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ON THE H Y D R O D Y N A M I C  RADIUS OF FRACTAL AGGREGATES 
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Motivated by recent light scattering experiments by Wiltzius, we discuss the various factors 
affecting the hydrodynamic radius R ,  of fractal aggregates, underlining the need for further 
experiments. After a critical discussion of the results of the Kirkwood-Riseman approximation for 
the hydrodynamic radius, we analyze the porous sphere model of Debye-Bueche and Brinkman. 
For spherically symmetric aggregates this model leads to values of R H which are substantially larger 
than found experimentally by Wiltzius, but somewhat smaller than found in numerical simulations. 
We make various suggestions for the physical origin of these discripancies, and argue that they 
might be due to asymmetry of the aggregates. We discuss how this suggestion can be tested 
experimentally with depolarized light scattering as well as with sedimentation experiments, and 
theoretically with the aid of computer simulations. 

1. Introduction 

In view of Peter Mazur's life-long interest in Brownian motion ~-5) and the 
statistical properties of particles in suspension6), it seems appropriate at this 
occasion to discuss a problem of this type. I will therefore discuss some aspects 
of a topic of current interest, the hydrodynamic radius of fractal aggregates, 
using some results related to an approach popularized in the seventies by 
Mazur and Bedeaux 7'8) in their extension of the so-called Fax~n theorems 9) 
for the hydrodynamic friction and torque on particles in suspension, 

The present work was motivated directly by recent experiments by 
WiltziusU~). In his experiments on slowly aggregating silica spheres, Wiltzius 1°) 
used static and dynamic light scattering to determine simultaneously the radius 
of gyration Re, and the hydrodynamic radius R H (defined through the transla- 
tional diffusion coefficient) of the aggregates. The aggregate formation in his 
experiments is reaction limited; indeed the observed fractal dimension df = 
2.10_ + 0.03 of the aggregates is close to the fractal dimension obtained in 
simulations of the reaction limited aggregation model in three dimensions ~'12). 

For large cluster sizes, Wiltzius HI) found the ratio RH/R c (which we will 
refer to as the hydrodynamic ratio) to approach a constant value of about 
0.72_+ 0.02. This experiment is therefore the first to show explicitly that the 
hydrodynamic radius of large fractal aggregates is indeed proportional to the 
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radius of gyration of the aggregate, as had been suggested by Chen et  al. 13'14) 
on the basis of numerical simulations. This proportionality is an important 
ingredient for describing the aggregation kinetics, since the coagulation kernel 
of the Smoluchowski equation that models this kinetics is usually assumed to 
be proportional to the radius of gyration of the particles and their diffusion 
coefficient. The proportionality of R H and R e then implies that the coagulation 
kernel has only a weak dependence on the particle sizel4-16). (Different 
behavior can be found, e.g. under flame conditionsl6), when the mean free 
path of the gas molecules is of the order of the size of the particles16'17).) 

Of course, the fact that the hydrodynamic radius of large fractal aggregates 
becomes proportional to their radius of gyration, is intuitively not at all 
surprising. For, the formation of fractal structures is intimately connected with 
the screening of the diffusion field from the interior of the aggregate18). As a 
result, the growth takes place only at an outer "active growth zone ''18'19) 
whose width scales with the size of the aggregate2°). If we disregard the 
complications due to its vector character, the hydrodynamic velocity field obeys 
an equation much like the Laplace equation for the probability distribution 
governing the growth of the aggrregate. Therefore, one likewise expects the 
hydrodynamic field to be screened from the interior of the aggregate for all 
df > 1 18) and so R H oc Ro. Moreover, as discussed by Wiltzius 1°) and Hess et 
al.2~), the proportionality of R H and R o also emerges quite naturally in the 
Kirkwood-Riseman 22'23) approximation, a fact which is actually well-known in 
the polymer literature24). 

