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The variational principles introduced by Kadanoff et al in the renormalization theory are
analyzed. It 1s shown that the values for the specific heat critical exponent a which can be found
by a variational method are restricted to a <0 or a = 1 (first order transition). The reason is the
confluence of the singularities in the free energy and in the variational parameters. A full
implementation of the variational principle changes for the square Ising lattice the earlier
obtained a = 0.001756 to a = —0.123413.

0. Introduction

The renormalization theory for critical phenomena has provided the means
to calculate the critical exponents. The first attempts'?) to obtain accurate
exponents by a position space method involved a considerable amount of
computational effort. In the search for a simple and accurate method the
variational approach of Kadanoff, Houghton and Yalabik (KHY)? seems to
be a breakthrough and it has been applied to a variety of models?).

The idea of KHY is to use the freedom in defining a renormalization
transformation to optimize the free energy. They showed that approximate
renormalization transformations can be defined generating a free energy
which is a rigorous upper or lower bound to the true free energy. Then the
free parameters in the renormalization transformation can be chosen such as
to optimize the bounds. Thus, an impressively accurate bound to the free
energy results and also the reported critical exponents are very close to what
is known exactly or may be expected from other sources.

It has been noted by Knops®), however, that the variational principle has
not been applied fully around the fixed point and that a more consequent
application changes the value of a from a =0.001756 to a value around
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a = —0.1 (for the d = 2 quadratic Ising model where a = 0). The source of this
change is the dependence of the variational parameters on the interaction
constants near a fixed point.

This paper is a refinement and perfection of the criticism of Knops by an
analysis of the influence of the singularities in the free energy on the behavior
of variational parameters.

In section 1 we formulate the variational principle in the renormalization
theory and in section 2 the solution is given near a fixed point under the
assumption that the variational parameter is a regular function of the inter-
action. A few examples are given in section 3 to illustrate the type of
situations which may occur. In section 4 we present a (simplified) analysis
which yields the relation to singularities in the free energy and in the
variational parameter. The general case is studied in section 5 and the paper
closes with a discussion.

1. The variation principle in renormalization theory

Consider a system of N degrees of freedom s, interacting through a
hamiltonian %(s). Then, introduce into the system N’ new degrees of freedom
s}, coupling them to the s, by a hamiltonian %,(s’, s) fulfilling

Tr e®%" 9 =1, (1.1

where Tr’ stands for the sum (integral) over the new variables s|. The index p
on ¥, symbolizes the fact that the coupling may contain a number of
variational parameters denoted collectively by p. The condition (1.1) ensures
that the free energy F of the original system

F =log Tre*®, (1.2)

and that of the combined system, are equal. (The factor —1/ksT is included in
both the energy and free energy.)
#,(s', s) induces a renormalization transformation according to

explG, + #,(s)]1 = Tr explH,(s’, s) + H(s)], (1.3)

where the Tr sums through the old variables only. The constant G, is made
explicit because in spin problems it is customary to define hamiltonians such
that

Tr #(s)=Tr #,(s’)=0. (1.4)
Relation (1.3) should be seen as a map from #(s) to ¥(s") which has lesser
degrees of freedom, namely N’, compared to the N original. We put the
dilution ratio equal to N’/N = b™?, where b is the linear scale reduction of the
system and d the dimension of the system.

Because of (1.1) the free energies F of # and F, of ¥, are related by

G,+F,=F. (1.5)
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We will represent the hamiltonians #(s) and #'(s’) by their interaction
parameters symbolized by K and K'. The K’ as well as G, are functions of
the K and of the variational parameters p. We therefore write (1.3) alter-
natively as

G, =Ng(K;p); K'=K'(K;p) (1.6)

Then (1.5) obtains the form for the free energy f(K) per degree of freedom
(=F/N)

f(K)=g(K;p)+b™f(K'(K;p)). (1.7)

Note that both terms on the right-hand side of (1.7) may depend on p while f does
not. Given the expression for G and K, (1.7) yields a free energy f(K) as it may be
obtained by iteration of (1.7).

KHY showed that it is possible to define an approximation to (1.6):

g=8«(K;p); K'=KiK;p), (1.8)
which yields an approximate free energy through
fK) = g(K; p(K)+ b fo(KiK; p(K))) (1.9)

for any p(K) obeying either of the two inequalities
f(K) s fu(K) (1.10)

depending on whether one has constructed an upper or lower bound ap-
proximation. (Note that through inclusion of —1/ksT the notion of upper and
lower are reversed with respect to the usual free energy.)

