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SURFACE UNDULATIONS IN EXPLOSIVE CRYSTALLIZATION: A NONLINEAR 
ANALYSIS OF A THERMAL INSTABILITY 

Wim VAN SAARLOOS and John D. WEEKS 
A T& T Bell Laboratories, Murray Hill, New Jersey 07974, USA 

We argue that surface undulations observed after self-sustained rapid crystallization of amorphous films result from a 
thermal instability that induces a periodically varying crystallization rate. Its physical origin is discussed for a simple nonlinear 
heat conduction model which yields good agreement with experimental observations. The model displays a rich variety of 
interesting physical phenomena. It contains a co-dimension two bifurcation point in whose vicinity detailed analytic results can 
be obtained. A numerical analysis of the nonlinear oscillations shows that these, in turn, bifurcate via a series of 
period-doubling bifurcations. 

1. Introduction 

Recently, there has been much interest in insta- 
bilities occurring during crystal growth, particu- 
laxly those leading to dendritic growth and the 
morphological instabilities of the crystal-melt in- 
terface [1]. In this paper t we analyze a much 
simpler thermal instability which can explain phe- 
nomena observed during the rapid crystallization 
of metastable amorphous films. Instead of being a 
morphological instability along the amorphous to 
crystalline (a-c) interface of the type discussed at 
this conference by Sekerka [2], this is a thermal 
instability in the direction of propagation of the 
a - c  front, and occurs even for straight fronts. As a 
result, its wavelength is given in terms of a thermal 
length only. 

Under favorable experimental conditions, layers 
of amorphous Sb [3-8], Ge [9-24], Si [24-28] and 
other materials [29, 30] can crystallize very rapidly 
when crystallization is initiated by a laser pulse or 
by impact with a stylus. The name explosive crys- 
tallization stems from the fact that the speed of the 
crystallization front can be of the order of meters 
per second. Since crystallization rates are strongly 
dependent on temperature, it was realized long ago 
[4] that this phenomenon is associated with the 

tA brief account of this work was given in Phys. Rev. Lett. 
51 (1983) 1046. 

temoerature rise induced by the latent heat 
liberated in the a -c  transition. Whether a self-sus- 
tained crystallization wave can occur in a particu- 
lax case therefore depends on an energy balance. If 
the latent heat liberated is too small or the heat 
loss to the substrate too great, the crystallization 
wave cannot sustain itself and dies out. One then 
has to initiate the process repeatedly by scanning 
the layer with a laser beam [15-20, 26-28] so that 
the crystallization front proceeds in bursts: the 
front first outruns the laser beam, then slows down 
and stops, after which the process repeats itself 
when the heat from the moving laser beam catches 
up [31]. 

In materials like Sb [3-8], Bi [30] or Yb [30], on 
the other hand, se l f -sus ta ined crystallization waves 
have been observed that propagate through the 
whole layer (often a few micron thick) after being 
initiated at a single spot. In several of the latter 
experiments the crystalline phase exhibits periodic 
variations in the height of the layer [4, 8]. Far from 
the initiation point, the structure is often essen- 
tially one-dimensional, resembling a frozen-in pat- 
tern of parallel water waves near a beach. 
Wickersham et al. [8] noted that the undulations 
could have a thermal origin, since the wavelength 
h in their experiments was roughly equal to the 
thermal length ~/Vav (here K is the thermal diffu- 
sivity which we assume for simplicity is the same 
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in the a and c phases, and Vav the average crys- 
tallization speed). In this paper, we argue that they 
indeed result from a thermal instability of a stead- 
ily advancing a-c  front to one with an oscillating 
growth rate. 

In the next section a simple model for explosive 
crystallization, already studied by Gilmer and 
Leamy [32], is introduced. The steady state solu- 
tions, corresponding to a--c fronts propagating with 
constant speed, are discussed. In section 3 we 
analyze the stability of the steady state solutions in 
qualitative terms, deferring the explicit linear sta- 
bility analysis to an appendix. It is shown that 
under certain conditions an oscillatory (Hopf) bi- 
furcation can occur, which leads to solutions with 
a periodically varying growth rate. The physical 
mechanism leading to this behavior is discussed. A 
detailed analytic treatment of the nonlinear behav- 
ior of our model is possible in the neighborhood of 
a particular point (a co-dimension two bifurcation 
point) where time dependences are slow. This is 
carried out in section 4. In section 5 we compare 
our predictions with the experimental observa- 
tions, and comment on the validity of the model. 
Section 6 contains a more detailed discussion of 
successive period doubling bifurcations that were 
found in a numerical analysis of the nonlinear 
oscillating solutions. 

Using this frame, we follow Gilmer and Leamy 
[32] and assume a balance equation of the form 

OT 02T+ vOT F ( T -  T ° ) + q V S ( x )  (1) 
0-7- = ~ O x - - - i  -~x  - 

Eq. (1) expresses the change in the temperature T 
in terms of four contributions: The first term on 
the right-hand side gives the heat conduction 
through the layer; the second term results from the 
transformation to the moving frame; the third one 
crudely describes the heat loss to the substrate at 
temperature T O , and replaces the contribution from 
radiation and heat conduction to the substrate 
which should be taken into account in a more 
realistic treatment. The fourth contribution is the 
source term due to the latent heat L V liberated 
per unit of time and area at the a-c  boundary 
(here L is the latent heat per unit volume [33]; if C 
is the specific heat per unit volume, q = L/C) .  The 
delta function ensures that the latent heat is re- 
leased only at the a -c  boundary at x = 0, and is 
equivalent to the boundary condition x OT/axlo_ 
- K aT/Oxlo ÷ = qV. Eq. (1) is supplemented with 
the boundary condition T(x, t) ~ T O for x ~ + ~ .  

Eq. (1) is incomplete until the growth rate V is 
specified. As usual, we assume that V is an explicit 
function only of the boundary temperature [34] 
Tb(t)  = T(x = O, t), 

2. Steady state propagation 

In view of the experimental observations that 
the surface undulations far from the initiation 
point are often parallel, we analyze the propaga- 
tion of a straight front, neglecting temperature 
differences in the vertical and lateral direction and 
any possible coupling to density and height dif- 
ferences. (We will come back to this in section 4.) 
In the laboratory frame, the propagation is taken 
to be in the positive x '  direction; it is more con- 
venient, however, to use the coordinate frame x = 
x ' - f t d t ' V ( t ' )  co-moving with the front so that 
the a phase is at x > 0 and the c phase at x < 0. 
Here V is the interface velocity or growth rate. 

