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The differential real space renormalization method, recently introduced by Hilhorst et al., is 
applied to the linear Ising chain. It is shown that chains with spatially homogeneous as well as 
inhomogeneous or quenched random interactions can be treated. For the first two cases the free 

energy is computed by renormalization. The discussion includes also the case with a magnetic 
field, higher order interactions and the behavior of correlation functions under renormalization. 

1. Introduction 

In the renormalization theory of critical phenomena and phase transitions 
few examples exist which permit an exact and complete analysis. Recently 
Hilhorst et al.‘) (hereafter to be referred to as HSL) derived an exact 
renormalization scheme for the d = 2-dimensional Ising model. The renor- 
malization equations they derive have the differential form which is unusual 
in the real space renormalization theory. 

This 2-dimensional renormalization scheme has a number of restrictions. So 
far it has not been possible to discuss the magnetic field exponents, the 
influence of other interactions than the nearest neighbor coupling, to set up a 
calculational scheme for the correlation functions or to treat random coup- 
lings. Therefore it seems worthwhile as an exploratory calculation to study 
these problems in a lower dimension d = 1, thus providing further insight in 

this new renormalization scheme, although all the results for the one-dimen- 
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sional chain of this paper can be derived (often more easily) by other 
methods. 

It turns out that for d = 1 an extra degree of freedom appears in the way a 
differential form of renormalization equations can be formulated. In section 2 
we start out with this general approach and use this freedom to simplify the 
renormalization transformation in the case of spatially homogeneous hamil- 
tonians (which is not possible for d = 2). The transformation we get applies to 
inhomogeneous hamiltonians as well. We also discuss the critical properties 
of the system for other allowed choices of the renormalization trans- 
formation. 

In section 3 we calculate the free energy of a chain with arbitrary spatially 
inhomogeneous nearest-neighbor interactions. In section 4 we introduce the 
magnetic field and determine the flow pattern for the renormalization of 
systems with spatially homogeneous nearest-neighbor interactions in a mag- 
netic field. We consider the chain with nearest neighbor and next nearest 
neighbor interactions in section 5. 

In section 6 we show that the usual scheme to deal with correlation 
functions fails and we present a different method. 

In section 7 we treat the random ferromagnet and the spin glass and we 
close the paper with a discussion of the results. 

2. The transformation 

In the renormalization group approach a map is constructed from a hamil- 
tonian X(s) of N spins to a new X’(s’) with lesser, say N’, spins, such that X 
and x’ lead to essentially the same free energy. In the paper of HSL’) this is 
achieved by the set of equations 

e%(S) = T,.’ e&(S’.S), (2.la) 

e”f’“” = Tr e x&‘.S). (2.lb) 

Tr(Tr’) stands for a summation through all the 2N(2N’) configurations of the 
N(N’) Ising spins. In our case the N spins are located on a chain % and the 
N’ = N - 1 new spins on a chain +A” of the same length L and thus with a 
larger lattice distance a’ 2 a(1 + a/L) when a is the lattice distance of c& and 
a/L is small (see fig. 1). 

The coupling hamiltonian %‘Js’, s) relates the spins of both systems and will 
be chosen as 

Xc(s’, s) = 7 (p+ (Y) s(X0) + p- (” + : + “) s(X0 + a)] s’(X). 

(2.2) 
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Fig. 1. The chains % (circles, coordinates X0) and V’ (crosses, coordinates X). (& and W are 
coupled by p+ and p-. 

Here X,, is a site of chain %’ and X a site of W related by (2.3), s(X,J the spin 
at site X0 etc. and pf are coupling parameters which may vary in space and 
are given the coordinate corresponding to the middle of the two sites which 
they couple. The sum in (2.2) runs though all sites in the chain %‘, the points 
X,, and X coupled by p+ being related by 

( 
x,=x-(!+X/L)a 
x = Xo+(J+XJL)a’ (2.3) 

ignoring terms of order (a/L)*. The coordinate X runs from -L/2 to L/2. 
The form (2.2) is a straightforward specialization to d = 1 of the %$(s’, s) 

proposed by HSL. Here too we should think of the p*(X) as slowly varying in 
space, in a way to be specified later, and fulfilling the boundary conditions 

p+(-L/2) = co, p-(L/2) = 00, (2.4) 

which express that the spins at the endpoints of %’ and V’ are parallel. By 
taking p* positive, we confine ourselves to the ferromagnetic chain; the 
antiferromagnetic case will be discussed at the end of this section. 

The structure of (2.1) is extremely simple for the choice (2.2) of XC since 
the sums of new and old spins factorize. The results are expressions for X(s) 
and W(s’) of the form 

X(s) = 
c 

K(X, + a/2)s(Xo)s(Xo + a) + G, (2Sa) 
0 

%“(s’) = 2 K’(X + u/2)s’(X)s’(X + a) + G’. 
X 

(2Sb) 

The K, G, K’ and G’ are functions of p* which can be presented conveniently 
by introducing the new variables 

x(x) = tgh K(X), x’(x) = tgh K’(X), 

q+(x) = tgh p+(X), q-(x) = tgh p-(X). 
(2.6) 
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Here we have introduced the scaled coordinate x = X/L. After some algebra 
we find from transformation (2.2), using (2.3) 

x(x) = cp’(x +(x - &2L)cp(x + (x + &J/2L), (2.7a) 

x’(x) = cp’(x - (x - &/2L)cp_(x - (x + &/2L). (2.7b) 

The expressions for G and G’ are given in the next section. We are interested 
in the infinite chain, i.e. in the limit a/L-O. To zeroth and first order in a/L 

we obtain from (2.7) 

x(x) = cp’(x)cp-(x), (2.8a) 

8x(x) = x’(x) - x(x) = (a/L){;cp-(x)V~+(x) - ~cp+(x)vcp-(x) - XVX(X)}. 
(2.8b) 

(2.8a) yields for given x(x) a restriction on the possible choices q’(x), 
whereas (2.8b) leads to the flow equation for x by putting a/L = 6t and writing 
X(X, t) as the value of the interaction constant x at ‘time’ t: 

x(x, r) = v)+(x, t)cp-(x, r), (2.9a) 

dx(x, t) I 
- = I{(p_(X, t)Vcp’(x, t) - 47+(x, C)V4p_(X, f)} - xV/y(x, t). 

at 
(2.9b) 

In view of (2.4) the cpf fulfil the boundary conditions 

cp+(-;, t) = 1, cp-& t) = 1. (2.10) 

Before we explore the full implication of (2.9) we investigate under what 
condition we can derive a renormalization equation for a spatially in- 
dependent x(x, t). As (2.9b) may be written as 

v = 9 {V ln(cp+(x, t)/p-(x, t))} - xVx(x, t), (2.11) 

we see that spatial independence of x requires In (P+/cJ- to be linear in x. 
Together with the boundary conditions (2.10) and (2.9a) we then obtain 

(P+(x, t) = [Xwl”+“2, (2.12a) 

q-(x, t) = [x(t)]-“+“*, (2.12b) 

and the renormalization equation 

q = x(t) ln(x’(t)). 