Now f.(K) will depend on the choice of p(K) for a given approximation g,
and K} and one has the problem of finding the p(K) which gives the best
bound. We will assume, as is the case for all applications so far made, that
g.(K, p) and K (K, p) are regular functions of K and p.

As we will be only concerned with the approximate transformation from
now on we drop the index a.

2. Fixed point properties of p(K)

In this section we will make a preliminary analysis of p(K) in the neigh-
borhood of a fixed point K*. To simplify the discussion we assume that K
and p are single parameters. One may think of K as a nearest neighbor
interaction and of p as a coupling constant between new and old degrees of
freedom.

The function p(K) should obey the condition that f(K) is stationary with
respect to variations of p(K). Thus, if we take (1.9)

f(K)=g(K;p(K)+ b f(K'(K; p(K)) 2.1
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and differentiate with respect to p we obtain
0=g,(K;p(K))+b ‘fx(KNK K p(K)), 2.2)

where the indices p and K denote differentiation with respect to p and K.

The two equations (2.1) and (2.2) contain the two unknown functions f(K)
and p(K) and should be solved simultaneously. With regard to the solution
one may distinguish three cases.

(1) The equations do not have a solution, which means that no p(K) makes
f(K) stationary. Then the best p(K) assumes a boundary value, e.g. p(K)= «
(see next section for an example).

(2) A special case is when the equations decouple. This happens when, for
each K, a p exists such that

& (K;p)=K)K;p)=0. 2.3)

The solution p = p(K) of (2.3) satisfies (2.2) regardless of the shape of f(K)
and using this p(K) in (2.1) f(K) can be determined. This fortuitous case
happens in an example of the following section. Eq. (2.3) leads to a p(K)
which is a regular function of K.

(3) The general case is that (2.1) and (2.2) have one or more solutions from
which the best has to be chosen. As we shall see it may happen that different
regions of K have different branches of the optimal solution p(K).

The interesting situation is the behavior near a fixed point. For arbitrary p
we may have a K*(p) satisfying

K*(p)=K'(K*(p); p). 24

Such a point is a fixed point as it is invariant under the renormalization
transformation. A qualitative sketch of K*(p) is drawn in fig. 1. Now an
optimal fixed point is a point K*, p* where the optimal p = p(K) intersects
the line of fixed points K = K*(p).

KHY give a prescription to determine this point which reads in our
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|
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|
1
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Fig 1 Qualitative sketch of the K—p plane.
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simplified version as follows. Differentiate (2.1) with respect to K [using (2.2)]
fr(K) = gx(K; p(K) + b~ fx (KK (K, p(K)). (2.5)

Then, insert K = K* into both (2.5) and (2.2). As p(K*)=p* and K*(p*) =
K* and thus with (2.4)

K'(K*; p(K*)) = K'(K*(p*); p*) = K*(p*) = K*, (2.6)
the resulting equations can be written as

fE=gk+b /ftKR¥;  0=gi+b 'fEK}*, Q2.7
where we have used the notation

feK*;p*)=fk  g(K*p*)=g}  KiK*p*»=Kp etc. (28

The two equations (2.7) together with (2.4) [or K* = K'(K*, p*)] are three
equations for the three unknown K*, p* and f ¥, since all the other quantities
like g*, etc. are known functions of K* and p*. We point out that the
determination of the location of the optimal fixed point goes together with the
determination of the derivative f¥ of f(K) at the fixed point K*. [The value of
f* = f(K*) then follows from (2.1) by insertion of K = K*]

Now, once K* and p* are determined KHY used K% to calculate the
specific heat exponent @ according to

b" =K@ (= Kk(K*;p*), 2-a=dy. (2.9)

It was noted by Knops®), however, that the variation of p(K) with K
contributes also to the derivative of K’ with respect to K. Therefore we
should equate

b’=Kg&+Kppt, (2.10)

where p% = dp(K)/dK at K = K*.