V = V(Tb( t ) ) .  (2) 

This "constitutive relation" introduces a nonlinear 
dependence on T in eq. (1) which causes the 
instability we discuss below. The appearance of a 
term VOT/Ox with V independent of the position 
x is typical of moving boundary problems. 

For concreteness, we consider a dependence of 
V on T b as sketched in fig. 1. This is the type of 
growth rate observed for crystal growth from a 
melt [34]. The a-c  growth rate is thought to be of 
a similar form, although accurate measurements 
are only available on the low temperature side 
where V increases with T b as Vo~ exp(- -Q/Tb) .  
It is precisely on this side where the thermal 
instability discussed below occurs. 
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Fig. 1. Solid line: a typical curve for the a-c  growth velocity 
as a function of the a -c  boundary temperature. The dashed 
lines give the relationship between Vss and Ts b for which eq. (1) 
has steady state solutions. Inset: V as a function of time for 
two different values of T o which produce oscillatory growth 
rates. The upper curve (obtained by adding 8 units to V) is a 
"period 2" solution. 

In the steady state, when the a-c boundary is 
propagating with a constant velocity V~s, it is most 
convenient first to solve eq. (1) without recourse to 
eq. (2). In this case, eq. (1) is linear and is solved 
by an exponential profile of the  form T =  
T~bexp(-ax) for x > 0 and similarly for x < 0, 
provided that V~ and T b are related by [321 

v~s= 2(KV)a/2(( q/AT~ b )2_ 1)-1/2. (3) 

Here zlT~ b -= T~ b - T  O is the temperature rise at 
boundary. This function is drawn in fig. 1 with a 
dashed line for several values of T °, keeping K 
and F fixed. For very large steady state velocities, 
~T~ b approaches the value q = L / C ,  since the heat 
Loss to the substrate is much smaller than the 
atent  heat liberated per unit of time; energy con- 
iervation then dictates that CA T~ b = L. 

Not all hypothetical V~s satisfying eq. (3) are 
zonsistent with the physically possible growth rates 
liven in eq. (2). Thus the actual steady state veloc- 
ty and boundary temperature are determined by 
he intersection of these curves, as shown in fig. 1, 
hough the stability of these solutions must be 
nvestigated. As in the experiments [8], different 

steady state values are obtained by changing T O . 
(In principle, one could alternatively change the 
value of gF.) If T O is too low, the two curves do 
not intersect, and self-sustained explosive crystalli- 
zation is not possible. 

If one considers V as a given function of time, 
eq. (1) is a linear partial differential equation for 
T, whose Green's function can be derived in the 
standard way [35]. Using this result, the formal 
solution to eq. (1) can then be written as 

fo A T b ( t )  = q d x  (4~rKr)  - 1 / 2  
- - 0 0  

X exp [ -  F~ - xEl(4K~)] 

- ( X - f o t V ( t ' ) d t ' ) 2 / 4 K t )  AT(x ,O) ,  

where T - ~-(x, t) is implicitly given by 

(4) 

x =  - f/_r d t ' V ( T b ( t ' ) ) .  (5) 

Eqs. (4) and (5) have the following interpretation 
in the lab frame. The heat released at previous 
positions of the moving a--c boundary spreads out 
due to conduction and heat loss as a damped 
Gaussian, and so can still contribute to the present 
boundary temperature. Eq. (5) determines the time 
~" elapsed since the boundary passed a position a 
distance Ixl to the left of the present position of 
the boundary, and the first term in the right-hand 
side of eq. (4) gives the sum of all the contribu- 
tions to T b from the heat previously released. The 
second term in the right-hand side of eq. (4) results 
from the initial conditions at t = 0. This interpre- 
tation of eqs. (4) and (5) will be helpful in the 
discussion of the linear stability analysis below. 

3. Stability analysis of the steady state solutions 

We now investigate the stability of the possible 
steady state solutions obtained above. We argue 
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qualitatively that an oscillatory (Hopf) bifurcation 
of one of the steady state solutions can occur, and 
discuss the physical origin of the resulting oscilla- 
tory solutions. The detailed linear stability analysis 
supporting the qualitative discussion of this sec- 
tion is given in appendix A. 

In the following, we will distinguish between the 
three different types of intersections, labeled A, B 
and C in fig. 1. Consider C first. As already argued 
by Gilmer and Leamy [32] the steady state solu- 
tions at this point should be stable, since a small 
increase in T b results in a smaller velocity from eq. 
(2), and the resulting decrease in liberation of 
latent heat will bring the boundary temperature 
back to its steady state value at C. Using the same 
argument, we expect the points A to be unstable. 

However, the most interesting behavior occurs 
for points B, where changes in the heat flow and 
heat loss as well as the heat generated by a per- 
turbation must be taken into account in a stability 
analysis. Consider the steady state at B 2 where the 
slope of the growth rate curve is small but positive. 
Here a large increase in T b, and so a relatively 
large increase in heat loss and heat flow away from 
the boundary, is associated with only a small 
increase in velocity (and so heat generation). We 
therefore expect this point to be stable. For inter- 
sections with a large slope, like B 1, the situation is 
reversed and these points should therefore be un- 
stable, provided that /"  is not too large. 

These elementary considerations are supported 
by the explicit linear stability analysis of appendix 
A, the main results of which are summarized in fig. 
2. In this stability diagram, (ATsb/Vss)(dV/dT b) 
- a, the (dimensionless) slope of the growth rate 
curve in the steady state point, is plotted along the 
horizontal axis and (aT~b/q) 2 = (4xF/V~ 2 + 1) -1 
= fl along the vertical axis. Here/3 is a measure of 
the ratio of the thermal diffusion time 4K/V~ and 
the relaxation time F-a and varies between 0 and 
1. In agreement with the physical arguments given 
above, steady state points C are stable, and those 
of type A unstable. The ones of type B become 
unstable in the case/3 > 2 /3  (or F < V~/8r) when 
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Fig. 2. Stability diagram for the various steady state solutions 
whose locations on the growth rate curve are schematically 
indicated. The (dimensionless) slope of the function (2) in the 
steady state point is plotted along the horizontal axis and 
(ATssb) 2 (in units of q2) along the vertical axis. The dashed line 
separates the points denoted by A and B in fig. 1. The steady 
state points B to the right of the solid line are unstable. 
However, in this region the full nonlinear equations can admit 
either stable oscillatory solutions (to the left of the dotted line) 
or solutions that die out (for points B to the right of the dotted 
line). The behavior of the velocity in both cases is schematically 
indicated. 

the dimensionless slope (plotted along the horizon- 
tal axis) reaches some value between 3 and 2 + 

4.236. The instability occurring when the point 
B moves to the right of the solid line is of oscilla- 
tory (Hopf) type: for values of the slope larger 
than the critical value, the boundary temperature 
and speed of the front oscillate periodically in time 
(see the inset of fig. 1). (These solutions will be 
discussed in more detail later.) 

