4i = -Ki - 5 C(?) . Kj - 5 (,,)-l.;;,za) : E - Ir;. 

j=l j=l 

+; g’C;;,-)Q FI”‘, 
j=l m=2 

(4.4) 
N 

127r7&~~~ = c E : Cf.+ Kj - 3(2a,)-‘q + 5 (2uj)-le : Cy) : E + Z) 

j=l j=l 

j=l m=2 
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j=l j=l 

j=l m=2 
(4.4) contd. 

These equations have the same form as eqs. (I-5.2)-(1-5.5) for the case of an 
unbounded fluid. 

In the above equations use has been made of the formulae 

#lJ) = _ , ) /3(2.2) = pJ4 + pa ) 

#za.W * F”’ = _ ;q24 ) 
(4.5) 

i 
E . E = -2 1 

cf. paper I. Furthermore, we have denoted by Ccrrzs) and C’“.z”’ those parts of 
the connector C’&” which are respectively (traceless) symmetric* and 
antisymmetric in the last two indices. The prime in the sum over m in eqs. (4.4) 
denotes a summation over all integer values m 2 2 with the proviso that for 
m = 2 only the symmetric part of the connectors and multipoles is included in 
the summation, e.g. 

(4.6) 

Using the hierarchy of equations (4.4) one may formally eliminate F@’ and 

F’“’ (n 3 3) in the first two equations in favor of K and T. This procedure leads 
to linear relations of the form (i = 1,2,. . . , IV) 

u,=-$p~-$--&‘I;, 
j=l j=l 

w,=-&$.$-&y.r~;. 

(4.7) 

j=1 j=l 

Here ~7 is the translational mobility tensor, ~7 the rotational mobility 
tensor, and the tensors ~7 and pv couple translational and rotational motion. 
The expressions for these mobility tensors, which follow from eqs. (4.4) have 
the same form as in an unbounded fluid (cf. eqs. (I-5.16)-(I-5.19)?) 

*The fact that C(**) is traceless in the last two indices follows from the symmetry of the 
connectors discussed below, and from the fact that C(**“) is traceless in its first two indices (cf. 

section 3). 
t There is an obvious misprint in eq. (I-5.19): for Ai?” one should read A?%’ : c. 
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m m - N N 

12~~aiaj~~=cC1~.2”‘:E+C c’*.. c’x 0.. c 
s=l m,=2 m,=2 jl=l js=l 

Here B(“+n)-’ is, for n 2 3, the generalized inverse of B(“,“) in the space of 

tensors of rank at which are irreducible in their first II - 1 indices. (The 

existence of this inverse was demonstrated explicitly in ref. 7.) For the case 

a = 2s one has, cf. paper I, 

&b2”’ : B&z”)-’ = _;C’,‘b”’ . 
11 (4.12) 

It follows generally from the Stokes equation with stick boundary conditions 

that the mobilities defined in eq. (4.7) have the properties’) 

where & is the transposed of pi? Within the present scheme these symmetry 

relations are (as in the case of an unbounded fluid) a direct consequence of the 

symmetries of the connectors 
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Here f is the generalized transposed of a tensor T of arbitrary rank p, 

(4.15) 

That the connectors A satisfy (4.14) is evident from their definition (3.8). It is 
possible to write also expression (3.9) for the wall connectors W in a manifestly 
symmetric form. 

The velocity field of the fluid at point r may similarly be expressed in terms 
of the forces and torques exerted by the fluid on the spheres 

2)(r) = - 5 ST(r) * Kj - i S;(r) * I;. 
j=l j=l 

(4.16) 

The tensors ST(r), SF(r) defined above (which were not considered in paper I) 
can very simply be derived from the general expressions for the mobilities for 
N + 1 spheres by putting R,,, = r and taking the limit u~+~+ 0 (cf. ref. 5) 

ST(r)= lim Pz’,l,j 

oN+Pfo RN+~=’ 

1 

j = 1,2, . . . , N. 