Thus, the determination of the eigenvalue requires knowledge of the
derivative of p and K*. This quantity can be obtained by differentiating (2.2)
and (2.5) once more with respect to K. Then, inserting the fixed point yields
the two equations

ik =gkx +gtpk + b /[f(KR¥ + K}p DK+ fUKZ + KZp D]
and 2.11)
0=2gt, +ghpt+ b [ftx(K¥+ K *pHK;* + fHK % + Kxp D).

The unknowns are ffx and p%k, all other quantities being known by the
previous step.

Now the problem is clear. Whereas in the previous step the determination
of f§ was required, which generally exists, the calculation of p% involves the
second derivative of the free energy f¥x which will not exist when the
specific heat exponent a is positive. Before we embark on the discussion of
this point we give some examples to illustrate the procedure given above.
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3. Examples

As a first example consider an Ising system with spins s, = +1 interacting
through nearest neighbor coupling K on a triangular lattice. We decorate the
system with new spins s}, in the way indicated in fig. 2. As a coupling
hamiltonian for the cell with new spins s’ and old spins s, 53, s; we take

Ho(s', 515283) = ps'(s1+ 52+ 53) — a — b(s;5,+ 5283+ 5381), 3.1
which fulfills (1.1) when a and b are defined as
a = ;log[(2 cosh 3p)2 cosh p)’]; b= %log[cosh 3p/coshp]. 3.2)

For a bound on f(K) the combined hamiltonian is separated into two parts:
Hy(s',8)+H(s) = Hs', s)+ V(s). (3.3

For a lower bound we may take #(s’, s) to be the sum of #,(s’, s) and the
nearest neighbor interactions inside the cells. The remainder, i.e. the inter-
actions between the cells, constitutes ¥'(s). Then we use the inequality

Tr eX0" V) = [Tr ¥ ") = [Tr e *] e, (3.9

where ( ) is an average involving ¥, as weightfactor.
Thus, the renormalized G and #'(s’) defined as

G+ %'(s") = log[Tre™] + (¥ (3.5)

yield a free energy which is a lower bound to the free energy of a system with
% (s) as hamiltonian. The approximate G and ¥'(s) can be readily evaluated?).
#'(s’) has again only nearest neighbor coupling and one finds

g(K;p)=1logle’ +3e7¥],
3K -K92
(tgh3p) e** +(tghp)e ] (3.6)

KK p)=2K

ek +3eK

Fig. 2. Decoration of the triangular lattice. @ site-spin; x cell-spin. In the KHY approximation
the interactions are shifted in the O-cells.
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The free energy f(K) as defined through (3.6) and (2.1) with b? =3 is a lower
bound to the true free energy of a triangular Ising system for any p(K). The
search for the optimal p(K) by solving (2.1) and (2.2) leads only to the
solution p = o for all K. This could have been concluded without calculation
by the observation that the best free energy is obtained for given K when K’
is as large as possible since g is independent of p and f(K) may be assumed
to be increasing with K. Eq. (3.6) shows that the maximum K’ for given K is
reached for p = o, For p = o, (3.6) reduces to the earlier used first cumulant
expression?) for a renormalization transformation which restricts the possible
s for given s’ to those configurations where the majority of site spins is in
line with the cell spin. Barber®) has concluded in a more general context that
this type of bound leads to the majority rule transformation.

An upper bound is obtained by the method of KHY. When ¥(s) is such
that it shifts the interactions to the triangles marked with an 0 we have again
as #o(s’,s) a hamiltonian which is the sum of independent triangles. The
calculation of

G + ¥'(s") = log[Tr e ¥ (3.7
is straightforward’) and leads to a transformation
g(K; p) =t 1og[(e” +3 e K)(e® ™ + 2+ %) e ),

K +3 7K
K'(K;p)=ilog [W]’

(3.8

with b as a function of p given by (3.2). The free energy of this trans-
formation is an upper bound since (¥'(s)) = 0 [note that the upper and lower
bounds are exchanged with respect to KHY because —1/kgT is included in
f(K)]. The variational equation (2.2) for this transformation reads

_ _9K—4b | _4b-3K
e +e ]ab —o. 3.9)

8 = —Kp=4[e1)x—4b+(2+e4b)e?m 35‘"

As 3b/ap >0 the only solution is given by

b =3K]/2, (3.10)
or for p as function of K

p(K) = =3log 5{1+ e + [(1+e®%)? — 413, (3.11)

(The sign of p is immaterial as it can be undone by a sign flip in the cell spins.)
The solution (3.11) behaves qualitatively as indicated in fig. 1. Inserting (3.10)
into (3.8) yields the optimal transformation

g(K) =z log[(e’® +3 e ¥)2 e + 273Ky},

9K 4 3 oK (3.12)
K'(K) =1log [2eem + 2ee‘m]'
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Fig. 3. Comparison of the KHY approximation, the mean-field theory and the first-order
cumulant approximation with the exact free energy for the triangular lattice.