It is easy to understand why the instability at 
steady state points B on the solid line is of Hopf 
type so that the linearized equations have a purely 
imaginary eigenvalue. At points B, the slope of the 
growth rate curve d V / d T  b is, by definition, smaller 
than the slope of the curve of steady state points: 
d V / d T b <  dVss/dT~bt. Suppose on the contrary 
that the eigenvalue of the equations, linearized 
around the steady state solutions B, could be real. 
Then there would exist solutions of the form T b 

tPoints of type A are defined by d V / d T  b > dV~JdT b, and 
the dashed line in fig. 2 is given by the equation dV/dT b= 
dV~JdTL 
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T~ b + c exp(tot) and V-- V, + (dV/dTb)cexp(tot) 
with to real and, close to the solid line, arbitrarily 
small. In the limit to ~ 0, however, the perturbed 
temperature field must obey the same equation as 
the steady state solutions, and hence one would 
also have up to linear order in c, V--V~+ 
(dV~JdT~)~exp(tot) for to small. Since at points 
B, d V / d T  b < dV~s/dT~, this is obviously impossi- 
ble. We therefore conclude that near the solid line 
in the diagram, to must be complex. 

The above analysis implies the following pic- 
ture. At high enough substrate temperatures, T ° in 
fig. 1 say, the intersection at A is unstable and the 
one at C stable. Hence, after initiation of the 
process, the a-c front will propagate with a speed 
determined by the intersection C. If T O is lowered 
to T ° ,  say, the intersection B 2 is still stable since 
the slope of the growth rate curve is relatively 
small, and the front continues to advance with 
constant speed. However, if T O is lowered to T ° , 
say, the slope of the growth rate curves is large 
enough that steady state propagation is no longer 
possible. In this case we find that self-sustained 
explosive crystallization fronts propagate with a 
periodically varying growth rate. 

In a numerical analysis of these nonlinear oscil- 
latory solutions, we have found that two things 
can happen in cases where T O is lowered even 
more so that the slope becomes even larger. One 
effect arises from the fact that the amplitude of the 
oscillations grows larger and larger as T O is 
lowered. Indeed, it finally becomes so large that 
the front stops propagating because T b drops too 
much at the minima. This is schematically indi- 
cated in fig. 2 by the dotted line. Solutions to the 
right of this line eventually die out. Thus, self-sus- 
tained explosive crystallization does not occur in 
every case where the two curves in fig. 1 intersect. 
This nonlinear effect is analyzed in the next sec- 
tion in the neighborhood of the bifurcation point 
where the three lines of fig. 2 intersect. There we 
will determine the slope of the dotted line near this 
point. Away from this point, the conditions under 
which the oscillations die out depend on the de- 

tailed shape of the growth rate curve. Secondly, it 
turns out that the periodic solutions undergo period 
doubling bifurcations in the region of fig. 2 be- 
tween the solid and dotted line. These bifurcations 
will be discussed in section 6. 

Having understood the stability, it remains to 
understand the physical origin of the oscillations 
and to get an estimate for their period. In the 
steady state, when eq. (5) reduces to Ixl-- V~,, the 
main contribution in the first integral in (4) comes 
from those positions x for which F1" + x2 /4x ,  <<. 2, 
o r  

2 
I" Z --  T m. (6) 

r + ~ / 4 ~  

Contributions to T b from positions further back 
than d m = Vss'r m are essentially negligible. In the 
regime F << V~2/4K, ~'m sets the timescale over 
which changes in T b take place. Hence we expect 
the period of the oscillations to be of the order of 
T m = 8x/V~ 2. Note that the "memory time" ~'m 
becomes shorter the larger the velocity is, since the 
boundary moves more rapidly out of the region 
that can be reached by heat conduction. To under- 
stand the oscillatory solutions, consider a small 
perturbation with an increased velocity around a 
steady solution in the case of small damping ( r  << 
v~2/4K). A small decrease in "r makes a Gaussian 
~-- 1/Zexp (-y2/41-) narrower: the center increases 
whereas the wings at lY[ > (2z) 1/z decrease. For 
the (slightly damped) Gaussians in the integrand 
of eq. (4) with Ixl < 2 ~ / ~ s  -- din/4 the perturba- 
tion therefore results in an increase of T b, while it 
decreases the contributions of those at distances 
further away~f. Thus, when the growth rate speeds 
up, the boundary can move ahead so rapidly that 
the heat diffusion from positions not immediately 
behind the boundary can not keep up. Conse- 
quently, T b and the front velocity drop, after 
which more heat diffuses towards the boundary, 
and the velocity can rise again. 

?In the opposite case ( r  > v2/4K) all damped Gaussians in 
eq. (4) respond similarly to a perturbation and all disturbances 
decay monotonically. 
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4. Behavior dose  to the bifurcation point a = 3, 
/3 = 2 /3  

In the last section, we found two lines in the 
linear stability diagram where the stability changes. 
Along the solid line drawn in fig. 2 where/3 = (a  
- a - 1 ) / 4 ,  we found a Hopf bifurcation. Hence, 
for perturbations in T b of the form T b =Tss b + 
ee 2'~t/rm, the two eigenvalues to± along the solid 
line satisfy Re to ± = 0, Im to ± 4= 0. Moreover, one 
eigenvalue always vanishes along the dashed line, 
where/3 = 1 - a -x  and the A and B points coin- 
cide. The two lines intersect at a = 3, /3 = 2/3.  As 
a result, both eigenvalues vanish at this point, 
which means that it is a co-dimension two bifurca- 
tion point [36-40]. Using the fact that the time- 
dependences are slow, we can carry out a detailed 
analytic investigation of the behavior of the system 
in the neighborhood of such a point. Note that the 
growth rate curve (2) and the curve of steady state 
points (3) have equal slopes at points on the 
dashed line in fig. 2. Thus we analyze how the 
change of stability at B takes place in the special 
case in which the curves (2) and (3) are nearly 
tangent, so that the intersections A and B lie close 
together. Readers primarily interested in physical 
implications of our analysis can skip to section 4.3. 