What then is the reason for undertaking the present study? Our motivation is 
two-fold. First of all, while the proportionality of R H and R o may be no 
surprise, we will argue that the value of the hydrodynamic ratio found by 
Wiltzius ~°) is smaller than can reasonably be expected for spherically symmet- 
ric aggregates, and that the experiments therefore indicate that there is some 
interesting physics to be understood. In particular, Wiltzius 1°) mentions un- 
published work by Meakin 25) in which he found a hydrodynamic ratio of about 
1.75 in simulations of a different cluster-cluster aggregation model than the 
one relevant for the experiments of Wiltziusl°), about a factor of 2 1 larger than 
the experimental values. (See note added in proof.) On the other hand, the two 
theoretical estimates of the Kirkwood-Riseman 22"23) theory (1.02 with a sharp 
cutoff and 0.62 with an exponential cutoff) seem to bracket the experimental 
value of 0.72 nicely. We will present arguments, however, why it is likely that 
the latter estimates are too small for spherically symmetric clusters, and then 
show that an approach based on the porous sphere model of Debye and 
Bueche 26'27) and of Brinkman 28) yields indeed substantially larger values for 
the hydrodynamic ratio. For large spherically symmetric aggregates with a 
fractal dimension of 2.07, as in the experiments, the model predicts a hydro- 
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dynamic ratio of about 1.23, about a factor of 1.7 larger than the experimental 
value and somewhat less than Meakin's value 2~) quoted above. Although we 
have no definite explanation for the discrepancy between ours as well as 
Meakin's estimate on the one hand and the experimental value on the other 
hand, we will tentatively suggest that this may be due to the anisotropy of the 
aggregates, and discuss how this can be checked. 

A second motivation for this work is the fact that in the treatments based on 
the Kirkwood-Riseman theory 22"23) the hydrodynamic ratio is a function of the 

fractal dimension of the aggregate only, so that there is no information on the 
crossover to the asymptotic region, in other words on the question how large 
the fractal aggregates have to be in order that the hydrodynamic ratio 
approaches the asymptotic value (as discussed below, this approach is slow for 
polymers in a good solvent24)). The porous sphere approximation 26 2~) does 

give an idea of this finite size effect, and also allows us to investigate the 
influence of the finite width of the active growth zone. Our results suggest that 
the latter effect is small, but that finite size effects may reduce the hydro- 
dynamic ratio by a factor of the order of 20% for aggregates of the size studied 
by Wiltzius. 

The Kirkwood-Riseman theory z2'23) and the porous sphere model of Debye 
and Bueche 2~'27) and Brinkman 2s) were introduced at the same time in the 
theory of the viscosity of polymer solutions, and our discussion will therefore 
illustrate in a very simple way many of the differences between these two 
approaches that have also emerged in that field 27'2~). As mentioned earlier, for 
polymers it has been known for quite some time 24) that the Ki rkwood-  
Riseman theory 22"23) predicts R H ~ R G. Experimentally,  however, R u of poly- 
mers in good solvents is found to increase with a slightly different power of the 
degree of polymerization index N than R o 24). Weill and des Cloizeaux 3c~'~) 
have suggested that this is due to a very slow crossover to the asymptotic 
regime, but it is difficult to obtain explicit predictions for R u from the 
Kirkwood-Riseman theory22"23). In the porous sphere model 2~' 2s), on the 

other hand, the crossover is quite naturally included, and using this model 
together with independent data on the permeability of polymer solutions, 
Mijnlieff and Wiegel zg) have been able to predict the viscosity and R H without 
adjustable parameters to within 10 to 20%. The present approach to the 
hydrodynamic ratio of rigid fractal aggregates can be viewed as the comple- 
ment of their application of the porous sphere model to flexible polymers in 
solution. 

Understanding the growth of fractal aggregates on a fundamental level has 
turned out to be an extremely difficult problem. Similarly, it appears that the 
hydrodynamic radius of fractal aggregates cannot be predicted as easily as the 
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above discussion may have suggested. Indeed, in reality, ffactal aggregates are 
not characterized by a single fractal exponent, but rather by a distribution of 
exponents, e.g. the f(a) of Halsey et al.31). Meakin and Deutch 32) have shown 
that the hydrodynamic forces on the particles in an aggregate follow similar 
scaling laws, and we therefore believe that R H should in principle be a function 
of the full distribution f(a). To our knowledge, it is not sufficiently understood 
which factors are important in determining RH, but we will nevertheless 
attempt to give a somewhat intuitive discussion of this, as it is the aim of this 
paper to guide experimental interpretation and to stimulate further experimen- 
tal and theoretical research. 

In section 2, we will first summarize the predictions of the Kirkwood-  
Riseman theory 22'23) and estimate the accuracy of its prediction for the 
hydrodynamic ratio. After presenting the results of the porous sphere 
model 26-28) in section 3, we then discuss in section 4 the possible effects of the 
asymmetry of the clusters, and the prospects for settling some of the issues 
raised by additional experiments. 