The f(K) following from (3.6) (with p = «) and from (3.12) have been plotted
in fig. 3 together with the exact expression. The upper bound is surprisingly
good as compared to the lower bound. Both the upper and lower bound free
energy have a critical point with a singularity of the type |K — K*’™. One
finds

Lower bound Upper bound Exact
K 0.3356 0.3798 0.2747
a ~0.2671 —0.5148 0.0

Note that both « values are negative although for these examples no compel-
ling reason exists. In both cases the variational p (K) is not coupled to the free
energy it generates.

As a third example we consider the Ising system on a square lattice as
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treated by KHY. Their transformation may be written as®)

g =1 log(Z,Z3Z3Ixy);

3.13)
x'= (ZI/Z3)4; y' =(Z:Z5)",
with
Z,=x+4y+3, x = 'K,
2
e Ly+3w,  y=ete, (3.14)
Z3='27)TC:—1+4)’+2W2+1, w = cosh 2p.

K is the nearest neighbor interaction (=2V, of KHY), Q is the four-spin
interaction (= V, of KHY) and p is the coupling between the new spin and a
block of four site spins as in (3.1).

In this case the space of interaction parameters K, Q is two-dimensional.
The optimal fixed point has the values®)

p* =0.765983; K*=10.279433; Q* = —0.006865. (3.15)

The method described in the previous section may be used to determine the
optimal slope of p(K, Q) at the fixed point. The only difference is that we
have to compute simultaneously the two derivatives p% and p} and the three
second derivatives f#xk, f¥o and f¥o. The equivalent to (2.11) has a solution

p &= 3.890460; f&x =74.779,
p&=0.937846; f¥o = 24.353, (3.16)
fBQ =9.361.
We point out that f(K, Q) has the correct positive curvature at K*, Q*. With

the values (3.16) for p¥ and p} the linearized renormalization transformation
can be computed with the matrix

(K',?‘+K;*p1z K'6"+Ké*p$) (3.17)
QF+Qrpk Q¥+ Qi pk
It has the eigenvalues

Ar=1.921030; A2 =0.456844, (3.18)

which implies a specific heat exponent @ = —0.123413. Setting pt=p$ =0 the
value of KHY follows which equals a =0.001756. Now it is important to
observe that a is negative, the reason of which will become clear in the next
sections.
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4. The singularities in p(K)

After the previous intermezzo of some examples we return to the main
problem of how the unknown functions of the problem, the free energy f(K)
and the variational function p(K) mutually influence each other, and in
particular what the impact is of singularities in f(K) on p(K). It will turn out
that, if we assume the existence of a singularity in the free energy, then egs.
(2.1) and (2.2) can only be fulfilled around the fixed point, when the variational
p(K) will have also a singularity.

We split f(K) and p(K) into a regular and singular part:

f(k)=f(K)+ f(K),
p(K)=p(K)+p(K).

The discussion 1s kept simple in this section by considering K and p as
one-dimensional variables (the general situation will be treated in the section
5). The f(K) near K* behaves as

4.1

f(K)= A|K — K*°. 4.2)

Similarly, p*(K) will be proportional to some power of K — K*, the deter-
mination of which is the subject of this section.