The solution of (2.13) is 

x(t) = [x(O)l”‘. (2.14) 
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We will discuss (2.13) and (2.14) after generalizing the discussion to the chain 
with inhomogeneous interactions. Returning to this more general case we use 
the freedom of choice for cpf by writing 

cp’(x t) ) = [x(x. tp). 
cp-(x, t) 

(2.15) 

We refrain from taking a(x) ‘time’ dependent, which means that a(x) 
remains the same along the renormalization trajectory, as we see no purpose 
for the freedom to allow for a ‘time’ dependence of cu(x). From (2.9a) and 
(2.15), we find for cp* 

q++(x, t) = [x(x, t)]a(x)+1’2, q-(x, t) = [/y(x, t)p)+“*. (2.16) 

In order that cp* fulfil boundary conditions (2.10) and to prevent rp’ from 
exceeding 1, a(x) has to obey 

a(-;) = -$, a(i) = 4, (2.17a) 

-; S a.(x) 6 ;. (2.17b) 

The representation (2.16) has the advantage that cp++ 1 when x+ I, as is 
required by (2.9a), and the fact that x, cp+ are bounded by 1. 

Inserting (2.15) into (2.11) and introducing u(x, t) = -In x(x, t) we obtain 

wx, t) ~ = u(x, t)Vcu(x) +(a(x) - x)Vu(x, t). 
at 

The form (2.18) is particularly suited to discuss the behavior near the zero 
temperature fixed point u* = 0 (or x* = 1, K* = m), as the equation is already 
linear in the deviation from the fixed point. Note that U* = 0 is a fixed point of 
(2.18) independent of a(x). 

One observes that for CX(X) = x we recover the generalization of (2.13) to 
the inhomogeneous case 

wx, t) ___ = u(x, t), 
at 

or equivalently 

Jx(x, t) ---= 
at x(x, t) In x(4 0. (2.19b) 

The eigenvalue equation for linear deviations t(x) from the fixed points 
x* = 1 and x* = 0 (the infinite temperature fixed point) has the form 

~56) = &)[l+ In x*1 (2.20) 

and one finds that due to the local character of (2.19) (no gradient terms) the 
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eigenvalues are infinitely degenerate and that the eigenfunctions are local. In 
the infinite temperature fixed point x* = 0, y = --03 and for the zero tem- 
perature fixed point x* = 1, y = 1. This fixed point may be seen as the critical 
fixed point and leads to the correct*) correlation length exponent v = y-’ = 1. 

For general (u(x) the eigenvalue equation corresponding to (2.18) reads 

yu(x) = U(X)VCX(X) + [(u(x) - xlVu(x), 

u(x) can be expressed in terms of a(x) as 

provided that Q(X) + x. (The case (Y(X) = x was treated previously). The 

eigenvalues y are determined by the question whether u(x) remains accept- 
able at the singular points of the integral which are located at the solutions of 
the equation a(x) = x, which has at least two solutions at x = ?i on the basis 
of the boundary condition (2.17a). 

We now discuss three typical curves for a(x) shown in fig. 2a. 
i) For curve 1 we have V(Y(-t) < 1~ Vat& Then 

-for y > Va($ one finds u(i) = 0 and u(-f) = CC or x(i) = 1 and x(-i) = 0. 
Thus the curve of x(x) behaves like curve 1 in fig. 2b, 

-for VCY-i) < y < Vat;) we find by the same considerations a curve of 
type 2 in fig. 2b for x(x), 

-for y < Vcu(-i) the curve of type 3 in fig. 2b results for x(x). 
ii) For curve 2 of fig. 2a one has Vat;) < 1 < Va(-i) and the conclusions are 

-for y > Vcu(-i) curve 2 in fig. 2b for x(x), 
-for V&(i) < y < Va(-i) curve 2 in fig. 2b for x(x), 
-for y <Va(i) curve 1 in fig. 2b for x(x). 

In all these cases u diverges in at least one point, thus u(x) cannot be 
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Fig. 2 a) Typical types of behavior for the function a(x) fulfilling conditions (2.17). b) Qualitative 
sketch of the eigenfunctions of the transformation when a(x) f x. 
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considered as a small deviation from the fixed point U* = 0. In fact one sees 
from fig. 2b that at least at one of the endpoints the thermodynamic state is 
described by an infinite temperature rather than a zero temperature. 

iii) When (w(x) is of type 3 in fig. 2a we have an extra singularity in the 
integral (2.22) and the conclusion is again that u(x) diverges at least at 
one point either at the intersection or at the boundary. 

The conclusion is that no choice of (Y(X) other than a(x) = x leads to a 
satisfactory eigenvalue picture. 

Although we have confined ourselves so far to the ferromagnetic case 
(K > 0 and so x > 0), the antiferromagnetic chain (K < 0, x < 0) can be treated 
equally well: eqs. (2.9) show that for x ~0 one has to take one of the 
couplings, say p-(cp-), negative. The analysis of this case can then be carried 
out analogously to the ferromagnetic case. Note that for p- < 0 the boundary 
condition for p- reads p-(L/2) = --03 (compare (2.4)), which expresses that the 
right endspins are antiparallel. 

Finally we note a curious feature: since at every renormalization step the 
number of spins is reduced by 1 and 6t = a/L, so that the number of spins 
drops exponentially with ‘time’, we have reduced the number of degrees of 
freedom by a factor of two at ‘time’ In 2. According to (2.14), for a homo- 
geneous chain this corresponds to x(ln 2) = x’(O). By performing a decimation, 
we reduce the number of degrees of freedom by the same factor, and find that 
also in that case x transforms into x2 (see ref. 2). Thus our transformation is 
the ‘interpolation’ of decimation. 

3. The free energy 

In this section we compute the free energy for an arbitrary inhomogeneous 
distribution of the nearest neighbor interaction along the lines given by HSL. 
However, in the d = 2 case one cannot calculate the free energy explicitly, as 
an explicit solution like (2.19) of the flow equation is lacking. 

In order to prepare the ground for the free energy calculation we discuss 
the spin independent contribution G and G’ to the hamiltonians in (2.5). 
Summing out a spin connected by a p+ and p- bond to two other spins yields 
a spin independent term 

g(p’, p-) = In 2 + f In(cosh(p+ + p-) cosh(p+ - p-)). 