SF(r)= lim Pr+l,j 

ON+@ RN+]=’ 

(4.17) 

These formulae are based on the idea that the velocity field can be probed with 
the aid of an infinitesimally small test sphere. In view of this obvious physical 
interpretation, the (straightforward) formal proof of eq. (4.17) is omitted. 

5. Evaluation of the connectors 

General results, useful for an evaluation of the connectors At’“‘, have been 
given in paper I. By an extension of these arguments we shall give below 
explicit expressions for these connectors*, as well as for the wall connectors 
WiTrn). One then has explicit expressions for all the connectors appearing in 
formulae (4.8)-(4.11) for the mobilities. 

Definition (3.8) of the connector A!,?“’ may be written in the form 

Ap’ = $-*~~(-I)“+‘(2n - I)ll(2m - I)!! 
I 

dk F ~(1 - ii)& e-i”Rij 

’ k-‘“+“‘j,_,(aik)i,_l(Uj~) ) 

11 11 

(5.1) 

* Similar expressions have also been obtained by Tough%). 
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where Rij = Rj - Rp Expanding the Bessel functions around k = 0 one may write 

(2n - 1)!!(2m - l)!!k- ‘“‘m’l)j”_,(Uik)i,_,(aik> 

= U:‘“;‘k-3[l-~k2(--&+2;~l)]+%!(k), (5.2) 

where 9?(z) is analytic in the complex plane and bounded for large 1.z by 

exP[(ai + uj)lzll* 
That B(k) gives a vanishing contribution upon integration to A, if i #j may be 

seen as follows*: upon substitution of eq. (5.2) into eq. (5.1) one finds that this 
contribution is of the form 

dk( 1 - &) e-ik4j kS(k)=2r j dk (Ik2+-$)SinR~;@“(k), (5.3) 
‘1 v 

-co 

where R, = JR,1 and we have used the fact that %!(- k) = S(k). The integral in 
(5.3) equals zero if i # j (in which case one necessarily has R, > ai + uj), as a 
consequence of the Paley-Wiener theorem (cf. e.g. ref. 25). 

One therefore has the result (cf. paper I) 

A!?“) = G!?m)+ #v) 
II JI 

(i # j) , (5.4) 

with 

(5.5) 

‘a”-I a2 $7 

)__ -RI? 
2n+ 1 2m + 1 aR~-‘aR~CiR~-’ ’ ’ 

(5.6) 

where use has been made of the formulae (valid for r # 0) 

I dk e-““( 1 - &i)ke2 = r2( 7 + ii)r-’ , (5.7) 

(5.8) 

* This was asserted in paper I from an incomplete argument. 
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In the above equations iij = RdRij and i = r/r are unit vectors; the arrow c on 
&Rij in eq. (5.5) indicates a differentiation to the left. 

In order to simplify the expression for H we note that since (a/&-) - 
(a/ar)r-’ = 0, one obviously has 

‘8’ 
7 

-1 - ap _1 

-sr . 

Using this identity together with the formula*‘) 

ap 
atgr -l = (-l)p(2p - l)!!r-(P+l)~, 

(5.9) 

(5.10) 

one obtains from eq. (5.6) the final result 

Htrn) = (-1)” $ a;ay-l (A+ ,ii 1) (2n + 2m - l)!!R,‘“+“+“rF, 

(5.11) 

derived before in paper I. The differentiations in expression (5.5) for the tensor 
G may be carried out in a similar general way; for many purposes, however, 
the form (5.5) is as convenient. 

The above results for the connectors A?“’ are valid only for i # j; for the 
case i = j, general explicit expressions for the tensor B’“*“’ = --A::“’ (and for its 
inverse) have been obtained in ref. 7. 