We have to go back to eqgs. (2.1) and (2.2) and investigate the impact of the
separation (4.1). Using that g(K; p(K)) and K'(K; p(K)) are by assumption
regular in K and p(K) and that p*(K) is small near K*, we may expand
around the regular parts:

T s 1 s
g(K; p(K)) =g(K; p'(K) +g3p (K) + 5385 [p*(K)F + - - -,
4.3)
1
2!
The expansion of f(K’) and fx(K’) is rather more subtle; on the basis of (4.1)
and (4.3) we find

fIK)=f(K)+AK'— K*™

K'(K; p(K) = K'(K; p"(K)) + Kp*p*(K) + 5, K #p (KT + - - -

= FI(K")+ it K (K) + 3L fRRK - (KT

+%f{<*K;,’;[ps(K)]2+A|K’——K*|2_", (4.4)
where K" = K'(K ; p"(K)). Using (4.3) again, we find for small K — K*
K'— K*= XK —-K*)+ K¥p%(K), 4.5
with

A=KE+K¥pk (4.6)
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Now p% is the derivative of the regular part of p(K) (note that p°(K) has
either px =0 or pg == at the fixed point, depending on the power of the
singularity). Thus, (4.4) may be written as

FUKN = FR™) + FRAK () + o fRELK 720" (KOP
KK D RO+ ANK — K*)+ Krp (K @7

Similarly we can expand fx(K’) which leads to
fk(K) = fr(K™) + f kK *p*(K) + -« - -. (4.8)

Now we can collect the various contributions and arrange them according to
the singularities appearing. In the lowest order one has

f(K)=g(K; p"(K)+ b~ *f (K",
0=g,(K;p (K)+ b f(KMNK}"
Comparison with (2.1) and (2.2) shows that (4.9) is exactly the same as these

previously obtained equations for the location of the optimal fixed point.
To first order in the singularities we have

AIK - K*[™" =1B[p*(K)F + b “AM(K — K*) + K *p*(K)™, (4.10)
0= Bp*(K)+bAQ - )K¥A(K — K*+ Kprp*K)|™®,

owing to the fact that in the first equation the term linear in p*(K) has dropped
because of the second equation of (4.9). B stands for

B =gk + b [fRE(K*) + fRXK 2. .11

Then, in both eqs. (4.10) one has to decide whether p*(K) or K — K* is
dominant. We treat them separately.
(i) p*(K)<|K — K*|. In this case the two equations reduce to
1=b"A""
and (4.12)

p(K)=—AB'b 72— a)A' K ¥|K — K*|'™=.

4.9

The first equation is the normal connection between the specific heat
exponent a and the eigenvalue A [see (4.6), (2.11) and (2.10)]. The second
equation shows that p*(K) is singular with power |K — K*|'™*, provided that
K*¥#0. This is only consistent with the ansatz if « <0, because otherwise
p(K)>|K — K*.
(ii) p*(K)> |K — K*|. Now (4.10) becomes

AJK = K*[* = 3B[p*(K) + Ab ™ |K*p (K™, 4.13)

0= Bp*(K)+ Ab™*(2— a)K *|K j*p*(K)|'™. '

It is impossible to satisfy these equations. The first equation implies that
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p*(K) should be of order |[K — K*|, contrary to the ansatz. Also, the second
equation is not possible to fulfill when K% # 0, as it requires p*(K) to be of the
same order as [p%(K)|'™ (For a =0 one should include a log term with the
same conclusion.) So, we conclude that this case does not occur. When
K *=0 the singular contribution to p(K) of order |[K — K*|'"® disappears.
Then p*(K) is generated by terms of order |[K — K*/** and one is in the case
(1) as long as a <1.

So far we have discussed the question of whether a singular behavior of the
free energy is compatible with fulfilling the variational equations (2.1) and
(2.2), and found that this is only possible of @ <0. We will now take up the
question of whether it is always possible to solve eqgs. (2.11) at the fixed point,
which is necessary to calculate the eigenvalue A.

In eqs. (2.11) the two unknowns are f{x and p¥; however, we can equally
well consider A as unknown since A and p% are related by (4.6). It turns out
that one can eliminate one of the unknowns of (2.11), for instance f%k, and
one gets the quadratic equation in A

ACi+DA+b9C =0, (4.14)
with

Ci=gkiK*—gh KR+ b MK XK~ K3K¥),

Co= gk K — g5 K¥+ b K&K ¥ — K XK, (4.15)

D=b'%%+KiXft— K¥C,+ K*C,.

[Note that f% is given by (2.7).] Eq. (4.14) has two roots A; and A,, fulfilling
AiA>=b? and one can easily check that we have to consider three possi-
bilities:

(i) the equation has no real solutions;

(ii) the equation has one solution, namely A = , so that &« = 0; and

(iii) the equation has two real solutions, A; and A,.