Thus the G and G’ can be written as (using (2.3)) 

(3.1) 

G=Tg(p+(X-(;+:);),p-(x+-i);)), (3.2a) 
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G’=sg(p+( O (L 2)2)’ ( O (L 2)2))- x+ x,+1 a p- x+ %?_A a (3.2b) 

These sums may be written as integrals up to errors involving the second 
derivative, which corresponds to terms of order (a/L)‘. Remembering that the 
density of points for the sums over X and X0 is L/a’ = (L/a)( I- a/L) and L/a, 
respectively, we have after introduction of our scaled variable x = X/L, 

(3.2b) 

where g(cp’, cp-) is the transcript of (3.1) in the cp* variables introduced in (2.6) 

g(cp+, 4~) = In 2 + 1 In C 1 - (Cp’rp-Y 
(1 _ cp+2)(1 _ u,-2) I . (3.4) 

The free energy Nf[K(X)] of the hamiltonian x(s) (2Sa) is defined as 

e NfWWI+G = Tr e%~), 
(3.5) 

and similarly N’f[K’(X)] of X’(s’). From the definition (2.1) we have then the 
identity 

Nf[K(X)] + G = N’f[K’(X)] + G’. (3.6) 

Comparing the leading orders yields the differential relation 

afLK;; t)l = f[K(X, t)] - C[K(X, t)], (3.7) 

where C[K(X, t)] is the leading order of G’- G of which the transcript in the 
x, cp+ variables follows from (3.3) as 

l/2 

CL& t)l = 1 dxc(x(x, 0, xh 
-1/z 

with 

(3.8a) 

C(X(Xl t). x) = dcp’k I), cp-(x9 t)) + a?(cp+(x, t), cp-(xv f)) vcp+(x t)(x + ;) 

acp+ 3 

+ agb+k 0, CP-0, 0) vcp-(x 

w , t)(x _ II 
2 . (3.8b) 

According to (3.7) the free energy of a chain with a nearest neighbor 
interaction K,(x) (writing for convenience K. as a function of the scaled 
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coordinate) is given by 
m 

f[Kdx)l = 1 dr e-‘CMx, ~11 = f d7 e-’ 7 dxc(X(x, T), x). (3.9) 
0 0 -l/2 

We will work out this expression with the aid of the transformation (2.19). 
From direct computation, we know that the free energy will turn out to be 

l/2 

f[~o(x)l = I 
dx{ln 2 co& Ko(x)}. (3.10) 

-l/Z 

In order to show the equivalence of (3.9) and (3.10) we would like to invert 
the order of the integrations in (3.9). However, this is not simply possible 
because c(x(x), x) diverges at the boundaries, as is shown in fig. 3 for the case 
of a homogeneous interaction strength K = 0.2. To perform the ‘time’-integral, 
we have to remove the boundary singularities first. By working out (3.8b) with 
the aid of (3.4) and (2.19) one finds that c(x(x), x) may be written as 

d c(x(x), x) = In 2 + 1x(x) In2 x(x) - ln[x(x)-’ - x(x)1 
dx i In x(x) > 

+ VE(x(x), x), 

where 

E(x(x), x) = x ln[x(x)-’ - x(x)] - i(x + i) ln[x(x)-‘X+“2’- x(x)~+“~] 

- ;(x - $) ln[X(x)“-“2 - x(x)-(x-m)]_ 

L I 

I 2.0 - I 

I 

I 
I 

I 

1.8 - 
I 
I 

I I 
I I 
I 
I I 

I I 

I .4- I 
I I 
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(3.11) 

(3.12) 

X- 

Fig. 3. The function c[K, x] for K = 0.2. There are logarithmic singularities for x = kf. 
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Notice that the second term in the right hand side of (3.12) causes the 
divergence of VE at the left boundary, while the third term gives the 
divergence at the right boundary; however, in performing the x-integration 
over c(x(x), x) in (3.1 l), the term E drops out since E vanishes for x = 54. 

Substituting the remaining terms of (3.11) into (3.9), inverting the order of 
the integrations and using x(x, t) from (2.19) as integration variable finally 

yields 
l/2 x(x)=0 

f[K,(x)l = In 2 + dx In x0(x) ln(x(x)-’ - dx)) 
2 ln x(x) 

-l/2 x(x)=x&) 

l/2 l/2 

=ln2-i 1 dx ln(1 - J&X)) = 1 dx ln(2 cash G(x)}, 
-l/Z -l/2 

in agreement with (3.10). 

(3.13) 

We remark that the starting formulae (3.8) and (3.9) suggest that only the 
free energy of the whole chain can be obtained, as c is x-dependent even in 
the case of a spatially independent x. The expression (3.11) shows however 
that the explicit x-dependence of c is contained in the divergence term VE, 
with E vanishing at the boundary. Leaving out VE in the expression for c 
yields essentially a local relation for the free energy. 

4. The Ising chain in a magnetic field 

In this section we treat the case of a homogeneous Ising chain in a 
homogeneous magnetic field, i.e. a system with hamiltonian 

x(s) = c Ks(Xo)s(Xo+ a) + c Hs(Xo) + G. 
Xl X0 

(4.1) 

The extension to inhomogeneous systems can in principle be treated but leads 
to rather complicated (and unsolved) formulae. 

The problem then is to find a %Js’, s) representing X(s), given by (4.1), and 
yielding a renormalized xl(s’) which differs only infinitesimally from Z(s). 
We show that the following choice %‘Js’, s) is satisfactory 

x,(s’,s)=g [p+(V) s(Xo)+p_ (X+?+a) sWo+a)] s’(X) 

+ 2 h(xo~swo) + 7 eoSW)~ 
X0 

(4.2) 

where X0 and X are again related by (2.3). For the difference %‘(s’) - X(s) to 
be of the order of a/L, one has to impose the restriction that the difference 
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between h and h’ should at most be of order a/L. Therefore we define 

c(X) = h(X) + u(X)a/L. (4.3) 

Since we will not discuss the free energy in this section, we leave the constant 
terms of the hamiltonian out of consideration. For K and If we find from 
(2.la) 

+u- p+ 
( ( 

X+X0-2a 
2 > ( ,P- 

X+X,-a 
2 ),6(X-a)), 

(4.4a) 

(4.4b) 

where 

(4Sa) T(p’,p-,h)=aln 
C 

cosh(p++p-+ h)cosh(-p+-p-+ h) 
I cosh(p+-p-+h)cosh(-p++p-+h) ’ 

U’(p’, p-, h) = t In 
C 

cosh(p++p-+h)cosh(p+-p-+h) 
cosh(-p++p-+ h)cosh(-p+-p-+ h) I ’ 

(4.5b) 

UP’, P-, h) = U'W, P+, h). (4%) 

According to (4.4b) there are two extra contributions to the new field on a 
spin of %, one (U’) from summing out the spin that is coupled by a p+, the 
other (U-) of the spin coupled by a p-. We remark that since the left hand 
sides of eqs. (4.4a) and (4.4b) are independent of X, these equations in fact 
impose two conditions which p+, p- and h have to fulfil, reading 

T+Vp+ + T-VP- + T,,Vh = 0, (4.6a) 

(l+ U:+ U,)Vh+(U:+ U;)Vp++(U’+ UI)Vp-=0, (4.6b) 

where we have used the abbreviations 

T 
+ 

= aT(p+,p-7 W, 
3P’ 

T_ = aW’+, p-h), etc 

aP- 
(4.7) 

For the interaction constants of X’(s’) one finds from (2.lb) 

K’= T(p+(~),p-(X+~-a),h(xo)), 

~Q~x)+u+(p+(~),p-(X+~-a),h(X,)) 

X+Xo+2a X+X,+a 
2 2 ), h(Xo+ a)). 