2. Summary of the Kirkwood-Riseman results 

The starting point of the Kirkwood-Riseman theory 22'23) is the Oseen 
expression for the hydrodynamic interaction of two segments i and j of the 
system33); if, as in our case, the structure consists of spheres of equal size a, 
the hydrodynamic mobility tensor in this approximation is for i ~ j given by 34) 
/xq = (8"tr~/rq)-l(1 + ~q~q). Here  1 is the unit matrix and ~ij a unit vector 
pointing from sphere i to j and "O the fluid viscosity. Next, the diffusion 
coefficient is approximated by first performing a "preaverage",  i.e. by assum- 
ing the angle between ~q and some fixed direction is uniformly distributed, so 
that upon performing the angular average ( ) a  o n e  gets (/~q)a = (8~nl 'q)-l(  "l 
+ (~ j~ ' j )a )=  l(6"rrrlrq) -l- This, of course, is an approximation since, when 
particle i is close to the perimeter of the structure, the angle is not at all 
uniformly distributed. Since the preaveraging has made the mobility tensor 
diagonal, one can then apply the Einstein relation D = kBT ( ttij ) to get (in the 
strong screening limit, the Stokes term for i = j is neglected) 

kBT ~ 1 x} kB T f drrg(r) 

D= ~ \-~q/ = ~ f dr r2g(r) , 
(1) 
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where g(r) is the particle pair correlation function. With R H of the aggregate 
defined through D = kBT/6~rTIR H, we thus get in this approximation ~°'21'24) 

f dr r2g(r) 
R u - (2) 

f dr rg(r) 

Since g(r) will be a scaling function of the form g(r/RG) , we see that (2) indeed 

predicts that R H ~ R o. However ,  (2) also shows that when the fractal dimen- 
sion is not too small, so that g(r) does not drop off too fast, R H is dominated by 
the large r behavior  of g(r). This behavior  depends much less on the short 
range fractal structure of the aggregate than on the details of the growth 
conditions, however! To see this, note e.g. that when the aggregate forms a 
three dimensional (dr = 3) spherical object  of radius Re, g(r) is proport ional  to 
the overlap function for two spheres of radius R c 35), 

3 r 1 __r r~<2R c (3) 
g o c l - ~  R ~ + ~ - ~  Re ' " 

This function drops off linearly for small r and vanishes quadratically at r = 2R c 
(the diameter  of the sphere).  The generalization of this result to fractal 
dimensions less than 3 is hampered  by the fact that an aggregate is not fractal 
on large scales (of the order of the radius of gyration) and that there are 
correlations associated with the fact that the cluster grew out from some special 
point, the center36-38). As a result, to compute  g(r) one actually needs 3s) a 

three particle correlation function! One can derive an approximate  expression 
neglecting this effect, but the results are cumbersome and hard to work with. 
This will therefore not be given here. 

In passing, we note that when (3) is used in (2), one finds R H 5 = ;R c, while 
for a densely packed spherical aggregate with df = 3 one would, of course, 
expect R H to be extremely close to R c. This difference gives an idea of the 
error introduced by the "preaveraging"  in the K i rkwood-R i seman  
theory22"23). 

For the radius of gyration Ro ,  there are two equivalent expressions: in terms 
of p(r), which gives the mass density at a distance r f rom the center of mass, 
R G reads 

R~ - f dr r4p(r) 

f dr r2p(r) 
(4) 
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but an alternative expression based on g(r) is 39) 

1 f dr r4g(r) 

RzG - 2 f-drr r2g(r ) 
(5) 

In principle, (4) is to be preferred,  since p(r) is much better  known than g(r) 
[when d e = 3, the equivalence of (4) and (5) can be checked with the aid of 
(3)]. However,  since R H in the Kirkwood-Riseman theory 22"23) is expressed in 

terms of g(r), one might hope that the errors made in an approximation of g(r) 
partly cancel if (5) is used instead of (4), so that together with (2) 

RH f_dr_rZg(r______)(2f__dAreg(r______))l/Z 

fOr rg(r) \ f dr r4g(r),] 

(6) 

This is the expression used by Wiltziusl°). The idea that the errors in (6) partly 
cancel is indeed borne out for df = 3 for the approximation g(r) = p(r) consi- 
dered by Wiltzius l°) and implicitly by Hess et al.21), with p(r) the mass density 
distribution with a sharp cutoff, 

p(r) = cr d~-3 , r < Re, 

p(r) = O, r > R¢ . 
(7) 