In the last case one has a; < 0 and a, > 0 due to (2.9), (2.10) and (4.6). Although
we see that one can find an eigenvalue leading to a positive value of «, we must
disregard this solution because the foregoing as a local solution (near K*) cannot
be part of a possible variational function p(K) for which the approximation to
the free energy is optimal for all K. In order to see what is likely to happen if
(4.14) has no real solutions, we studied a somewhat more sophisticated lower
bound to the free energy of the triangular lattice. If we take as 9#,(s, s)in (3.3) the
hamiltonian

b dr

Ho(s,s") = Z psis, 4.16)

[so that ¥°(s) now becomes the sum of #,(s’,s) and the hamiltonian (s)
minus (s, s')], where s| is the cell spin to which the site i belongs, we have
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in first order cumulant the renormalization transformation
g(K;p)=3log2—15(1+3x)log(1+3x)—3(1—-x)log(1—x)+ Kx, @17
K'(K;p) = 2Kx, '

with x = tgh? p. The variation equations for f(K) and p(K) cannot be solved

explicitly but for K -0 and K — « one finds for the optimal x(K)
K -0, x(K)=K+K*+K*+iK*+- .-,
(4.18)
K—w,  x(K)=1-4¢"

The renormalization transformation (4.17) has a line of fixed points for x =3,
and the eqs. (2.7) yield for the optimal fixed point

K*=¢log5=0.2684; fi=1 (4.19)

However, eq. (4.14) has only complex solutions.

In order to see what happens, one can somewhat artificially force the
equation to get real solutions by varying b, since one can consider b? as a
parameter by which one can change the solution of (2.7) and so of (4.14).
When one increases b“, the optimal fixed point is driven to the fixed point
where g% = 0 [as can be seen from the second equation (2.7)], and (4.14) will
always get real solutions provided that g%, # 0. For this example, the solutions
become real beyond

b? =9.0709; K* =0.3580. (4.20)

The following picture shown in fig. 4 is borne out by a numerical calculation
for b¢ =3. The curve x(K) has two branches, one coming from the region
with small K and one from the region with large K, each terminating at a
point where dx/dK = . In the region where a double solution exists is a point

X

b

08|

OEL !

|

|
F——— — = - — — — — - — — f
t

OPTIMAL FIXEDPOINT
ACCORDING TO (2 7)
— - X — — e — e

LINE OF

- (
04 | FIXEDPOINTS

02k

1 . 1 T B 1 1 1 |
004 008 012 016 OZKCOZA 028 032 036 04
—-.—K

Fig 4 The variational function x(K) for the renormalization transformation (4.17).
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K, located such that beyond K. the upper branch before K. the lower branch
is the best approximation to the free energy. For K. we found K. =0.216
which is much smaller than the value of K at the optimal fixed point [see
(4.19)].

The free energy approximation of this renormalization transformation is
shown in fig. 5. One can read of the value of K. from the intersection of the
lower- and upper-branch approximations. The free energy at the line of fixed
points can easily be calculated by setting x =3 in (4.17); one sees how bad the
approximation of the free energy would be at any fixed point.

This situation is very reminiscent of mean field theory [(4.16) may be seen
as the mean field approximation]. It may generally happen that the variational
equations have more than one solution in a given region. Then the best
solution has to be taken and if the best solution switches from one branch to

09

~—-MEAN-FIELD-LIKE
RT

TFREE ENERGY
AT THE LINE OF

07 FIXEDPOINTS

T
MEAN-FIELD

{J\,i I 14 1 1
01 02 K, 03 04

Fig. 5. The free energy given by the renormalization transformation (4 17) and the variational
function x(K), compared with the mean-field value and the exact solution
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the other as in the previous example a phase transition occurs in the free
energy which is in general of first order having a = 1. In such a case the fixed
point plays no role as in the example where the solution jumps over the line
of fixed points.