(4.8a) 

(4.8b) 
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By going over onto the scaled variables, using the relation between X0 and X 
and making a Taylor expansion in powers of a/L, we find from (4.4) and (4.8) 
the following set of transformation equations 

K = T(P+(x), P_(X), h(x)), (4.9a) 

H = h(x) + u+(P+(x), F(x), h(x)) + UP+(x), P-h), h(x)), (4.9b) 

dK 
dr = +T+Vp+ - ;T_Vp- - T,,(xVh + v), 

F=(l-U:-Uh)(xVh+u)+((l,-Ub)Vh 

+ ;(3U; - v:)vp+ - &3LP - Uz)vp-. (4.9d) 

At first sight the presence of a term in eqs. (4.9~) and (4.9d) containing x 
explicitly, might seem somewhat strange since we are dealing with homo- 
geneous interactions. It is caused by the fact that 21 relates the interpolated 
fields h and h’ taken at the same place, while out of the centre the spins of %’ 
are shifted with respect to the middle of the spins of %. 

As in the previous section, pi and p- are subject to boundary conditions 
(2.4). For the field-like terms h and u there are no a priori boundary 
conditions, since they do not couple the two chains directly. 

A strategy to solve these equations could be to eliminate three of the 
variables, say p-, h and u, from eqs. (4.9). Then we are left with a differential 
equation for p+. We can consider the solutions of this equation as functions 
of dK/dt and dH/dt; then imposing the boundary conditions finally deter- 
mines the values of dK/dt and dH/dt. Instead of carrying out this program, 
we can use the boundary conditions immediately, since it turns out that v 
plays no role at the boundaries. To show this, we consider the left boundary, 
where p++ m; by Taylor expanding the functions T, U’ and U- in powers of 
e-2p+, it is easily shown that T,, and (I- Vi - Vi), the coefficients of (xVh + 
v) in eqs. (4.9~) and (4.9d) respectively, become of the order of ee4+. So, at 
the boundary u does not influence the transformation provided u does not 
diverge, and the leading terms in eqs. (4.9) only depend on h, p+ and p-. By 
eliminating them from these four equations, one finds that dK/dt and dH/dt 
are related by 

%+2tghHg=O. 

Although derived at the boundary, this relation will have to be fulfilled 
anywhere on the chain, since the interactions are homogeneous. 

It is important to note that the sign of p- is immaterial in the derivation of 
(4.10); since a negative p- corresponds to K < 0, (see the discussion at the 
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end of section 2), (4.10) is valid for the ferromagnetic as well as the 
antiferromagnetic chain. 

By introducing the variable I& = tgh 23, (4.10) can be written (as before, 
x = tgh K) 

1 d!k= -2 dx 
@Cl - 4L)U + $1 dt (I -x)(1 +X) dt’ 

(4.11) 

By eliminating the parameter t and integrating we find that the flow equations 
obey 

KY) = 
Cl- xl2 

A(l+~)~+(l-~)~' 

where A is a constant to be determined from the initial conditions. The flow 
pattern given by (4.12) is shown in fig. 4; although (4.12) does not yield the 
fixed points and the direction of the flow, we expect all the corners in fig. 4 to 
be fixed points. Since the x = 0 region will be attractive (no ordering for finite 
values of K and H), dxldt must vanish at the $-axis; then according to (4.11) 
d$/dt vanishes too, which means that the $-axis is a fixed line. (A similar type 
of flow pattern was found by Nelson and Fisher’) for a discrete trans- 
formation). 

To determine the magnetic exponent in the x = 1, I,+ = 0 and x = - 1, (c, = 0 
fixed points, we assume that dx/dt can be expanded in powers of $. However, 
because of symmetry between the H > 0 and H < 0 phases, dxldt cannot 
contain uneven powers in I,+. Consequently, we have dxldt = x In x -t S($2) 

I L 

4 

-l.D -.75 -.5 -.25 0 .25 .5 .75 1.0 

Fig. 4. The flowpattern according to (4.12). The points (1, 0), (1, l), (- 1,O) and (- 1,l) are fixed 
points and the #-axis is a fixed line. 
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(where we have used (2.13)). Substituting this result in (4.11) yields 

!g= q+ow2) (x+1), (4.13a) 

W 
dt= -II,+S(lc12) (x-+-l), (4.13b) 

corresponding with the relevant exponent yH = 1 in the ferromagnetic fixed 
point and an irrelevant exponent (yH = - 1) in the antiferromagnetic fixed 
point. This was also found by Nelson and Fisher’). 

As we see from fig. 4, the flow lines come out of the x = - 1, 4 = 1 
(K = -CQ, H = w) fixed point horizontally. This means that the expansion 
around the fixed point is of the form 

d(1 +x) 
-=B(l+x)(l-~)+.. .) dt 

3$++-g)‘+. . .) 

(4.14a) 

where B is some constant that can only be determined from the explicit 
solution of the transformation equations (4.9). Since there are no terms linear 
in the deviations from the fixed point, (4.14) shows that both the eigenvalues 
are marginal (yr = yH = 0); this expresses the competition between the 
antiparallel ordering (stimulated by K + --03) and parallel ordering (stimulated 

by I-Z +w). 
Finally, we derive a formal expression for the transformation equations. It 

was already stated that relation (4.10) must hold anywhere on the chain, since 
the interactions are homogeneous. This enables us to express dK/dt in terms 
of K, H, p’, p- and h only by eliminating the combination xVh + u and dH/dt 
from (4.9~) with the aid of (4.9d) and (4.10). One finds 

z = F+(p+, p-, h)Vp+ + F-(p+, p-, h)Vp- + Fh(p+, p-, h)Vh, (4.15) 

where 

F+(p+ p- h) = 1 T+(l - u;- ui)+ Th(3'%- u:) 
, 9 2 l-u;-iYh-2tghH.T,, ’ 

F-(p+ p- h)=_1T-(l-U;-Uh)+Th(3U+-UI) 
, , 2 l-U;-U,-2tghH.T,, ’ 

TdUh - U;) 
Fh(p+,p-,h)= l_ U;- Uh-2tghH. T,,’ 

(4.16a) 

(4.16b) 

(4.16~) 
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Because dK/dt is independent of x, we can write this as 

1/z 
dK 
ht= I 

dx[F+(p+, p-, h)Vp+ + F-Q+, p-, h)Vp- + Fh(p+,p-, h)Vh]. 
-I/2 

(4.17) 

Here, the first and second term of the integrand are equal, because 
F-(p+, p-, h) = -F+(p+, p-, h) and p-(x) = p+(-x) (in the case of a ferro- 
magnetic chain). Moreover, Fh(p+, p-, h) is an uneven function of x and this 
allows us to write the transformation equation as 

K = T(P’, p-, h), 

H = h + U’(p’, p-, h) + Wp’, p-, h), 

K h (0) 

dK 
ht = 2 

I 
dp+F+(p+, p-, h) +.2 

I 
dhFh(p+, P-, h), 

m H/2 

(4.18a) 

(4.18b) 

(4.18c) 

dH dK 
==-2tghHz. (4.18d) 

(we used the boundary condition p+(-i) = 00 which implies p’(i) = K and 
!I(-$ = H/2); h(0) follows from (4.18b) with p+(O) = p-(O)). In the first in- 
tegration of (4.18c), p- and h are supposed to be expressed in terms of p+ by 
means of the first two equations, while similarly p+ and p- are written in 
terms of h in the second integrand. 