When d f  = 3, eq. (6) with g(r) = p(r) = constant yields Rn/R G = X/T67-~ = 
1.22, which is close to the exact value for a dense  aggregate with d e = 3, 
RH/R G = X/5/3 = 1.29. However ,  when d e is substantially less than 3, we see no 
reason why this approximation should be accurate: when we approximate 
g(r) = p(r) but use (5) instead of (4), we underestimate for no good reason R G 
by a constant factor 1 /X/2= 0.7, whereas (2) on the other hand gives with (7) 
and g(r) = p(r) 

d e - 1 
R n - de R c , (8) 

so that R H in this approximation is a rapidly decreasing function of d e. We 
believe that this result strongly underestimates the screening of hydrodynamic 
interactions for aggregates with smaller de. While a more detailed analysis of 
this will be given in section 3, our arguments can be illustrated in an intuitive 
way as follows. 
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For DLA clusters with df • 1.72 in two dimensions, the width of the active 
zone is about Re~6 (taking Meakin and Sander's 2°) mean deposition radius 
equal to Re). Thus the Laplace field describing the diffusion of the particles 
forming the cluster is essentially screened from an interior region of the cluster 
with a radius of about ~ R e. If the width of the active zone is about the same in 
three dimensions (we have not been able to find precise data for the thickness 
of the growth zone in three dimensions), one would expect R H ~> 56Rc. Eq. (8), 
on the other hand, predicts R H --- 0.42 R~ for a fractal with df = 1.72. 

The above discussion also points at another  problem of the Ki rkwood-  
Riseman theory22'23): according to eq. (8), the hydrodynamic radius is a 
function of the fractal dimension of the aggregate only, whereas on physical 
grounds one would expect the degree of screening, and hence R . ,  to depend 
rather on the width of the growth zone (which, implicitly, might be a function 
of dr)  and possibly on the size of the aggregate. As we now show, these effects 
are naturally included in the porous sphere model. 

3. Results for the porous sphere model 

In this section, we will assume that the fractal structures consist of spheres of 
size a, and that they can be reasonably well approximated by a spherically 
symmetric mass density distribution p(r )  of a form consistent with the scaling of 
the active growth zone with the radius of gyration, 

F ~dl-3 
p(r )  = po~a } h ( r / R c ) .  (9) 

We take h(0) = 1 and h ( r / R c )  = 0 for r > R c, so that R c is the largest radius at 
which the aggregate has nonzero mass; we have normalized p(r )  such that 
p(a )  = Po. The typical picture of the aggregate that we will have in mind is that 
of a three-dimensional generalization of the "dense branching morphology" 
found in electrodeposition experiments4°'41). 

In the porous model,  an aggregate consisting of spheres with radius a is, at a 
distance r from the origin, essentially considered as a porous medium with local 
permeability (6"trap(r)) ~; according to the D e b y e - B u e c h e - B r i n k m a n  26 28) 

equation, the fluid flow velocity v around the fixed structure is then given by 

r/V2v - 6rrrlap(r)v  - IVp = 0 , 17. v = 0 ,  (10) 

where p is the pressure. A short intuitive deviation of this equation has been 
given by Wiegel and Mijnlieff42), while Felderhof  and Deutch 43) have shown 
that by treating the hydrodynamic interactions in the Oseen approximation 
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(10) is indeed obtained in the mean field limit for a system of density p(r) of 
spheres of size a. Thus, the starting point for the treatment of the hydro- 
dynamic interactions is the same as in the Kirkwood-Riseman 22'23) approxima- 
tion, but the "preaveraging" is replaced by a mean field limit. As a result, the 
central quantity in the porous sphere approximation is p(r) rather than g(r), 
which, as we have discussed, has some advantages for fractal aggregates. 

It is convenient to use dimensionless units by writing distances in units of Re. 
In these units the fractal occupies the region r ~< 1, and (10) becomes 

1 
XTzv- ~¢(r)v-  ~ Vp = 0 ,  V- v = 0 ,  (11) 

~7 

where (9) and (10) yield 

r R "ldf -1 _ 

,,r) = (6 ,aaoo)[ J / '  (12) 

The most important physics in (11) is that the screening of the hydrodynamic 
field increases with/~, and (12) shows that as Rc--~,/~---~ ~ for all r <  1 and 
d r >  1 (in agreement with Witten's argumentl8)). This implies that in this 
approximation the hydrodynamic field gets more and more expelled from the 
interior of the aggregate, so that the hydrodynamic radius approaches that of a 
sphere of radius Re, 

RH--~R ~ (Rc--~o0) . (13) 

This result lends support to the claim made earlier that approaches based on 
the Kirkwood-Riseman theory 22'23) obtained hydrodynamic radii which are 
much too small (in particular for smaller d 0. 