4.1. Reduction to the normal form of  a co-dimension 

two bifurcation 

For small 8a -- a - 3 and 8fl - / 3  - 2 /3  we ex- 
plicitly find from the result for to±, given in eq. 
(A.7) 

2 
m0O± 
r~ 

= - (188/3 - 58a) _+ {24(8a - 98/3). (7) 

The two slow modes associated with these small 
eigenvalues give the dominant behavior for long 
times. The time dependence of the system in the 
neighborhood of the bifurcation point is therefore 
described by a second order equation of the form 

l) - -  ~ 2 0  - -  ~ 1  v = F( v, 0), (8)  

with ~1 and ~k 2 small and F vanishing at the 
bifurcation point. Here v =- V/V~s - 1 is the devia- 
tion from the steady state velocity and the nonlin- 
ear function F is yet to be determined. From the 
requirement that the eigenvalues of the O = v = 0 
fixed point in (8) coincide with (7), we get up to 
lowest order the identification 

hi = 2 4 ( 8 a -  98fl), h2 = - 2 ( 1 8 8 f l -  58a). (9) 

In the absence of symmetries, the function F will 
be of the form F =  axo 2 + a2oO + a302, keeping 
only terms of second order in smallness. The 
coefficients a 1, a 2 and a 3 are determined in ap- 
pendix B by expanding the integral solution about 
the bifurcation point. We find 

a 1 = - 7 2 ( 1 -  1-~V" ), a2=144 ,  a 3 = - 7 5 / 2 ,  

(10) 

where 

v "  = d2 v 

(drU) 2 
(11) 

is the (dimensionless) second derivative of the 
growth rate curve in the steady state. 

By performing a transformation to the variable 
y = o + ½a3v 2 in eq. (8), we can eliminate the term 
proportional to 02 , while to second order all the 
other terms are unchanged. Introducing the vari- 
ables Yx =Y, Y2 =Y, eq. (8) can thus be rewritten 
as the set of first order equations 

Yl =Y2, (12) 

Y2 = alYl + a2Y2 + a l Y  2 + a2YtY2 ,  (13) 

and it is convenient to study the trajectories in the 
Yl, Y2 plane. The above set of equations is the 
normal form of one of the two possible co- 
dimension two bifurcations with quadratic nonlin- 
earities [37]. 

4.2. Analysis of  the normal form 

Eqs. (12) and (13) have two fixed points, Yl = 0, 
Yz = 0 and Yl = - ~ 1 / a l ,  Y2 = 0, whose stability is 
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related by a symmetry: if we perform the trans- 
formation w 1 ---Yl + hl/ax, Y2 = WE, then w 1 and WE 
obey, up to the relevant order, the same equations 
as Yl and Y2 but with h 1 replaced by - h  i and ?~2 
replaced by ~2 - ?ha2/ax • Hence the global behav- 
ior of eqs. (12) and (13) can be obtained using 
only the behavior for h 1 < 0 by interchanging the 
role of the fixed points and rescaling 2~2. 

We summarize the results of a linear stability 
analysis of eqs. (12) and (13) and the connection 
with the stability analysis of section 3 as follows: 
(i) If h 1 > 0, the Yt = Y2 = 0 fixed point is unstable 
(for ?h > 0, 8a > 98fl implies that we are below the 
dashed line in fig. 2, and the point yx =Y2- -0  
corresponds to an A point). Because of the sym- 
metry, the Yx = -h~/ax,  )'2 = 0 fixed point is al- 
ways unstable for ?~x < 0. (ii) If h 1 < 0 and ~2 < 0, 
the fixed point y~ = Y2 = 0 is stable (a B point left 
of the solid line). Along the line ~1 < 0, h z = 0 
there is a Hopf  bifurcation, and for ~1 < 0, h 2 > 0, 
the fixed point is unstable (a B point fight of the 
solid line). 

The limit cycle that bifurcates from the Yl =Y2 
= 0 fixed point along the line h 2 = 0, ~x < 0 does 
not exist for all values of h 1 and 2~2 in the second 
quadrant: if the limit cycle grows so large that it 
crosses the other unstable fixed point at Y2 = 0, 
Yl = - h l / a l ,  it becomes unstable. Following 
Guckenheimer [36, 37], we now determine the 
values of the parameters for which this happens. 

We take advantage of the smallness of ~1 and ~,2 
by introducing the scaling 

}k 1 = ~2A1, ~k 2 = ~2A 2, /~t = T, 

Yl =/x2rl ,  Y2 =/~3Y2, (14) 

so that eqs. (12) and (13) become 

]el = Y2, (15) 
]r2= A1YI + aly2 + I~(A2Y2 + a2Y1Y2). (16) 

A 1 < 0. For /~ = 0 the above equations reduce to 
the Hami l ton  equat ions  cor responding  to the 
Hamiltonian 

H =  ½ Y2 - ½A1Y2 - ~alY~ 3. (17) 

To zeroth order in /~, the integral curves of eqs. 
(15) and (16) are therefore the lines of constant 
energy H(  I"1, Y2) = constant. 

Since areas are conserved by a Hamiltonian 
flow, the contraction or expansion of an area A 
under the flow given by eqs. (15) and (16), depends 
only on the terms proportional to #, 

dA 
a t  =/~fA dYldY2 (A2 + azY1)" (18) 

Obviously, the area enclosed by a limit cycle does 
not change in time, 

/~fLc. dYl dY2 (A 2 + a2Y1) = O. (19) 

When evaluating this expression to lowest order in 
/x, the limit cycle may be approximated by its 
# = 0 limit, i.e. by the integral curve of the Hamil- 
tonian system. Thus, for a given set of parameters, 
eq. (19) enables us to select the limit cycle from 
the set of curves H(Y 1, Y2)-- constant [41]. 