We remark that in this formal expression p+, p- and h enter only as 
integration variables; one does not have to know their behavior on the chain 
to determine the transformation properties of K and H. 

5. Higher order interactions 

To investigate the possibility of treating chains with higher order inter- 
actions, we will first consider the chain with next-nearest-neighbor (n.n.n.) 
interactions. In order that transformation (2.1) generates this kind of inter- 
actions in the hamiltonians X(s) and X’(S), another coupling parameter has 
to be introduced. This suggests the configuration of fig. 5, where each spin of 
the new chain V” is coupled with three spins of Ce by couplings p+, p” and p-. 
Note that because of symmetry %” has two spins less than %. Therefore the 
relations between the coordinates X0 and X of spins of 5% and %” which are 
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I I I I I I 'X 
0 

1 I I I I I I I ’ x0 
-40 -30 -20 -a 0 a 20 30 40 

Fig. 5. The chains % (circles) and %” (crosses). V” has two spins less than Ce and is coupled to it 

by p+, p- and p”. 

coupled by a p” coupling, now read 

I x=x,+?, 
x0=x+ 

(5.1) 

Defining the coordinates of the coupling parameters in the same way as before, 
we can write the coupling hamiltonian as 

3tw,s)=~ [P+(x+~-u)s(xo-n)+pq~)s(xo) 

+p- ( X+X,+a 
2 > 

s(X0 + a) s’(X). 1 (5.2) 

A renormalization of a chain with homogeneous n.n. and n.n.n. interactions K 
and M respectively, would imply four constraints whereas there are only 
three degrees of freedom, p+, p” and p-. This is in general impossible and we 

are bound to suppose that at least one of the interactions is inhomogeneous. 
Since we do not want to make a specific choice in advance (either K or M 
homogeneous or none of them) we assume that both K and M are position- 
dependent. The transformation equations that can be derived from trans- 
formation (2.1) then read (as in the previous section, we leave the constant 
terms G and G’ out of consideration and go over onto the scaled coordinate) 

K(x) = V+(P+(X), pa(x), P-(X)) + V-(P+(X), P”(X), P-(X)), (5.3a) 

M(x) = V”(p+(x), pa(x), P-(X)), (5.3b) 

aK(x, t) -= 
at 

V;Vp+- V:Vp- + kVo’- Vo)Vp’- xVK, 

aM(x, t) 
at 

= Vo+Vp+ - V!Vp- - xVM. (5.3d) 
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where now 6t = 2alL, since %“’ has two spins less than %‘, and where 

V+(p+, p”. p-) = a In 
c 

cosh(p++p’+p-)cosh(-p++p’+p-) 
cosh(p+’ 1 

(5.4a) 

v%+, PO, p-1 = v+(PO, P+, P-)9 

v-(p+, p”,p-l = v+tp-9 PO, P’h 

(5.4b) 

(5.4c) 

In (5.3a) the n.n. interaction is the sum of two terms, since as fig. 5 shows, 
summing over one spin variable contributes to two n.n. interactions, except at 
the boundaries: the n.n. interaction at the left boundary of V is only given by 
V-, while the one of W’ is the sum of V+ and V-. Hence for the trans- 
formation to be infinitesimal, V+ has to be zero at the left boundaries, while 
V- and V” are not. According to (5.4a)-(5.4c) this requires p+(-4) = 03 and 
similarly p-(i) = 00, the boundary conditions we used already in section 2. For 
the pure Ising case (only n.n. interactions), these boundary conditions cannot 
be derived by a similar consideration, since then K and K’ always differ only 
infinitesimally if p+ and p- are slowly varying. However, the reason why we 
took these boundary conditions in section 2 too is not only to have a close 
analogy with this case, but also because they are in agreement with the 
intuitive idea that spins lying close to each other are coupled strongly. 

This relation between position on the chain and strength of the coupling 
does not seem to be valid in the centre of the chain, since for the configura- 
tion of fig. 5 this would suggest p’(O) = Q) implying M(0) = 0. 

As in the case of only n.n. interactions (eq. (2.9)), eqs. (5.3) describe a group 
of transformations, depending on the specific choice we make. For instance, 
the term xVK drops out when K is chosen homogeneous. A solution of the 
form (4.18) is now impossible, since always one of the two transformation 
equations will contain x explicitly. 

In confining ourselves to local hamiltonians of the form (5.2) one easily sees 
that the approach sketched above for n.n.n.-interactions cannot be general- 
ized to arbitrary higher order interactions. By introducing a fourth coupling, a 
third neighbor interaction and a four-spin interaction would be generated. So 
we would have as many coupling parameters as interactions, and renor- 
malization would in principle be possible. However, as soon as we introduce 
more coupling parameters we get more types of interaction couplings than 
parameters, and a closed set of renormalization equations cannot be obtained. 

Though we have not been able to solve the transformation equations for a 
specific choice, a simple approximation is possible for small p” and homo- 
geneous M. Expanding (5.3a) and (5.3b) in powers of p” yields 

K(x) = tgh(p+(x) + p-0)) + P”(X) + B(po3), (5.5a) 
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M=$ln 
[ 

cosh(p+(x) + p (x) + a(p~2). 

- I cosh(p ‘(xl - P-(X)) 
(5Sb) 

Thus, for small p”, A4 is independent of p” while K is of the order of p”; 

moreover, eq. (5.5b) is exactly the same as the equivalence of (2.9a) for the 
n.n. interaction in section 2. This is not surprising as for K = 0 in this case, 
the two chains both decouple into two chains with a n.n. interaction of 
strength M. This problem is solved in section 2, and by introducing XM = 
tgh M, the solutions are (compare (2.12) and (2.13)) 

dXM 
- = xM ln xM + o(po2), 
dt 

p’(x) = xxM+1’2 + S(p02), (5.6b) 

p-(x) = x$;;+l’2 + qpy, (5.6~) 

where, as before, (p+ = tgh p+ and rp- = tgh p-. 

In this approximation of small p”, which describes the behavior of two weakly 
coupled chains, eq. (5.5a) can be used to determine p” as a function of K(x). 
Substituting the result in (5.3a) and using (5.6) yields 

+ Cl+ XM) ln XM t&(x ln XM) 
a1 - XM) 1 

K(x 

9 

t) 

I VK(x 
9 

t) + o(K3) (5.7) 

According to (5.7), a homogeneous distribution will become inhomogeneous 
upon renormalization. However, in the neighborhood of the K = 0, M = m 

(XM = 1) fixed point, (5.7) simplifies to 

F = K(x, t), (5.8) 

corresponding to an exponent y = 1. This agrees with the prediction of Nelson 
and Fisher’), because they showed how the problem of the chain with n.n. and 
n.n.n. interactions can be translated into the one of the chain with n.n. 
interactions and magnetic field, implying the equivalence of this exponent and 
the magnetic exponent in the K = ~0, H = 0 fixed point of an Ising chain in a 

field. 