While according to (13) the asymptotic value of R n is independent of de, the 
crossover to this value is obviously not, and we now discuss the influence on 
RH of the most important factors affecting the magnitude and r dependence of 
p~(r). To do so, we have used some results related to a Fax6n theorem for (11). 
For an impenetrable spherical particle, the Fax6n theorems 7-9) express the 
force and torque on the particle in terms of averages of the unperturbed but 
arbitrary flow over the surface and volume of the sphere. The generalization of 
these results to the porous sphere model is due to Felderhof and Jones44). 
Their results 45) allow us to calculate R H from the asymptotic behavior of two 
functions ~b and ~b which are related to the velocity and pressure field, but 
which for arbitrary/~(r) have to be obtained numerically from a set of ordinary 
differential equations. Our computer program uses the NAG routine D02TGF 
to solve these equations. We now discuss our results. 
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Although p~(r) has a weak divergence at the origin, this divergence plays 

hardly any role when R c is not too small. This is because for realistic values of 
R c the velocity field is already screened completely from the center in the 

absence of this divergence. Fur thermore ,  since fractal aggregates typically have 
a relatively thin growth zone, we expect h(r) to be substantially different from 

1 only for r close to 1. This suggests that a useful approximation to study the 
finite size dependence is to put 

d t 1 

r <  1,  (14) 

r > l .  

In this approximation the model  reduces to that of a uniformly porous sphere,  
and can be solved analytically. The resulting expression for R H (in dimensional 
units) is 27'44 ) 

1- -K ~/e tanh K ~'2 
RH = Rc 1 + 3 K-I _ ~3 K-3/2 tanh KL/2 , (15) 

and this behavior  is sketched in fig. 1. To estimate the value of K in Wiltzius' 
• 1 0  experiments  ), we note that the factor 6"rra3po is expected to be of order unity, 

since there will typically be one or a few particles at a distance 2a from the 
d I 1 center,  so that Po is of order  1/[4"n'(2a)3]. Using therefore K ~(Rc /a  ) , we 

find that K varies from about  20 to 200 over  the range where the data scale as 

I 
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Fig. 1. R H / R  c of a sphere for uniform porosity. K is the inverse permeabili ty defined in eq. (14). 
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expected [700 ~< R G <~ 7000 A,, q = 70/~, R c = 0 .7RJ .  Thus, in this range, we 
estimate that there still is a noticeable finite size effect, with RH increasing 
from 0.73R~ to 0.92R H. 

As discussed earlier, we expect the df dependence of R H through the term 
r dr-3 in (12) to be quite small. We have checked this numerically, and found 
this indeed to be the case. For example, taking this term into account for df = 2 
and K = 20 changes R H by only about 2%. For larger values of K, the term has 
even much less effect on R H. 

Obviously, the effect of h(r) in (12) on R H will depend on the precise form 
of the function h(r) on R H. Since the growth of fractal aggregates takes place at 
an outer  growth zone, we expect that h(r) will typically be close to unity in the 
interior of the fractal and then drop rapidly to zero in the growth zone. We 

have modeled such behavior with two different ad hoc expressions for h(r): a 
piecewise linear function, 

11 , r < 1 - 7 7 ,  
h ( r ) =  - r / - l ( r -  1 + ~/), 1 - ~ / < r < l ,  (16) 

and a function that varies quadratically for r > 1 - "0, 

l 1,  r < l  - 7 7 ,  

h ( r ) =  1 - 2 r / - 2 ( r - l + r / )  2, 1 - r / < r < l - r / / 2 ,  (17) 
[ 2 r / - Z ( r -  1) 2 , 1 - rl/2 < r < 1. 

R H will clearly be reduced by an increase in the width of the growth zone. 
However ,  an increase in the width of the growth zone also implies a decrease 
in R~, since the mass distribution is then more biased towards the interior 
region. It is therefore more useful to plot the hydrodynamic ratio RH/R G 
directly, since its r/ dependence will be smaller than that of R H and R G 
separately. Indeed, fig. 2 shows that the change in the ratio with 7? for K -~ 100 
is so small for moderate values of r/ (as mentioned earlier, T/= ~ for two 
dimensional DLA clusters2°)) that one may for all practical purposes neglect it 

completely. 
We note,  however, that according to (12) Rr~---> R c in the limit of infinite Re, 

independent of r/. As a result, for extremely large values of K, the near 
cancellation of the ~/dependence of R H and Rc will not occur. However,  this 
disappearance of the r /dependence  from R• for K ---> ~ is probably an incorrect 
result of the present approximation. The thickness of the growth zone scales 
with R~, and one therefore physically expects the hydrodynamic field to 
penetrate the fractal over a distance of order  of the growth zone, irrespective 
of the size. Presumably, the large K scaling properties of the present model are 
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R H 

RG 

1 . 3  
df = 1 .8  

df = 2 .4  

d f=  3 

I I 
0.4 0.2 0.3 

Fig. 2. The hydrodynamic ratio R,IR~ for K = 100 and three values of dr. The solid lines 
correspond to the function h(r) given by (16) and the dashed lines to h(r) given by (15). 

incorrect since it is based on a mean field approximation [see the discussion 
following (10)]. 