As stated before, the limit cycle disappears if it 
intersects the second unstable fixed point at Y1 = 
- A l / a  1 (its period then goes to infinity). To de- 
termine the set of parameters for which this hap- 
pens up to lowest order in/~, we therefore have to 
evaluate eq. (19) in the approximation that the 
limit cycle is the integral curve H(Y1, Y2) = 
H(-A1 /a I ,O  ), or 

[~-~( A )2( A1 t]1/22G 1 ]J Y2 = q- Y1 q- ~11 Y1 - 

(a ,  < 0). (20) 

We will investigate the limit cycle around the 
Y1 = Y2 = 0 fixed point in the left half plane 

Using this result in eq. (19) we find that the limit 
cycle in the left half plane A 1 < 0 disappears for 
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parameter values such that 

Lal/2a' dY12[ ~ ( Y1 + 
A1/al 

× ( A 2  + a 2 Y 1 ) = O ,  

a---~ Yx-2ax] ] 

(A 1 < 0), (21) 

or, after an elementary integration, 

A 2 _ 1  a 2 (A 1<0) .  (22) 
A x 7 a 1 

If a 2 / a  I is negative, this result shows that the limit 
cycle disappears alon_gastraight line in the second 
quadrant of the ~1, h2 plane, indicated by L 3 in 
fig. 3. Taking also into account the behavior in the 
right half plane (~1 > 0) which follows from the 
symmetry of the equations discussed after eq. (13), 
we now arrive at the following global picture in 
the neighborhood of the bifurcation point in the 
case al/a 2 < 0. In region IV of fig. 3, the system 
exhibits one stable and one unstable fixed point. 

The stable fixed point bifurcates along the line L 3 
(~2  = 0, h I < 0) to  a stable limit cycle as depicted 
in region III, and along the line L 4 ( ~ 2 / ~ 1  = 

a2/al) to the limit cycle of region II. When ~2 
becomes larger for fixed ~ ,  the size of the limit 
cycle grows~until it finally encounters the second 
unstable fixed point. This happens along the lines 
L 1 (h2/h 1 = a 2 / 7 a 1 )  and L 2 ( ~ 2 / ~ 1  = 6a2/7al). 
For even larger values of h 2 we are in region I, and 
since there are then no stable fixed points and 
limit cycles, higher order terms have to be taken 
into account for a complete description of the 
system. 

Eqs. (12) and (13) are also invariant under a 
change of sign in Y2, ~2, a2 and t. Hence, the 
behavior of the system for ax/a 2 > 0 can be ob- 
tained from the one for a~/a 2 < 0 by inverting the 
stability of all fixed points and limit cycles because 
of the change in sign of the time t. In particular, 
there are no stable limit cycles in the case al/a 2 
> 0 .  

LI 

L4 

Fig. 3. Schematic phase portrait of the behavior of the normal 
form of the codimension two bifurcation with quadratic nonlin- 
ear terms, showing the different characteristic behavior for 
various values of h 1 and ~2 in the case ax/a2 < 0. Following 
ref. 39, the typical phase space orbits and the attractors in the 
Yx, Y2 plane are drawn with the convention that solid circles 
denote stable fixed points, open ones unstable fixed points, and 
a thick solid line a stable limit cycle. Orbits are drawn as thin 
solid lines. In the case al/a 2 > 0 there are no stable limit 
cycles. 

4.3. Implications for our model 

In our model, we have from eq. (10) a t / a  2 = 

- ½(1 - V"/18).  In cases of practical interest, V" 
is small and this ratio is negative. (If V" > 18 the 
curvature of the growth rate curve is so large that 
(2) and (3) have three rather than two intersec- 
tions.) Then the global behavior near the bifurca- 
tion point is as depicted in fig. 3, and comparison 
with fig. 2 shows the following. According to eq. 
(9), the line 2~2 = 0, h 1 < 0 where the Hopf bifurca- 
tion occurs coincides with the slope of the solid 
line (dfl/da = 5/18) near the point a = 3, fl = 2 /3  
in fig. 2. In fig. 3, the stable limit cycle in region 
III disappears along the dotted line L1, and conse- 
quently in fig. 2 along a line with slope dfl/da = 
59/342 for V" = 0, and the region to the fight of 
the dotted line in fig. 2 is related to region I of fig. 
3. Since there are in general only two steady state 
solutions in our model, the absence of a limit cycle 
and stable fixed points in region I is in agreement 
with the numerical observation described in sec- 
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tion 3 that the a--c front can cease propagating 
even though the two curves in fig. 1 intersect. 

We emphasize that figs. 2 and 3 display different 
results. Fig. 3 is only valid in the neighborhood of 
the bifurcation point and shows the global nonlin- 
ear behavior of the solutions, which depends on 
the interplay of the two nearby fixed points. Fig. 2, 
on the other hand, gives the linear stability of each 
steady state point regardless of the stability and 
location of the other intersection. As a result, the 
analogues of the lines L 2 and L 4 are absent in the 
region below the dashed curve in fig. 2, since they 
describe the behavior of a nearby point of type B, 
not of the one of type A. 

5. Comparison with experimental observations 

Since there are considerable density differences 
between the a and c phase, it is likely that the 
predicted oscillations in T b and V are the cause of 
the surface undulations and compositional varia- 
tions, through differences in grain size or the ex- 
tent of completeness of the a-c transformation 
[42]. Note that the slope of the growth rate is large 
when the oscillatory instability occurs. As a result 
there are large variations in the growth rate (of 
order 10 to 50 percent) which would be expected 
to affect the morphology of the growing crystal. 
Assuming this to be the case we can compare our 
results with the following experimental observa- 
tions of Wickersham et al. [8]. 

i) In agreement with the arguments given in 
section 3, the linear stability analysis shows that 
the period of the oscillations is of the order ~'m" 
Consequently, we get for the wavelength h of the 
oscillations in the regime where F << V~2/4r [see 
eq. (A.9)] h--6K/V~v. Here we have replaced V~s 
by the average velocity. This estimate is in rea- 
sonable agreement with the experimental values 
measured [8]. 

ii) Let T* be the substrate temperature above 
which self-sustained explosive crystallization is 
possible. For T O slightly above T*, say T O-- T °, 
as shown in fig. 1, the slope at B1 is steep and the 

growth rate will oscillate. If T O increases to T ° , 
say, the point B 2 becomes stable. Thus, in our 
model, the oscillations occur for T O slightly above 
T* and cease at higher temperatures, much like 
the experimental observation that the "surface 
roughness was found to decrease as the triggering 
temperature was increased above T*"  [8]. 