6. The correlation function 

In order to compute the spin-spin correlation function in this differential 
renormalization approach we can not use the usual formulae of the real space 
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renormalization method3) since in the derivation of those formulae the weight 
factor P(s’, s) is assumed to be independent of the hamiltonian, while the 
weight factor corresponding to (2.1) is 

P(s’, s) = exp[Y&(s’, s) - X(s)]. 

Owing to the explicit dependence of P(s’, s) on X(s), the method of ref. 3 
cannot be applied. 

In developing a somewhat different formalism, we take over the definition 
of constrained averages ( )s and ( ),, 

(6.1) 

while we denote by ( )n and ( )By” the usual averages with exp(X(s)) and 
exp(X’(s’)) as weight factor. For the constrained averages we have from (2.1) 
the identity 

(( Ma = (( M‘% (6.2) 

which will form the basis for our derivation of the equations for the cor- 
relation function. Several combinations of spins on ‘% and V’ can be inserted 
in (6.2) leading to the desired result. The fastest way employs a product 
s’(X)s(X, + la) of a spin on %’ and one on % which is about I lattice distances 
away. For the computation we need the basic ingredient 

(s’(x)), = Q’ (P’ (qq p- (” + 7’ “)) ~Wd 

+Q-(P+(qy’P-(x+~+~))s(x,+u), 

(s(X& = Q' (p’ (y), p- (” + F- “>> s'(X) 

+Q-(p+(y),p-(X+~-u))s'(X-u), 

where 

Q+(p+,p-)=~(tgh(p++p-)+tgh(p+-p-)), 

Q-(P+, p-1 = Q+W, P’). 

(6.3a) 

(6.3b) 

(6.4a) 

(6.4b) 

Then, application of (6.2) to the form s’(X)s(&+ a) yields 
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+Q- P+ ( ( x+x,+21u 
2 ) ( 

,p- 
X+X,+(21- 1)u 

2 )) 
x (s’(X)s’(X + (I - l)u& (6.5) 

The functional dependence on K(X) of the two-point correlation function and 
its dependence on the coordinates of the two spins simplifies if we assume 
that K(X) is a sufficiently smooth function. Indeed, if we assume to disregard 
derivatives of K(X) higher than the first and indicate by XC the centre point 
between the two spins, one easily realizes that one can put simply 

(s (xc-$)s (xc+~))x=~u;Km (6.6) 

where g(l; K) is the correlation function of two spins at distance 1 in a 
homogeneous system with interaction K. In (6.6), XC being the centre point, 
symmetry considerations allow us to exclude possible dependence on the 
gradient of K(X). With this convention, (6.5) can be written in the form (X, 
is defined by X, = (X0 + X + Ia)/*) 

Q’ (p+ (xm +),p- (X,,, -v)) g [k K (xm - (?))I 

+Q-(p+(X,,,-+-(x.-9)) 

xg[l-l;K(Xm-(X-:-u))] 

= Q' (P’ ( x_+$),p-(x,+V “))g [l:K (Xm+(y))] 

+Q-(p+(X,,,++),p-(X,+9)) 

x~[H;K(X.+(~-~-~))]. (6.7) 

If we now go over onto the scaled coordinates and use the variables x and cp+, 
by Taylor expanding, we find that the terms of order 1 drop out. Using the 
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(6.8a) 

(6.8b) 
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that for g’s transcript in the x variable 

Ml; x(.x)) _ agu; x(x)) ax(x) = *Cx) ** _&) agoi x(x)) 
at - ax at ax ’ 

Vg(f; /y(x)) = ag(f$x)) V/y(x), 

we find by comparing the terms of order a/L 

c Q+ ag(k X) 
ax 

+Q-ag(f-l;X) 
ax I x1*x 

+ Q+agu-w 
[ ax (X+~)+Q-ag(f;;;*+x-_b]vx 

+ [Q:Vp+f + Q’Vdf - l)lg(f; xl 

+ [Q;Vrp+f + QIVp-(f - l)]g(f - 1; x) = 0, (6.9) 

where we have omitted the spatial argument of the functions, since they are 
all to be evaluated at the same point. Furthermore we use the notation 

a:=$, QT=$$, etc. (6.10) 

Now, from (2.16) with a(x) =x, we have 

V@=kcp’ ]nX+tiVX]. 
[ X 

(6.11) 

By substituting this into eq. (6.9), we get an equation of the form 

D, + DzVx = 0, (6.12) 

where D1 and D2 are functions of x, x,g(f; ,y) and g(f - 1; x). Since the 
correlation functions cannot depend on V,Y, both DI and 4 have to be zero, 
and we find two equations for the correlation functions, which after rearrang- 

ing of some terms can be written as 

I 

*Q- adf - I; x) 

8X 
+ QTcp-(f - l)g(f; X) + QIq-(f - l)g(f - 1; x) = 0, (6.13a) 

xQ+ a&?(f; x) 

ax+ Qh+fg(f; x) + Q;cp+fg(f - 1; x) = 0. (6.13b) 

By substituting f + f + 1 in (6.13a) and working out the functions we finally 
arrive at the set of equations 

(1 _ x2) a& X) -+f[g(f+l;x)-g(f-l;x)]=O, 
ax 

(6.14a) 
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(1+ x2kQ; x) - XMl + 1; xl + g(f - 1; XII = 0. (6.14b) 

Note that x does not appear explicitly any more. One convinces oneself easily 
that both eqs. (6.14) are satisfied by the solution 

s(l; x) = [xl’. (6.15) 

It is interesting to remark that each of the two equations is powerful enough 
to lead to the solution (6.15). Eq. (6.14a) can easily be converted into a partial 
differential equation for the Fourier transform 2 of g, defined by 

&k; x) = 7 eeik’g(f; x). 

Using this we obtain from (6.14a) 

1 f(l-x2)$-sink-$-cask g(k;x)=O. 
1 

For small k (6.17) becomes 

f(l-x*)-&k-&l g’(k;x)=O. 
I 

(6.15) 

(6.17) 

(6.18) 

With simple dimensional considerations we can interpret (6.18) as expressing 
the fact that a change in g due to a change in the natural unit of length of the 
theory, a, can be compensated by a suitable change in the coupling constant 
and a resealing of g itself. 

We notice that (6.18) has the same formal structure of the equations one 
encounters for the correlation functions in the context of field theoretical 
renormalization group approaches. 

7. The random Ising chain 

In this section the coupling parameters in the hamiltonian (2.2) will be 
assumed independently random. As a consequence, the interactions in S’(s) 
and x’(s’) will also become independent random variables. This amounts to 
the realisation of a quenched disorder in the system. 

Random Ising chains of this kind have been already studied by Grinstein et 
al.‘), within the context of decimation transformations. 