The above discussion shows that within our approach the hydrodynamic ratio 
is well approximated by using for R H the expression (15) for a sphere of 
uniform porosity, and for R G the result R~; = ~/dr/(d t + 2)R~., valid for a mass 
distribution p(r) with a sharp cutoff [cf. eqs. (4) and (7)]. Thus within the 
present  model our final expression, accurate even for fractals without a sharp 
cutoff, is 

RH _ ( d f + 2 ]  1/2 1--K-l/2tanhK1/2 
Re, \ df / 1 +  3 K ' 3 K 3/2 ,/2 , (18) , - ~ t a n h  K 

with K defined in (14). According to the first factor, RH/R ~ increases with 
decreasing df because R e becomes smaller, while the second term has an 
opposite effect since for N fixed, K decreases with decreasing df (K scales as 
N (af-~)/af, with N the number  of units in the cluster). This behavior  is different 
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from that of the Kirkwood-Riseman approximation22"23), in which RH/R G 

always decreases because of the strong df dependence of R . .  
For df = 2.07, the value measured by Wiltziusl°), the porous sphere model 

yields as a typical value RIq/R G = 1.23 (taking K = 100). This value is a factor 
1.7 larger than the experimental value given by WiltziusW), and only about 0.7 
of the value he quotes from unpublished numerical work by Meakin25). In the 
next section, we will discuss this in more detail and make suggestions for 
sorting out these discrepancies experimentally as well as numerically. 

4. Discussion of results and suggestions for further experiments 

Let us now try to understand the possible origin of the differences between 
the various values for the hydrodynamic ratio, 0.72 (experimental), 1.23 
(porous sphere model) and 1.75 (numerical simulations for an aggregation 
model with a different dr). We will not discuss any further the results of the 
Kirkwood-Riseman 22'23) approximation, since it was already argued in section 
2 that these should be considered unreliable. 

As is well known, most fractals are not sufficiently characterized by their 
fractal dimension- in principle a whole distribution of exponents is needed 
(the f (a)  of Halsey et al. 31) - but to our knowledge such a quantity cannot yet 
be measured experimentally for fractal aggregates, and neither do we know 
how to compute R H from it, other than by direct numerical simulations32). The 
best we can therefore do at present is to offer some speculative explanations, in 
the hope that this will stimulate further research on this question. 

The porous sphere model obviously will work best for fractal aggregates 
whose mass distribution is nearly spherical and has a relatively well defined 
cutoff (we stress, however, that the discussion in section 3 shows that the result 
(18) is also accurate if the cutoff is not completely sharp). Such fractals have 
been observed in two-dimensional electrodeposition experiments 4°'41) (the 
"dense branching morphology" 41). We believe that if three-dimensional 
generalizations of such fractals would exist the porous sphere model would 
yield a fair prediction for their hydrodynamic radius. Indeed, using this model 
and independent porosity data, Mijnlieff and Wiege129) calculated the viscosity 
and R H of polymers in solution without any adjustable parameters, and their 
results agree to within 10 to 20% with the experimental values. 