5. The general situation

For simplicity we have so far concerned ourselves with a situation where
the hamiltonian could be represented by a single parameter K. In general, we
have a set of n parameters K, and a set of m parameters p,. The main
difference when more parameters K, are present, is that a simple form for the
singularity in the free energy cannot be used. Such a singularity is associated
with a relevant eigenvalue A (>1) of the derivative matrix. We assume that we
deal with one relevant eigenvalue (e.g. the non-magnetic Ising model). Then
we have near the fixed point for the singular part of the free energy (we now
use K and p to represent the whole set of parameters K, and p,)
diyr

fKy=A (5.1

> 0u(K. — K¥)

where ¢, is the left eigenvector of the eigenvalue problem

K dK, ap, ]
+ = .
; ‘Pa[aKp Z op, dKglk, =k A, (52
and with yt in (5.1) given by A = b7,
To shorten the notation, we write for the fixed point values again

[aKL(K; p(K))] - K
aKp K=K a,Bs

(5.3)
[RAED] gz, ere,
317: K=K*
and we will abbreviate the matrix (5.2) to T¥
T4 =K%+ Kitph. (5.4)
Finally, using Wegner’s scaling fields, defined by
u'= @o(Koe— KX+ -, (5.5)

one can write for the singular part of the free energy
fS(K) — AluT'd/yT' (5.6)

The variational equations are obtained by the condition that f(K) is stationary
with respect to all variations of the p,(K) of the set p(K). Thus, the variation
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problem is now given by
f(K)=g(K; p(K)+b~*f(K",

-d (5.7
0=g(K:p(K)+b™ 2 fu(K)K o,
while the location of the optimal fixed point can be determined by
fr=gi+b™ X 5K,
’ (5.8)

0=g¥+b ™D fEK.
B

Provided the second order derivatives of f(K) exist, one may determine the
derivatives p{, and fs from

fag = hag + b "Zf K% T,

(5.9)
0=k, +b~? 2 f5E,KETS,
where
b = g2+ S gtpt+ b S F3(Kh+ S KitpB).
' ’ (5.10)

ga,+2 gipt, +b7? 2 f*( m+2 K,.,p,u)

To determine the eigenvalues of the matrix T%;, one has to solve these
sn(n +1)+ m - n equations.

The procedure to investigate the impact of a singularity in the free energy on
the p,(K) is completely analogous to the one in the previous section. We split
f(K) and p,(K) in regular and singular parts

f(K) = f(K) + f(K),
p(K) = p/(K) + piK),

(5.1

and assume that p*(K) is small near K*; then one can expand g(K; p(K)),
K'(K;p(K)) and f(K) around the regular parts. Since this can be done
analogously to the expansion in section 4, we only give the result for f(K'):

fK) = f{(K) + f(K)
=K+ 2 fHKEpIK) +35; 2 Z fREKEK gpiK)pi(K)

diyr
+ 2 S FEKAPIKPIK) + A AT+ T 0 K2piK)| . (5.12)

(¥

In the lowest order we get only regular parts in equations which are the same
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as (5.7)
FI(K)=g(K; pi(K)+ b f(K'(K; pi(K))), (5.13)
0=g(K;pi(K)+b™ 2 fAK'(K; p (KWK,
We define B,
B, =g+ w[z; FEKEKRE+ D fi*K*pi(K)p i(K)] (5.14)
‘ y
and, to first order in the singularities, one obtains
diyr
AluT|*7=33 BpAK)PpIK)+ b A" +2 0. KEpUK)|
L] a,l
(5.15)

diyr—t

0= B,pi(K)+ b“’A%Z eoKE8 AT+ 3 0aKipi(K)
1 o N}

As in the simple case, we have to distinguish two cases, depending on
whether p3(K) or u" is the dominant term.

(i) All p$(K)<|u"|. Then the equations reduce to
b’dA diyy — 1,

(5.16)
S BpiK) = ~bA LS @K itlul|.
J [3
Using that d/yr=2—a, the first equation gives the normal connection be-
tween the largest eigenvalue and the specific heat component a. The set of m
equations for the p{(K) show that in general all pi(K) will be singular with
power |u"|'""®, provided that at least one term 2, ¢, K* # 0. However, this is
only consistent with the ansatz if @ <0 because otherwise at least for one of
the p3(K) would hold p3(K) > |u"|. If all terms =, ¢,K'* = 0 the p}(K) become
of order |u"|** by terms omitted in (5.11).
(i) Atleast for some terms p$(K) holds p$(K)> |u"|. Then the equations read

Al =13 B piK)pAK) + b A
L]

, diyt
D) %K.’:S‘.pf(K)l :
5.17)

dlyr—1

0= Z'B.,pi(KHb“’AyiE e KX
1 T a

>

Z' ; @sK #p3(K)

where X’ stands for a summation over all terms for which p(K)> |u"|. Since
neither of the equations can be fulfilled in consistency with the ansatz, we
conclude that this case does not occur. When all 2, ¢, K * =0 then the p}(K)
become of order |u"** and one is back to case (i).