The evaluation of the wall connectors W (defined in eq. (3.9)) proceeds along 
the same lines as the evaluation of A given above. Here too, only a few terms 
in the expansion of the Bessel functions in (3.9) in powers of k give a nonzero 
contribution upon integration. After some algebra (cf. appendix A) one obtains 
the result (valid also for i = j) 

wfJn) = = wfm) + q/q”’ + c w!y), (5.12) 

with the definitions 

I I 
” 2 

1 I 

+2(n-l)ri$+ 1 .(1+i,i,)R~~~S ‘“‘-’ 
A ‘Is a(S . RijJmel 
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+ (-1)” ; ayai”-lRij,(n+m-l) (2n + 2m - l)!!(li/RijJ2 ~~ 

+ 2(n - 1)(2n + 2m - 3)!!lJ?,i~A(“-‘~“-‘) 0 ri $m-l 

+ (n - l)(n - 2)(2n + 2m - 5)!!A’“-‘~“-” 0 rile ids”-* ‘1 0 fmsm’, 

(5.13) 
‘a”-” a2 

y?“‘= (-l>” $2:+yyzn + l)-laR”‘--& riR * ( 1 + :ij&)R ;; 
‘Is ‘Ir 

, 
,S Zrn-l 

a(s * RijJrn_l 
+ (-1)” t c.z~u,?-~Z~~~+~+~)(~~ + 2m - l)!! 

x 
[ 
(2n + l)-‘af rF QJyT”‘- 1 

( 

a2 
‘+ 

a! 

2 2n+l I > 2m+l 
vo p+l.m+l) 

+ 4 - L)((2 
2n+l 2m+l 

n + 2m + l)liRi:ri 6 iGTm+l Q fm3”’ 

+ (n - I)&“-‘*“-“0 $(fi + i”,‘“i Q 2 (mm))] , (5.14) 

cWi;m)= (-l)m+l z a;+2a7+1Rir+m+3)(2n + 2m + 3)!!(2n + l)-‘(2m + 1)-l 

x rip : ip Q -pm) . (5.15) 

In the above equations the vector R, = S - Rj - R, points from sphere i to the 
mirror image with respect to the wall of sphere j (the reflection tensor S was 
defined in eq. (2.9)); this vector has magnitude RijS = (R; + 41ilj)1’2 (where 
Ii = li * Ri and lj = ii - Rj denote the distances of spheres i and j to the wall) and 

direction iijs= R,JR,. The tensor 2 (“*“) of rank 2n is an n-fold ordered product 
of the tensor S, 

pn) 
p ,... /A,, Y ,... V” = sPl""sP*""-, . . . SW, . (5.16) 

The tensor A’*“’ of rank 2n is a tensor which projects out the irreducible part 
of a tensor of rank n: 

(5.17) 

For n = 1, 2 one has e.g.‘l) 
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The dot 0 is used in eqs. (5.13H5.15) in conjunction with the tensors XC”,“) 

and A(““) (n = 1,2,. . .) d fi e ne a ove, to denote an n-fold contraction (with d b 
the nesting convention, cf. eq. (3.10)). 

Substitution of the above expressions for the connectors in equations (4.8)- 
(4.11) yields the mobilities, or (with eq. (4.17)) the fluid velocity field as an 
expansion in the two parameters a/R and a/R, = al(R2 + 41’)“‘; here a is the 
typical radius of a sphere and R and 1 are the typical distances between two 
spheres and between a sphere and the wall, respectively. The dependence of 
the connectors on these two parameters is as follows*: 

G(““) cc (a/R)n+m-l , Hhm) K (a/~)n+m+l , aw(nm) a (a/~~n+m-l , 

(5.19) 
bW(n.m) a (a/~s)n+m+l , CWhm) o: (a/RJn+m+3, 

hence products of connectors with small upper indices n and m give the 
dominant contributions. 

6. Explicit results 

Equations (4.8)-(4.11) and (4.17) together with the expressions for the 

connectors Al?“’ (i # j), bV{T”‘) and @“)-l given in section 5 and in ref. 7 enable 
one to calculate the (translational and rotational) mobility tensors, as well as 
the fluid velocity field, to any desired order in the two parameters a/R and 
a/R, = al(R2 + 41’)“‘. 