In reality, most fractal objects are not at all spherically symmetric- they 
often consist of several pronounced branches (cf. e.g. fig. 3a of ref. 40) with 
large gaps of the order of the radius of gyration in between the branches - and 
even if they are rather homogeneous, their overall shape can still be quite 
asymmetric. As we will argue, both features may have a large effect on R u. 
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Clearly, it is desirable to have more detailed numerical studies of R H of 
simulated clusters. The value 1.75 for R H / R  o attributed by Wiltzius TM) to 
unpublished work by Meakin 2s) is quite a bit larger than our estimates (the 
porous sphere model gives R H / R  o ~ V~ = 1.7 only in the limit of very large 
aggregates with df near 1). Such a large value of R u / R  ~ is a sign that the 
fractal cannot be modeled by a spherically symmetric mass density p(r) .  For, 
our asymptotic result RH-+ R c certainly yields an upper bound for R H for 
spherically symmetric clusters; although R o does decrease somewhat if the 
width of the growth zone increases, we do not expect this effect to be too large 
[both for eq. (16) and eq. (17), we have to first order in ~ R G = 
~ d f / ( d  t + 2)(1 - r//2)]. Thus, it is very unlikely that aggregates with a spheri- 
cally symmetric p(r)  can have hydrodynamic ratios larger than the K -+ ~ value 
~/(d t + 2)~dr. If the value 1.75 from the simulations is correct,  I consider it 
likely that the apparent "enhancement"  of R~ is due to the branch structure 
that may dominate the outer region of fractal objects. Such branches will 
correspond to a large R H, since they are unscreened and so quite exposed to 
the flow field. An alternative way to think about this is that the spherically 
symmetric aggregate has much more mass at the outer  perimeter than is 
necessary to have RH close to R c (the radius beyond which p vanishes). If this is 
true, an aggregate with a larger hydrodynamic ratio can be created by cutting 
away some pieces from the outer region of a nicely spherically symmetric 
aggregate, as this will reduce R H only slightly but R o significantly. Our ideas 
regarding these general trends can, of course, suitably be tested through 
simulations, and we hope that this will be done in the future. Another  aspect 
that can usefully be investigated with simulations is the effect of the correction 
term to the Oseen approximation for the hydrodynamic interactions, which are 
neglected in the analytical approaches 22'23"26 28,43) but retained in the numeri- 
cal evaluations of R u 13,14,32). However ,  such correction terms cannot lead to 

significantly larger values of R H for spherically symmetric clusters, since R c is 
an upper bound to R H. 

Fractal clusters and aggregates are generally quite asymmetric. To our 
knowledge, this has only been demonstrated quantitatively for lattice animals 
and several percolation clusters4V), but a glance at the TEM images of Weitz 
and Lin 48) show that aggregates similar to those studied by Wiltzius ~°) (both 
have a fractal dimension consistent with the reaction limited cluster-cluster 
aggregation models) have a substantial anisotropy too: the long axes of the 
two-dimensional images appear to be roughly a factor of two larger than the 
short ones. 

Can asymmetry explain the small value of R H / R  o measured by Wiltzius"~)? 
At first sight, the answer appears to be no, since R ~ / R  G has been calculated 
for prolate and oblate ellipsoids of revolution by Perrin49). As discussed by 
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Wiltziusl°), his results imply only a small (7%) reduction of the hydrodynamic 
ratio for prolate ellipsoids or revolution with an axis ratio of 2, while the 
experimental value is some 40% smaller than our estimate. However, on closer 
inspection it appears that this suggestion deserves further attention. 

The diffusion coefficient of ellipsoids calculated by Perrin 49) is the long time 
diffusion coefficient. On time scales much longer than the rotational relaxation 
time, even the diffusion of an asymmetric particle is isotropic, since any short 
time anisotropies are averaged out by the constant reorientation of the particle 
due to Brownian motion. On time scales shorter than the rotational relaxation 
time, however, the diffusion of an asymmetric paticle will be very anisotropic: 
its friction coefficient along the long axis is typically smaller than that perpen- 
dicular to that axis (see, e.g. Happel and Brenner 33) for the relevant expres- 
sion for ellipsoids of revolution), and hence its diffusion coefficient along this 
axis is enhanced. 

The rotational relaxation time ~r for a sphere of radius a is 33'39) 'r r = 

87r~?a3/kT. In line with our conclusion that a large fractal aggregate can be 
considered as an impenetrable sphere, the results of Felderhof and Jones 44) 
show that the rotational relaxation time z r similarly will be of order 8~rrlR3/kT 
(anisotropy of the aggregate would enhance the relaxation time; see, e.g., 
Berne and Pecora39)). In the quasi-elastic light scattering experiments, the 
scattering intensity at wavevector q decays as 

e - D q 2 t  = e - ( k T / 6 ~ r n R n ) q 2 t  • e - q z R ~ t / ~ r  . (19) 

Thus, it is clear that such experiments will probe essentially the long time 
diffusion if 2 2 2 2 q R n ~< 1 and the anisotropic diffusion if q R n ~> 1. 