In principle, our predictions may be tested ex- 
perimentally by monitoring the growth rate using 
the differences in optical properties in the a and c 
phase [20]. 

As discussed in section 3 the oscillatory behav- 
ior can only occur in the regime F < V~2/8t~, where 
the thermal diffusion time K/Vs 2 is much shorter 
than the relaxation time F-1 associated with heat 
losses. This means that for the effect to be seen in 
an experiment, the heat loss to the substrate within 
a time of the order of the thermal diffusion time 
ought to be relatively small. Layers that are too 
thin can not satisfy this condition. In the case that 
radiation is negligible, one can make a rough 
(conservative) estimate of how thick a layer should 
be. Let us assume that the substrate is a good heat 
conductor so that it remains always at temperature 
T °. After the a -c  boundary has passed, the tem- 
perature on the bottom part of the layer will 
decrease as a result of the heat conduction to the 
substrate. The thickness of the region affected 
after at time *m is of the order of r V ~  m , and the 
effect of heat loss is small if this length is smaller 
than the thickness d of the layer. Since K~ m ---- 
8K2//~s2 m. ~2//8, the instability should thus occur 
in layers for which d > )~. 

In explosive crystallization in Ge, the a phase 
probably melts first before crystallizing [32, 22, 
15]. Whether the same happens in Sb is not clear, 
but experiments on Yb and Bi [30] at liquid He 
temperatures seem to rule out the presence of a 
liquid zone in these materials. In our analysis, we 
have not taken the possible existence of such a 
liquid zone into account. However, since these 
liquid regions are probably much smaller than the 
wavelength of the undulations [32, 22, 15], we 
believe their presence would not modify the ther- 
mal instability qualitatively. 
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Up to now, we have based the analysis on the 
assumption that the a-c  boundary remains straight. 
To investigate qualitatively the possibility of hav- 
ing a Mullins-Sekerka [43, 1, 2] type instability 
along the front, consider a stable steady state on 
the left hand side of the growth rate curve (e.g. 
point B 2 in fig. 1). The temperature profile in front 
of the a -c  boundary drops off rapidly, roughly as 
T~bexp ( -  V~sx/K ). Hence, if there is a small per- 
turbation along the front, the boundary at points 
bulging forward will be at a lower temperature 
and will therefore grow less rapidly (we neglect the 
effect of curvature on the growth rate). This will 
act to counter the perturbation. In steady state 
points of type C, however, the situation is differ- 
ent: here the growth will be more rapid at a spot 
bulging forward. The straight front will now be 
unstable and break up into protrusions with a 
typical length determined by a capillary length 
and the thermal length x/V~s (the slope of the 
temperature in front of the boundary). The ob- 
servation by Leamy et al. [22] that the surface of 
explosively crystallized Ge layers showed undula- 
tions that "are composed of froth-like bubbles 
that are aligned in irregular rows" [22] may be 
related to such effects. 

In conclusion, when the growth rate increases 
with increasing temperature we expect the thermal 
instability discussed before without major changes 
resulting from a morphological instability along a 
front. However, on the right-hand side of the 
growth rate curve, there is no thermal instability, 
but there will exist significant morphological insta- 
bilities that invalidate the use of a simple one- 
dimensional model. 

6. Period-doubling bifurcations 

In a numerical study of the nonlinear periodic 
solutions given by eqs. (1) and (2), we have found 
that these, in turn, bifurcate via a sequence of 
period-doubling bifurcations. These Feigenbaum 
sequences [45] have been analyzed mostly in mod- 
els with a finite-dimensional phase space. The 

model studied here for the "infinite-dimensional" 
temperature field is simple enough to permit a 
detailed numerical analysis. Here, we discuss an 
example for one set of parameters obtained by an 
algorithm described in appendix C. In a future 
publication we hope to come back to the deriva- 
tion of an approximate set of ordinary differential 
equations in a three-dimensional phase space for 
this system. 

In this section, all quantities will be given in 
dimensionless units: temperatures are measured in 
units of q, time in units of F-1, length in units of 
~/~/F, and hence velocities in units of ~ .  The 
function V(T b) used in our specific calculations is 

V = De-  Q/ru(1 - e-  L('/r~-1/r~)). (23) 

Such a functional dependence of V o n  T b is 
typical for the growth of a crystal from a melt [34]. 
In the example discussed here, T M = 1.8 and L = 3, 
and D and Q are adjusted such that the maximum 
growth velocity of 12 is reached for T b = 1.6. 

In our numerical calculations, we vary the sub- 
strate temperature T °. If we decrease T O starting 
from a relatively large value, the steady state solu- 
tion becomes unstable at T O= 0.431626. At this 
point, b 2 (ATss) -~ 0.934. For lower values of T °, we 
first observe stable periodic solutions of the type 
shown in the inset of fig. 1. When lowering T O 
even more, period-doubling bifurcations are ob- 
served. The bifurcation to a period 2 solution 
occurs at T O= 0.426884. We have been able to 
follow the successive bifurcations to period 4, 8 
and 16 at T o =  0.4266355, 0.4266035 and 
0.4265965, respectively~-. These values seem to 
converge rapidly to the Feigenbaum ratio & At 
slightly lower temperatures we enter an apparently 
chaotic regime where no periodicity is evident. 
(Lowering T O still further finally causes us to cross 
the dotted line in fig. 2 and the crystallization 
wave eventually stops.) 

~'These values of T O depend slightly on the size of the time 
step used in the calculation, but the qualitative picture is the 
same for any small step size. 
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Fig. 4. Plot of l~,~_tl as a function of Vn ext. All data points 
obtained after the initial value term in eq. (4) becomes negligi- 
ble are included. Here T O = 0.426586, slightly below the value 
of T O where chaotic behavior sets in. A few iterations of the 
map are indicated by the dashed lines. 