In paper I the mobilities in an unbounded fluid were evaluated explicitly up 
to and including terms of order (a/R)7. To this order hydrodynamic interactions 
between two, three and four spheres contribute. The fluid velocity field in an 

unbounded fluid to this order follows directly from these results, by virtue of 
eq. (4.17). We shall give below explicit expressions for the mobilities in the 
presence of a wall, including terms of order (a/R)“(a/RJ” with it + m c 3. To 
this order specific hydrodynamic interactions of one and two spheres and the 
wall contribute. One finds: 

fjma,pF = 16, + [Gf” + $!*“](I - Sij) + ‘Wfl) + bWfl) 

= lSij + [:a$?;‘( 1 + ?ijiij) - $a,(af + af)Ri3(iijfij - f 7)](1- aij) 

- fa,Rii[ 1 + tij,tkj - 21J?~~tikii + 21#?~~iiiisj + 21,lpijf 

* The wall connector Wij may also refer to a single sphere, which is the case if i = j. The variable 

Rij, then reduces to 24 and the expansion parameter a/R, is therefore ia// in this case. 
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x (7 - 2rili - 3fij*i&j)] + $$<u; + a;)R~;(+ij*i~j - 5 7) 

- ;a&+ a;)R&iijSB + ljliikj) + ;a&~(u:lj f Ui’li) 

x (li + Q)( 7 - 2riP - 5tij,+bj) ) (6.1) 

tjmla;ujCc~ = 16, - f~ : [G’p2”‘(1 - sij) + “Wip”] : E 

= 76, + gz:u#?~3(~ij~ij - !7)(1- S,)- ;u:ujR~;[i~j?ij*- f7 

+ 2(1i + 1j)“R~Iz7 - 2(~~, A ~)(~ij~ A li)] , (6.2) 

12TufCc!7 = 12,r,&-i~ = --E : [G!y"(l- S,)+ a W$F’)] 

= +;R;‘e . tij(l - 4) + ;a;R;+. Fijs+ 21&+ * fi - 3(tijs A ri)kkj)] . 

(6.3) 

We list below the notations used: 

RpIRj-RiI, l,=C.R,, lj=i.Rj, iij-(Rj-R,)/R,, 

Rvs+IS- Rj- Rij = (R; +41ilj)‘n, iijp=(S* Rj- Ri)lRijs, 

ii, j = (Rj - S . R,)/R ijs = fijs + 2ri (Ii + lj)lRijs ; 

the unit tensor and the Levi-Civita tensor are denoted by 7 and E respectively; 
& denotes the transposed of p 

The expressions for the mobilities given above reduce for i = j to the 
well-known results1V14V15) to order (all)’ for a single sphere at a distance 1 from a 
plane wall*. Note that to this order there is no coupling between translation 
and rotation for a single sphere (tip is in fact of order (u/lr). 

The fluid velocity field follows directly from eqs. (6.1) and (6.3) by virtue of 
relation (4.17). One then finds to third order the fluid velocity field due to the 
motion of a single sphere in the presence of a wall. 

The calculation of higher order contributions to the mobilities and the fluid 
velocity field is within the present scheme elementary, in the sense that only 
differentiations and tensor contractions are required. To fifth order e.g., ~7 is 
given by 

6rrrlaipT = 76, +A;S1’(l - 8,) + k’l+,?” 

+ 5 (G$Z”‘(l - 6,) + a W;;“‘) : @+)-’ : (@F”(l- 6,) + a W(T’)) (6.4) 
k=l 

* We have in fact verified to order (a/r)’ the agreement of our expressions for a single sphere 
with results from the litterature. 
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and contains specific hydrodynamic interactions of up to three spheres and the 
wall. The explicit expression corresponding to eq. (6.4) is however very lengthy 
and will not be recorded here. 

7. Concluding remarks 

Using a result due to Lorentz18*19) we h ave extended the scheme developed in 
paper I”) - to evaluate the mobility tensors for an arbitrary number of spheres 
in an unbounded fluid- to include the presence of a plane wall. The fluid 

velocity field can be obtained from these mobilities by a simple relation (eq. 
(4.17)). Friction tensors, on the other hand, may be found by inversion of the 
mobility tensor matrix -or more directly from the hierarchy of equations (3.7). 
In appendix B we give the expressions for the translational and rotational 
friction tensors, and consider also the case of freely rotating spheres. 