In Wiltzius' experiments1°), the scattering wavevector q ranges from 2.6 × 
104 cm -1 to 2.6 × 10 5 cm -~, and as a result for the largest aggregates observed 
(R H=7000,~)  2 2 q R H ranges between 3.2 and 320. Since the aggregates appear 
to be quite asymmetric, I therefore expect that the diffusion of the largest 
clusters is anisotropic. Although the aggregates will be oriented randomly with 
respect to the scattering vector q, it is conceivable that the initial decay of the 
scattering intensity is dominated by those aggregates whose diffusion coeffici- 
ent along the direction of q is large, i.e. whose effective hydrodynamic radius 
in that direction is small. This would obviously lead to a smaller apparent R n. 
Given the indications of a strong asymmetry and the fact that the R c is 
increased by asymmetry of the aggregates, a substantial reduction of the 
hydrodynamic ratio Rr~/R c seems possible. Unfortunately, in order to make 
these ideas more quantitative, a better understanding is needed of the effect of 
anisotropic diffusion on the time dependence of the scattering intensity, as well 
as of the aggregate asymmetry. 
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The data of Wiltzius~°) also include aggregates for which q2R H ~< 1 through- 
out most of the range of q values. For these aggregates, the isotropic diffusion 
will be measured. However, these smaller aggregates also correspond to a 
smaller value K [cf. eq. (12)] and hence finite size effects might be partially 
responsible for the small values of RH/R ~ of these fractals. 

We stress that the above suggestions are very tentative, but we feel that they 
are worth testing. Apart  from reanalyzing the data and performing numerical 
simulations, there are several interesting experiments that would bear on the 
issue of assymetry and anisotropy of the aggregates. In particular, measure- 
ments of the rotational relaxation time of the sedimentation velocity yield 
different ways of obtaining the hydrodynamic radius. The effective hydro- 
dynamic radius determined from the rotational relaxation time measurable 
with depolarized light scattering 39) is dominated by the length of the longest 
axis of the aggregate39). Thus, if our suggestions regarding the effect of 
asymmetry are correct, the measurements of R H through rotational relaxation 
should give higher values of R H than diffusion measurements in the regime 

2 2 q R H ~> 1. Similarly, in a sedimentation experiment one would measure the 
long time behavior, and hence the effective rotationally averaged R H, which I 
would expect to lie between the values obtained from the other two experi- 
ments. We also mention that second order light scattering may yield useful 
additional information on the structure of aggregates, as pointed out recently 
by Chen et al.5°). 

Finally, we note that in practice the cluster size distribution in the reaction 
limited cluster aggregation regime falls off with a power law of the mass of the 
clusters up to some well-defined cutoff mass which grows exponentially in 
time 5~). Thus, the question arises whether the polydispersity could give rise to 
a smaller effective R H. However, it is unclear why the static and quasi-elastic 
light scattering would be influenced differently by the polydispersity, and 
theoretical consideration 52) confirms the idea that both are dominated by the 
largest clusters in the system, as if the clusters were monodisperse. 

In conclusion, we have analyzed the hydrodynamic radius of fractal aggre- 
gates, and argued that the experimental value is considerably smaller than 
expected for spherically symmetric aggregates. We have therefore tentatively 
attributed the discrepancy to the asymmetry of the clusters, and suggested 
various ways to test this experimentally. 
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Note added in proof 

Afte r  acceptance  of  this paper ,  it was pointed  out  by Chen  et al. 53) that  the 

simulation result R H / R  6 -~ 1.75, which was communica ted  privately and to 

which we compared  our  results in this paper ,  is unfor tunate ly  incorrect .  In 

their latest simulations of  clusters of  size N~<400,  Chen  et. al. 53) find RH/ 

R G -~0.97 for  the react ion limited cluster aggregat ion model  relevant  for 
• 10  Wiltzius'  exper iment  ). Since r scales a s  N(df-1)/d~ a reasonable  value for  

clusters of  size N~<400 and d r = 2 . 1  is K = 2 0 .  With  this value,  the porous  

sphere mode l  gives R H / R  G -~ 1.03, which is quite close to the value found  in 

the simulations• Nevertheless ,  this apparen t  ag reement  is somewha t  fortui tous,  

since the precise value of  r is not  known  [see the discussion following eq. (15)]• 

We stress, however ,  that  a detailed test of  the porous  sphere model  can in fact 
be made  with simulations like those o f  Chen  et. al.53), since the effective value 

of  K in the simulations can be de te rmined  accurately f rom the data  o f  the full 

mass particle distr ibution function.  We hope  that  such a detailed compar i son  

will be done  in the future.  
Fu r the rmore ,  Pusey et al. 54) have pointed  out  that  since R H and R c are 

related to different m om e n t s  of  the cluster mass distribution, polydispersi ty 

reduces R H / R  C. We refer  to this c om m e n t  54) and the reply by Wiltzius and the 

au thor  55) for a discussion of  whether  finite size effects and polydispersi ty fully 

account  for  the discrepancies be tween theory  and experiment .  
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