The probability distributions W and W’ for the occurrence of interactions 
K and K’ in the chains % and V will be constructed from the probability 
distributions W+ and W- in the combined system, where W+ is the prob- 
ability distribution for the parameter p+ and W- for p-. Again we prefer to 
work with the variables x = tgh K and cpf = tgh pL. Now any combination of 
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Q+ and Q- leads t0 a x = Q+Q-. Restricting ourselves to spatially homo- 

geneous W and W’ we may write in analogy of (2.7a) 

W(x) = j dQ+ j dQ- W+(Q+, X + (X - &2/2L) 

-1 -1 

x w-(Q-, X’+ (X + ;)U/2L)S(X - Q+Q-), (7. la) 

W’(x) = j dQ+ j dQ- W+(Q+, X - (X - $2/2L) 

-1 -1 

x w-(Q-, X - (X + ;)U/2L)S(X - Q’Q-). (7.1 b) 

From (7.la-b) differential flow equations will be derived below for W, 

provided it satisfies certain conditions. These equations, which fully describe 
the “time” evolution of the probability distribution under renormalization, can 
remarkably enough be reduced to the basic form (2.13), already encountered 
in the study of pure systems. 

Without loss of generality we can write the probability distributions W and 
W’ in the form 

W(x) = Pa(x) + W>(X) + W<(X), (7.2a) 

W’(X) = P’S(X) + W\(x) + w:(x), (7.2b) 

where the functions with > and < subscripts are identically zero for x < 0 
and x > 0, respectively, and satisfy conditions of the type 

lim 
r+o+ I 

W,(x) dx = 0. (7.3) 
0 

The W+ and W- probability distributions will also be put in a form analogous 
to (7.2a-b), namely 

w’(Q*, X) = jI’(X)t?(Q’) + w:(Q’, X) + w:(Q’, X), (7.4) 

with the same meaning as above of > and < subscripts. 
This rewriting of the probability distribution functions is expedient in order 

to put the set (7.la-b) in algebraic form via the introduction of Laplace 
transforms. 

The last task is easily accomplished by expressing in terms of the new 
variables 

u = -In x, 

gf = -1n Q’, 
X, Q+ 2 0, (7Sa) 
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all the above functions with > subscripts, and in terms of 

u = -lnJxJ, 

uf = -lnlq’l, 
X, cpf =S 0, (7Sb) 

those with < subscripts. Thus, in these new variables, both > and < functions 
are defined and eventually different from 0 on the positive semi-axis. 

Introducing Laplace transforms for all these functions, hereafter denoted 
by w characters, (7.la-b) can be finally converted into 

I 

p=p+ x+(x-;)& +p- ( > ( x+(x+$&- > 
-p+ ( x+(x-i)& > ( p- x+(x+$& ) > , 

p’ = p+ ( x-(x-;& +p- > ( x-(x+;)& > 
-p+ ( x-(x-;)& 

> ( p- x-(x+;)& ) > 

where, for example 

m 

w,(z) = 
I 

du e-‘“W&(u)) dx(u)/du, 
0 

x being given by (7.5a) in terms of U. 

(7.6a) 

(7.6b) 

(7.7) 
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In the following we will always consider only real z arguments in the 
Laplace transforms. 

As far as (7.6a) is concerned, we notice that it is not independent of (7.6b). 
Indeed, for all distributions the p-parameters are connected with the z = 0 
components of the > and < transforms, as a consequence of normalization of 
total probabilities. The relations are 

i 

p + W>(O) + W<(O) = 1, 

p’(x) + w5(0, x) + w$(O, x) = 1. 
(7.8) 

Thus, according to (7.8), in the following we will not care about deriving the 
“time” evolution of p: this will follow automatically, once given those of w, 
and w<, which are obtainable from (7.6b). 

In deriving the last ones, let us first consider the simplified situation in 
which all the probability distributions (7.2) and (7.4) are different from zero, 
say, only for positive values of the variables. This amounts to put equal to 
zero all < transforms in (7.6b); so we are left with 

i 

W>(Z) = w: ( 2,x+(x -$g- > ( w; 2,x +(x+1)& > , 

w: = w: ( z,x-(x-i)& > ( w; 2,x-(x+;)& ) > 
(7.9) 

which has exactly the same structure as (2.7a-b). The formal identity with the 
pure system treatment is extended also to the boundary conditions, which in 
the present case, must be fixed as 

wl(z, -f> = 1, w;(z, +B = 1, (7.10a) 

or, in a more transparent form, 

W’(cp’, -4) = s(cp+ - l), W_(pO-, +$) = CY((p_ - 1). (7. lob) 

Those above are a natural generalization of the condition of the conditions 
adopted in section 2. Indeed, they guarantee a complete parallelism of the 
spins at the boundaries of % and V, like (2.10) in the pure system case. 

Eq. (7.9) and (7.10a-b) finally lead to the differential flow equation 

aw>G& t) 
at 

= w,(z, f) In w,(z, 0, (7.11) 

the possible fixed points being w:(z) = 0 (p* = 1) and w:(z) = 1 (p* = 0). The 
former one corresponds to W*(x) = S(x), whereas the latter implies W*(x) = 

8(x - l), and is the pure ferromagnetic zero-temperature fixed point. 
To get a qualitative picture of the flow pattern corresponding to (7.1 l), we 

can, for example, particularize it to the case of a two parameter distribution 
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of the form 

W(x) = PNX) + Cl- P)S(X - x0), x0 > 0, (7.12) 

which represents the most simple situation of dilution in an Ising ferromagnet. 
Substituting (7.12) in (7.11) we easily find 

$ [l - p(t)] = [l -p(t)] ln[l -p(t)], y = x0(0 ln x0(0, (7.13) 

whose flow lines in the plane (x0, 1 - p) are schematically reported in fig. 6a. 
We notice that the problem of the dilute Ising ferromagnet, in the T + 0 

(,y,-,+ 1) limit, becomes equivalent to the bond percolation problem, with bond 
occupation probability equal to (1 - p) 5). So the renormalization equation, 
derived for 1 - p above, is also appropriate for the probability in l-dimen- 
sional bond percolation. 

We can now consider the more general case of probability distributions not 
restricted to positive values. To this purpose it is useful to introduce sym- 
metric (S) and anti-symmetric (A) quantitites, defined, in terms of > and < 
transforms, according to the prescription symbolically given below 

S(A) = > + (-) <. (7.14) 

In the S- and A-quantities (7.6b) decouples completely, giving rise to the sets 

0 
0 .5 1 0 .5 1 

l-p -7 

Fig. 6 a) The flow pattern according to (7.13) for the dilute ferromagnet. The line ,y = 1 
corresponds to the percolation limit. b) The flow pattern according to (7.20) for a spin-glass 
distribution. The point (0.5, 1) is the zero temperature spin glass fixed point. 
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of equations 

i 

w&z)= w’s ( z,x+(x-j)& > ( wi z,x+(x+$)& , > 
w$(z) = w’s ( *,x-(x-$)& > ( ws z,x--(x+$)& , > 

i 

w,&)=w; ( *,x+(x-b& > ( WA z,x+(x+2& , > 
wk(z)= w; ( z,x-(x-3& > ( WA z,x-(x-i)& . > 

(7.15a) 

To treat (7.15a-b) in full generality, however, we now encounter a more 
complex situation in cases, in which wa(z) takes on both positive and negative 
values. Before discussing in more detail these problems, we first restrict 
ourselves to W functions corresponding to either wA(z) 2 0 or wA(z) =S 0 for 
all z. 