In the one-parameter case, it turned out that if eqgs. (2.11) have any real
solutions, one will find two solutions for the derivative of the variational
parameter at the fixed point, and so two different eigenvalues, one with a <0
and one that would yield a > 0.
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TABLE I
p*=0.765983 K*=0279433 Q* = -0.006865
I p#=3.890460 I p%=—4.128780
p%=0937850 P%=—1.584011
I A, =1921030 II A, =2082217
A; = 0456844 A, =0.456844
a, = —0.123413 a; = 0.109856
F¥c=74779 Fix =-255.617
F¥o=24.353 F¥,=-179549
F#,=9.361 F#,=-23.313

To see what can happen in the more general case, we reconsider KHY’s?)
bound to the free energy of the square lattice (see section 3), where we have
two interaction parameters and one variational parameter. It turns out that in
this example the behavior is strikingly analogous to that of the one-parameter
case since again two solutions are found, with A;A,=b“ and so specific heat
exponents a of different sign (see table I). Note that the second solution gives
a wrong curvature for the free energy, and that the derivatives of p(K, Q) are
negative.

As in the case of the mean-field-like lower bound to the free energy, we can
vary b? which changes the solution of eqs. (5.8) and (5.9). When b¢ is
increased (see fig. 6), starting from b¢ =4, p* approaches the value p* =
0.757562 where g% = 0 and the first solution of eq. (5.9) yields an eigenvalue

_Qy=-112
~ -
04,2053

Qy =-0258
~—Q;=0205

Gq 220123413y ay-0 226
uZ:U 109856

NO SOLUTIONS

Fig 6 The optimal values of p at the fixed pont, for various values of b
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that approaches a finite value, A, = 1.95, such that a, > —«; the other solution
yields a slowly increasing a,, since also A, increases with b¢. When b? is
decreased, the specific heat exponents reach optimum values for b?=
3.990252, where a;=—0.123278 and a,= 0.109748. When b? is decreased
further, p* seems to go to infinity, while a; decreases more and more whereas
«; increases. There is another branch of solutions of (5.8). At this branch, eqs.
(5.9) have no real solutions for b > 3.162703. For b“ = 3.162703, there is just
one solution, A = b*? such that « = 0. For b% < 3.162703 again two solutions
are found, with a values of different sign. However, for these solutions the
second derivatives of the free energy are negative and therefore lead to an
unstable free energy.

6. Discussion

The analysis of the variational equations for the optimal parameter(s) p(K)
as a function of interaction constant(s) K leads to three possibilities.

(i) The optimal p(K) is basically not coupled to the singularities of the
energy f(K) at the fixed point K*. This may be due either to the fact that
p(K) is optimal at the boundary of its domain (e.g. p =) or due to a
fortuitous coincidence of two conditions [see (2.3)].

(ii) The optimal p(K) has a singularity at K* with exponent 1 — «, which is
induced by the free energy singularity with exponent 2— a. Only for a <0 a
consistent set of p(K) and f(K) can be obtained.

(iti) The optimal p(K) has several branches and a discontinuous phase
transition occurs between the branches.

The analysis has been restricted to a temperature-like singularity. For the
stronger magnetic-like singularity one would in general expect a similar
picture. However, in the ferromagnetic Ising model transition a symmetry in
the field causes the basic quantity H, (the renormalized field derivative with
respect to the variational parameter p) to vanish at the fixed point. This will
make the singularity in the variational parameter in the field direction of equal
strength as the free energy singularity. A more precise analysis is in progress
to study the possible complications of a second singular direction.

The findings of this paper throw a shadow on the variational method
because a basic ansatz of the renormalization approach, i.e. that of a regular
transformation, is violated. One usually tries to explain the free energy
singularities from a regular renormalization transformation. The induced
singularities in the variational paramater are mild as long as a <0 in the sense
that the leading singularity can still be obtained in the conventional way.
Corrections to scaling would however be affected by these singularities in
p(K). Although the variational technique leads to accurate free energies it is
of limited value for the determination of unknown but presumably strong
singularities.
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