The friction tensors for a system of two spheres and a plane wall have been 
studied by Wakiya16), for the case of two non-rotating spheres moving with 
equal velocities in the plane which is perpendicular to the wall and passes 

through the centers of both spheres (that is to say o1 = a)2 = 0; u1 = u2 = u; u, ri 
and R,, coplanar). His explicit expressions (to lowest order) agree with those 
resulting from the general formulae in appendix B. Vasseur and Coxi’) have 
investigated the lift forces (i.e. the components of the forces perpendicular to 
the wall) on two freely rotating spherical particles, moving in the same 
direction parallel to a plane wall. They included in their analysis the effect of 
the non-linear convection term in the Navier-Stokes equation. We have 
verified that the results of Vasseur and Cox agree with ours in the limit of zero 
Reynolds number. 

In our treatment we have assumed that the unperturbed fluid is at rest (cf. 
eq. (2.26)). The generalization to the case that u. is an arbitrary non-vanishing 
solution of the quasi-static Stokes equation (with z)~ = 0 on the wall) is, 
however, straightforward-as pointed out in paper I (section 7) for the case of 
an unbounded fluid*. 
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Appendix A. Evaluation of the wall connectors 

Upon partial integration eq. (3.9) for the wall connector W may be written as 

wiyrn) = -:~-‘a~(- i)“-“Qn - l)! !(2m - I)!! I dk e-i”(S’Ri-Ri)j~_,(ak) 

(A-1) 
where we have used the formula 

(with the tensor L: defined in eq. (5.16)). The dot in e.g. 0 LC(“‘,“‘) denotes an 
m-fold contraction (with the nesting convention, cf. eq. (3.10)). To perform the 
differentiations between square brackets in eq. (A.l) the following formulae 

are helpful 

I;.a~=k-‘(p_1)[Xk^p-2._(A.~);G^P-I], 
ak (A4 

a a-? 
li-z"-akk *p-1 = k-*(p - l)[((p + l)(ri . f)’ - 1) Ik”p-I - 2(p - l)(i! - 6) xk^g-21 

+(p-2)iiiiP-3]. 64.4) 

By virtue of the Paley-Wiener theoremz), only a few terms in the expansion of 
the Bessel functions in eq. (A.l) in powers of k give a nonzero contribution 
upon integration; these remaining contributions may be evaluated with the 
help of formulae (5.7H5.10). Collecting terms of the same order in R,= 
IS * Rj - Ril gives the result (5.12X5.15). 
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Appendix B. Friction tensors 

The friction tensors are defined as follows (i = 1,2, . . . , N) 

(B.1) 
q = - c (gy - uj + &;” * coj) . 

j=l 

By elimination of higher order multipoles of the induced force in the hierarchy 
of eqs. (3.7) one obtains for these tensors the expressions 

co B m N N 

with the convention 

(cf. eqs. (4.5) and (4.12)). The above equations are the analogues for friction 
tensors of eqs. (4.8)-(4.11) for mobilities. 

It is evident from the above expressions (using property (5.19) of the 
connectors) that the dominant n-sphere contributions to the friction tensors are 

of order (a/R)“-’ and are due to sequences c(rS1)* Ce*r)* . . . - P), i.e. to 

monopole-monopole interactions. In contrast, the dominant n-sphere con- 
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tributions to the mobilities are (as noted in paper I) of the higher order 
(u/R)~“-~ and are due to sequences C(1S2s) : @@’ : . . . : C@**), i.e. (essentially) to 
dipole-dipole interactions. 

To conclude our discussion of friction tensors we consider freely rotating 
spheres. In this case the torques on the spheres are zero and one can eliminate 

their angular velocities to give 

N 

Ki = - c <; - ui . (B.7) 
j=l 

The free-rotation friction tensor 6: may be determined by inversion of ~7 (this 
was done to order (u/R)~ in ref. 9) or directly from the hierarchy (3.7). The 
resulting expression for 6; in terms of the connectors is identical to expression 

(B.2) for cy, with the proviso that convention (B.6) is now replaced by 

c3.8) 

excluding the antisymmetric part. 
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