Let V, ext be the value of the velocity V in the n th 
extremum (maximum or minimum) of a solution 
of the equations (1) and (2). Empirically, we found 
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Fig. 5. Enlargement of the lower right hand comer of fig. 4. 

that the above observations can be understood 
within the context of the map obtained by plotting 
V:~_tl as a function of V. ext. As shown in figs. 4 and 
5, these points turn out to lie on a single curve. 
Hence in this regime the model is well described 
by a single valued function f such that 
V:~-tl = f (Vnext ) .  (24 )  

~l~J~o. • ° ° o o  • 
q I s e I O O o O .  
J • t :O;O. .L  

.,~ ,II " 'o"  q ~ d ' ~ _  I~4 • ",,.." ..'= !uu-~ 
• • • |o looe IL_. o 

' "  . ! ' ;"  ""  

, -  I ' "  :" . .0 ," , ;"  oo ~ |  • tI oOI " - ~  

. .  - . . :  

:'.:": .':a'o,. 
% 

~.5: "° °oO." .  • • I ;  . 1 . ~  
~o.- .... ; . ,  -,, _ ~ . . . / "  
- -  _. o ° .  . .  , ' t .  ,,r-- 

• ~ • l e o -  j "  : o . . .  ,,..; 
• OO OOe Oe~O 

• Oe " • - e  • l i  Oqt o o  • -oo  
• oo  
go  eo 

1.5~ 

I 1 I I I 
.42658 .4266 .42662 .42664 .42666 

T o 

Fig. 6. Values of T b in the maxima of the oscillations as a function to T °. Only data points for times larger than about 20 basic 
periods of the system are included, so that the solutions have relaxed towards the stable periodic solutions, if these exist. Since only 
points on the upper branch where 11 < V~ xt _< 11.5 are shown, the points on the right are actually period 2 solutions. Open circles 
denote period 6 and 12 solutions. The solid line is merely drawn to guide the eye. 
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Moreover, this one-dimensional map has in- 
deed a parabolic minimum, characteristic of the 
Feigenbaum map [45] that explains the occurrence 
of period doublings. A plot of T b in the successive 
maxima of the solutions also shows the character- 
istic behavior of period doubling bifurcations (fig. 
6). Note the following features: 

i) There are no indications that a higher dimen- 
sional map is needed to describe the system better, 
because the points defined by the above map 
appear to lie on a single line to a high degree of 
accuracy. The fact that the memory time %, de- 
fined in eq. (6), is of the same order as the period 
of the oscillations, is probably the reason this 
system is described so accurately by a one-dimen- 
sional map. 

ii) The function f appears to be independent of 
the initial conditions; moreover, as soon as the 
initial value term in eq. (4) is negligible, the points 
of the map lie on the single curve. Thus the system 

converges very rapidly to the behavior described 
by (24). 

iii) The existence of a minimum in the function 
f may be related to curvature of the growth rate 
curve. Even though the maximum velocity is never 
reached in our numerical solutions (in the calcula- 
tions described here, the maximum is 12), we did 
not observe a minimum in f and period doubling 
bifurcations in calculations when we had modified 
the function V(T b) so that it increased linearly 
with T b for large boundary temperatures. 

Acknowledgements 

We are grateful to P.C. Hohenberg, G.H. Gilmer, 
K.A. Jackson and D.S. Fisher for helpful discus- 
sions and to J. Guckenheimer for useful corre- 
spondence. We particularly benefitted from a 
conversation with P.C. Hohenberg on co-dimen- 
sion two bifurcations. 

Appendix A 

Linear stabifity analysis 

In this appendix we consider a small perturbation AT(x, 0) around the steady state solution T~s(X) at 
t = 0, and investigate the behavior of T b for large t. We assume that AT(x,O) is negligible for x large 
enough. In that case, the dominant contribution from the initial value term in eq. (4) decays for large t as 

t-1/2e- 2' /" .  (A.1) 

The asymptotic decay of T b is therefore at least of this order. Our strategy is to try to find a more slowly 
decaying mode of the form 

rb(t) = r 2  + , e  v ( t )  = + , V ' e  (A.2) 

with Re ~0 > - 1. Here V" =- d V / d T  b is the derivative of (2) in the steady state point and ~ is assumed to be 
small. We have verified that the steady state solutions are indeed stable with perturbations decaying 
asymptotically as (A.1) if there are no solutions of the form (A.2). 

By substituting eq. (A.2) into eq. (5) and linearizing, one finds for the resulting change 6~'(x, t) in z 

- eV'Tm exp (2~ot/r m )(1 - exp (2~ox/V~sr m)), (A.3) 

where we used the fact that x = -Vssz in the steady state. Upon linearization of eq. (4), one gets by 
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neglecting the initial value term 

ce2O~t/r~. ----. qcV' ~2tot/rm 

4~1/2K1-----/260 

x _dxO-exp(260x/  , ))lx-- r -  

= qV'~ e2'°t/',,( d v ( 1 - e  -y'°) - (y-1 /2e-y) - -~r~my-1/2e-y( l+'O.  (A.4) 
2(2~r~,rm)l/260 - .t O - J  

After a partial integration, we are left with elementary integrations. Evaluating these, we arrive at the basic 
relation 

l = a  - - - +  1 + - -  (1+60)  . (A.5) 
6O 6O 

The parameters a and/3 used here have the same meaning as in section 3; a - qV'/(8K'cm) 1/2 = V ~ T s ~ / ~  ~ 
is the dimensionless slope of the growth rate curve and/3 - ~ / 4 x  = ( 4 ~ F / ~  + 1) -1 = (AT~/q)  2. Eq. 
(A.5) can be written in the "semiquadratic" [44] form 

(1 + 60)x/2 = (60 + 2/3)/(60/a + 2/3). (A.6) 

After taking the square of this equation, and rearranging, one arrives at a quadratic equation for 60 with 
roots 

60+= - ½ ( 1 + 4 / 3 ~ - a 2 ) + ½ V / ( 1 - a ) 2 [ ( 1  + a ) 2 - 8 a / 3 ] .  (A.7) 

As a result of taking the square of (A.6), 60± either solve eq. (A.6) or the equation (1 + 60)1/2 = _(60 + 
2fl)/(60/ot + 2/3), and we must verify that the solutions (A.7) indeed satisfy (A.6). 