The first case, for example, corresponds to a situation in which ferro- 
magnetic interactions decisively predominate over antiferromagnetic ones. As 
can be seen immediately from (7.15b), it is possible to reproduce a positive 
definite wA(z) with wi(z, x) and w>(z, x) both 30 for all z. Furthermore one 
can convince oneself that the appropriate boundary conditions are 

wgz, -6 = 1, w&z, +j) = 1, 

wi(z, -$) = 1, WJZ, +$ = 1. 
(7.16) 

These are equivalent to (7.10a-b) and thus consistent with a predominantly 
ferromagnetic situation. It is also evident that (7.16) and (7.15a-b) lead to 
equations of the form (7.11) for both ws and WA, in this case. The conditions to 
be imposed when wa(z) c 0 for all z, will be 

wKz,-4)s 1, waz,+b= 1, 

wi(z, -4) = 1, wA(z, +;) = - 1, 
(7.17) 

where now we have assumed the quantity wA(z, x) to be negative for all z and 
X. 

The conditions (7.17) are consistent with wZ(z, -i) = 1 and w;(z, +i) = 1, the 
latter identity leading now to a complete antiparallelism of the spins at the 
right borders of V and V, as we expect it should be for antiferromagnetic 
situations. 

The resulting equation for WA now becomes 

awA(z, t) 
at 

= wA(z, t) h[- wA(z, t)]. (7.18) 
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whereas ws behaves as in the previous case. The equations for ws and wA in 
the two cases considered above lead to the expected zero temperature spin 
glass fixed point, with the correct stability properties’). This fixed point is 
given by w%(z) = 1, w:(z) = 0, which means W*(x) = $S(,y - 1) +$(x + 1). 
Also in this case it is interesting to study in detail the flows of particularly 
simple distributions, like that given by 

w(x)=~~(x-xo)+(l-7))~(x+xo), 0~77~1, 0~x0~1 (7.19) 

which is a typical Ising spin-glass distribution. For it one has wA(z) S 0, 
according to whether n S 9. We obtain very easily the following flow equations 
for 17 and x0: 

(77 - 41 ln(2q - 11, 77 > 4 
(n -t)ln(l-2n), 77 <j 

(7.20) 

dxo -= 
dt x0 In x0, 

whose corresponding flow lines are sketched in fig. 6b. 
In the more general case that wA(z) changes sign at zo, say 

wA(z) > 0 for z < zo, 

wA(z) < 0 for z > z0, 
(7.21) 

the equations (7.15) are still valid. Although we would be tempted to derive 
the flow equations in the same way as before, this is impossible. To see this, 
notice that because of symmetry in the middle of the chains one must have 

Iw%z,O)I = I ;4( ,O I; h 9 f w z ) t en rom the terms of order 1 in (7.15b) we have 

Iw%z, 0)l = Iwxz, 011 = lw4(z)l”2. (7.22) 

Now when wA(.z) vanishes linearly at zo. (7.22) shows that wi will become 
singular at z,-,. This however is not allowed since according to (7.14) and (7.7) 
the w5 are defined as the difference of the Laplace transforms (for real z) of 
positive definite and normalized functions. By their definition, the w+ can 
never become singular for positive real z, and so we have no acceptable w+ in 
the case (7.21). 

In order to understand this somewhat embarrassing situation it is illuminat- 
ing to make a comparison with a decimation transformation, that can always 
be constructed. The variables we used are also appropriate to describe this 
kind of transformation. As an example, notice that upon summing out every 
two out of three spins we get the renormalization transformation 

w%z) = ws(z)3, (7.23a) 
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wk(z) = Wa(zy. (7.23b) 

We remark that distributions for which wA(z) is either >O or <O for all z have 
fixed points wA(z) = & 1 (pure ferromagnetic and antiferromagnetic fixed 
points) and wA(z) = 0 (spin glass fixed point). Although the flow of dis- 
tributions of type (7.21) is well defined and has a fixed point wA(z) = 1 for z < z. 
and wA(z) = - 1 for z > zo, this fixed point lies outside the space of allowed 
functions, since a discontinuous Laplace transform is not allowed. This 
anomalous behavior is of the same type as the one we encounter with our 
infinitesimal transformation. 

8. Discussion 

We have analyzed the possible renormalization treatments of Ising spin 
systems on a linear chain and come to the conclusion that the form (2.19) is 
the only acceptable one in view of the zero temperature fixed point structure. 
This form can be characterized as interpolating the decimation transfor- 
mations. The same form is encountered in quenched random systems as well 
as the percolation problem although the physical interpretation of the variable is 
quite different (the Laplace transform of the probability distribution and the 
bond occupation probability, respectively). 

The method of derivation hopefully provides some clues for so far un- 
resolved problems in higher dimensions; of the possible extensions of our 
analysis we would like to mention the following. 

1) Other coupling constants in the coupled system, such as a magnetic field, 
which in contrast to a pair interaction are not symmetric in the two systems 
have to be introduced in pairs (e.g. h(Xo) and h(X)) which may be infinitesi- 
mally different. The apparant arbitrariness in the renormalization equations 
due to this infinitesimal difference is then removed again by the boundary 
conditions. A similar ambiguity appears in the two-dimensional case when one 
tries to introduce the magnetic field. 

2) The differential renormalization procedure employs in general spatially 
dependent interaction constants not necessarily for the original and renor- 
malized systems but anyway for the coupled system Hamiltonian xC(s’, S) 
which induces the transformation. In this context it seems that only the free 
energy of the whole system can be discussed although the system may be 
viewed as a set of locally thermodynamical systems. In two dimensions the 
solutions for the free energy requires so far a complete solution for the 
renormalization trajectory. In one dimension we managed to recast the 
formulae in such a way that the free energy can be obtained locally. 
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3) Exploration of the spatially inhomogeneous case leads to a set of two 
relations for the correlation function each of which is powerful enough to 
determine the correlation function. The same technique can be used in two 
dimensions. When applied to the nearest neighbor correlation it yields also 
here sufficient information to determine the nearest neighbor correlation 
function. 

Acknowledgements 

The authors are indebted to Prof. M. Schick and Dr. H.J. Hilhorst for 
numerous discussions and criticism during the work. A.L.S. acknowledges 

partial support from the A. Della Riccia Foundation. 

References 

1) H.J. Hilhorst, M. Schick and J.M.J. van Leeuwen, Phys. Rev. Lett. 40 (1978) 1605, and to be 

published. 
2) D.R. Nelson and M.E. Fisher, Ann. Phys. (N.Y.) 91 (1975) 226. 
3) Th. Niemeijer and J.M.J. van Leeuwen, in Phase Transitions and Critical Phenomena, C. 

Domb and MS. Green eds. (Academic Press, London, 1976), vol. 6. 

4) G. Grinstein, A.N. Berker, J. Chalupa and M. Wortis, Phys. Rev. Lett. 36 (1976) 1508. 

5) M. Plischke and D. Zobin, J. Phys. Cl0 (1977) 4571. 