The following results follow in a straightforward way from eqs. (A.6) and (A.7): 
i) For a > (1 - f l ) - l ,  to+ and 60_ both solve eq. (A.6) and are real. Since 60+ > 0, there is a mode of the 

form (A.2) that is unstable. One can show from eq. (3) and the definitions of ot and 13 that 

d_ZV dVss ,-, (1 - (A.8) 
d T  b dTs b 

where the > and < sign correspond to points of type A and B respectively. Hence the above result implies 
that steady state solutions of type A are always unstable. The line ot --- (1 - f l ) - i  separating type A and type 
B solutions is drawn in figs. 2 and 7 with a dashed line. 

ii) For points of type B (a < (1 _ f l ) - l ) ,  both 60+ and 60_ are solutions of eq. (A.6) with Re60±> 0-if  
fl < ( a -  a - 1 ) / 4 .  At the line fl = ( e t -  a-1)/4,  drawn in figs. 2 and 7 with a solid line, Im60+ varies 
continuously from 0 at the point a =  3, / 8 = 2 / 3  to (1 + v~-)3/2/x/2 - ~4 .12  if 13= 1. In the limit 
F << V2/4~, when fl ~ 1, comparison of the above result with (A.2) shows that in this regime, the period of 
the oscillations is about 

rr 6.1x 
4.12 ~'m "~" 0"76Tin ---- (A.9) 

justifying our earlier contention that the period is of the order of ~'m. 



292 IV. van Saarloos and J.D. Weeks~Surface undulations in explosive crystallization 

C 

~<0 

-I 

e~>o ,~.. t"~ 
m ~*Of t "  ~o>0 ~ H  Re.<O / / m R . .  . . . .  

.75" ~ . ~ 

N J  ...... - : :  . 

/ 
/ 

~ < O  / /  
/ 

/ 
/ 
I 

f I I I I I 
I 2 3 4 5 6 

Fig. 7. The largest eigenvalue w of the equations linearized around a steady state solution. At the solid line (fl = ( a -  a - x ) / 4 ) ,  
Re co = 0 while Imco * 0. The chain-dotted line (fl = (a  + 1)2/8a) separates the points where co is complex from those where co is 
real, and the dashed line (a  = (1 - / 3 ) - 1 )  separates the points of type A and B. For 0 < a < 1, /3 > 1 /2  and a < 0, /3 < 1/2 ,  the 
perturbations decay asymptotically as (A.1), as indicated in the figure. 

All point of type B to the left of the solid line are stable. However, for a < 1, fl > 1/2, co +_ do not solve 
eq. (A.6) and all perturbations decay as (A.1). 

iii) For the points of type B with fl > (a + 1)z/8a, Ira00 + v~ 0. The line/3 = (a + 1)2/8a is drawn in fig. 
7 with a dotted-dashed fine. The conditions on the real part of co +, which controls the stability, have been 
discussed in ii). 

iv) Points of type C (a  < 0) are always stable. For /3  > ½, only co  solves eq. (A.6) and perturbations 
decay asymptotically as in (A.2), while for/3 < ½, the asymptotic decay is as in (A.1). 

Appendix B 

Derivation of the coefficients (10) 

To derive the coefficients a x, a 2 and a 3 in eq. (10), we expand (4) near the point a = 3,/3 = 2/3.  Using 
the variable v =- V(t)/V~s - 1, we write V(t - r)  = Vs~(1 + v - 0z + ½0~ "2 + . . -  ). Using r as integration 
variable in (4) and neglecting the initial value term, we get with the aid of this expansion 

A T b ( t ) =  q °Qd~.z-Z/2ex p -- z -- ~-x~ (1 +v---~':b+-~rzfi 
(4~rKr) m 

XV~s(l+v-~O+½~zO+ ..-)=zaT~s dT~-l/Ze -*(1+~) 1 + v ( X - Z ~ v ) + ( W -  1)0~ 

. . .  }. (..1) 

Here 7 -- V~Z/4rF =/3/(1  - fl) and only terms of order v, 0, ~, 12, i)V and 0 2, have been retained. In the 
terms proportional to ~), v 2, 0v, and 0 2, we take 7 = 2, the values in the bifurcation point. After evaluation 
of the integrals we then arrive at 

1 2 2 . 2 
a T b ( t )  -- ATssb{1 + ( 1 - / 3 ) V +  1 8 B 0 -  ~ 0 -  - ~ V +  -~Vv-(12)02}.  (B.2) 
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Expansion of A T b ( t )  using the variable ot and V" (defined in eq. (11)) yields 

1 _ - 31Fit..2 A T b ( t ) = A T ~ b ( l + a - l v - - ~ ,  , u + ' ' ' ) .  

Combination of eqs. (B.2) and (B.3) finally yields 

# - 54~flO - 24( ~a - 9'fl )v + 72 (1 -  ~---~ V" ) v2 -144v0 + 7-~ 02 = 0. 

(B.3) 

(B.4) 

From this follow the expressions for ax, a 2 and a3, given in eq. (10). 
Notice that the coefficient of the term proportional to b does not agree with eq. (9). This is due to the fact 

that this factor gets renormalized by terms involving the third order derivative that have been left out in the 
above analysis. To see this, consider the equation c~ + ~) -/~t~ - vv = 0, with c of order unity and/~ and 1, 
small. The characteristic polynomial then reads co: 3 + ,02 - #to - v = 0. Retaining only the dominant terms, 
we may write co: 3 + oJ 2 - g~o - v -- (co~ + 1)[602 - ( g  - r / c ) ~ 0  - v] = 0. Thus, while in the neighborhood of 
the/~ = v = 0 critical point the system is well described by a second order equation, the coefficient of the b 
term gets renormalized by the coefficient of the ~ term [46]. 

Appendix C 

Description of the numerical solution 

Our numerical analysis was based on solving eq. (4) with z rather than x as the integration variable in 
the first integral. We used a fixed time step At; given the values of T b and V at time t, t - At, t - 2At . . . . .  
an initial guess for V(t + At) was made. Using this estimate in the integrals in the right-hand side of eq. (5), 
Tb(t + At) was calculated using (4) and the resulting V(t + At) using eq. (2). If the updated value of 
V(t + At) differed more than 10 -5 from the previous value, we recalculated Tb(t + At) using the updated 
values in the integral. The time integral in eq. (4) was cut off at T = 1.4 (the contribution from the rest of 
the integral is typically of the order of 10-8), and the integral from ~" = 0 to • = 1 was done with equally 
spaced grid in the variable zx/2 rather than "r. Integrals were calculated using Simpson's rule and the time 
step used in the calculation was 0.00032 -- Tm/500. 
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