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Three basic issues concerning interface dynamics
in nonequilibrium pattern formation
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Abstract

In these lecture notes, we discuss at an elementary level three themes concerning interface dynamics that play a role in
pattern forming systems: (i) We briefly review three examples of systems in which the normal growth velocity is
proportional to the gradient of a bulk field which itself obeys a Laplace or diffusion type of equation (solidification,
viscous fingers and streamers), and then discuss why the Mullins—Sekerka instability is common to all such gradient
systems. (ii) Secondly, we discuss how underlying an effective interface or moving boundary description of systems with
smooth fronts or transition zones, is the assumption that the relaxation time of the appropriate order parameter field(s) in
the front region is much smaller than the time scale of the evolution of interfacial patterns. Using standard arguments we
illustrate that this is generally so for fronts that separate two (meta)stable phases: in such cases, the relaxation is typically
exponential, and the relaxation time in the usual models goes to zero in the limit in which the front width vanishes. (iii)
We finally summarize recent results that show that so-called “pulled” or “linear marginal stability” fronts which
propagate into unstable states have a very slow universal power-law relaxation. This slow relaxation makes the usual
“moving boundary” or “effective interface” approximation for problems with thin fronts, like streamers, impossible.
( 1998 Elsevier Science B.V. All rights reserved.
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0. Introduction

In this course, and in the two related lectures by Ebert and Brener on their work in [1,2], some
basic features of the dynamics of growing interfaces in systems which spontaneously form
nonequilibrium patterns will be discussed. The analysis of such growth patterns has been an active
field of research in the last decade. Moreover, the field is quite diverse, with examples coming from
various (sub)disciplines within physics, materials science, and even biology — combustion, convec-
tion, crystal growth, chemical waves in excitable media and the formation of Turing patterns,
dielectric breakdown, fracture, morphogenesis, etc. We therefore cannot hope to review the whole
field, but instead will content ourselves with addressing three rather basic topics which we consider
to be of rather broad interest, in that they appear (in disguise) in many areas of physics and in some
of the related fields. These three themes are explained below.
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Our first theme concerns the generality of interfacial growth problems in which the normal growth
velocity v

n
is proportional to the gradient +U of a bulk field U (v

n
&+U), and the associated long

wavelength instability of such interfaces. As we shall see, one important class of interfacial growth
problems with these properties is diffusion-limited growth: either the interface grows through the
accretion of material via diffusion through one of the adjacent bulk phases, or the growth of the
interface is limited by the speed through which, e.g., heat can be transported away from the interface
through diffusion. Since the diffusion current near the interface is proportional to the gradient of the
appropriate field in the bulk (a concentration field, the temperature, etc.), v

n
&+U in such growth

problems. But these are not the only possibilities of how one can have an interface velocity
proportional to +U. As we will discuss, in viscous fingering an air bubble displaces fluid between two
closely spaced plates; as the fluid velocity between the plates is proportional to the gradient of
a pressure field p, the fact that the air displaces all the fluid means that again at the interface v

n
&+p.

Likewise, for an ionization front the interface velocity is determined mostly by the drift velocity of
electrons in the electric field E"!+U, where now U is the electrical potential, and so again
v
n
&D+UD. As we shall see, all such interfacial growth problems where the bulk field itself obeys

a Laplace of diffusion equation, exhibit a long wavelength instability, the so-called Mullins—Sekerka
instability [3]. This instability lies at the origin of the formation of many nontrivial growth patterns,
and Brener and Ebert discussed examples of these at the school. Although this theme is not at all new,
it is nevertheless useful to discuss it as an introduction and to stress the generality — the same
Mullins—Sekerka instability plays a role in fractal growth processes like Diffusion Limited Aggrega-
tion [4]. The above issues are the subject of the first lecture and Section 1.

In physics, it is quite common — and often done intuitively without even stating this explicitly — to
switch back and forth between a formulation in terms of a mathematically sharp interface (an
infinitely thin surface or line at which the physical fields or their derivatives can show discontinui-
ties) and a formulation in terms of a continuous order parameter field which exhibits a smooth but
relatively thin transition zone or domain wall. E.g., we think of the interface between a solid and its
melt as a microscopically thin interface, whose width is of the order of a few atomic dimensions.
Accordingly, the formulation of the equations that govern the formation of growth patterns of
a solid which grows into an undercooled melt on much larger scales l

1!55%3/
have traditionally been

formulated in terms of a sharp interface or boundary. The equations, which will be discussed below,
are then the diffusion equation for the temperature in the bulk of the liquid and the solid, together
with boundary conditions at the interface. These interfacial boundary conditions are a kinematic
equation for the growth velocity of the interface in terms of the local interface temperature, and
a conservation equation for the heat. The latter expresses that the latent heat released at the
interface upon growth of the solid has to be transported away through diffusion into the liquid and
the solid. In other words, in an interfacial formulation or moving boundary approximation, the
appropriate equations for the bulk fields are introduced, but the way in which the order parameter
changes from one state to the other in the interfacial region, is not taken into account explicitly:1

1Note that if we consider a solid—liquid interface of a simple material so that the interface width is of atomic
dimensions, there can be microscopic aspects of the interface physics that have to be put in by hand in the interfacial
boundary conditions anyway, as they cannot really be treated properly in a continuum formulation. E.g., if the
solid—liquid interface is rough, a linear kinetic law in which the interface grows in proportion to the local undercooling is
appropriate. If the interface is faceted, however, a different boundary condition will have to be used.
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the physics at the interface is lumped into appropriate boundary conditions. Such an interface
formulation of the equations often expresses the physics quite well and most efficiently, and is often
the most convenient one for the analytical calculations which we will present later. For numerical
calculations, however, the existence of a sharp boundary or interface is a nuisance, as they force one
to introduce highly non-trivial interface tracking methods. Partly to avoid this complication,
several workers have introduced in the last few years different models, often referred to as
phase-field models [5,6], in which the transition from one phase or state to another one is described
by introducing a continuum equation for the appropriate order parameter. Instead of a sharp
interface, one then has a smooth but thin transition zone of width ¼, where the order parameter
changes from one (meta)stable state to another one. Numerically, such smooth interface models are
much easier to handle, since one can in principle apply standard numerical integration routines.2

While we mentioned above an example where one has (sometimes in a somewhat artificial
way) introduced continuum field equations to analyze a sharp interface problem, insight into
the dynamics of problems with a moving smooth but thin transition zone is often more
easily gained by going in the opposite direction, i.e., by viewing this zone as a mathematically
sharp interface or shock front. An example of this is found in combustion [7,8]. In premixed
flames, the reaction zone is usually quite small, and one speaks of flame sheets. Already
long ago, Landau (and independently Darrieus) considered the stability of planar flame
fronts by viewing them as a sharp interface [7,8]. In the last 20 years, much progress has been made
in the field of combustion by building on this idea of using an effective interface description of thin
flame sheets. Likewise, much of the progress on understanding chemical waves, spirals and other
patterns in reaction diffusion systems rests on the possibility to exploit similar ideas [9,10]. Other
examples from condensed matter physics: if the magnetic anisotropy is not too large, domain walls
in solids can have an appreciable width, but for many studies of magnetic domains of size much
larger than this width, we normally prefer to think of the walls as being infinitely thin [11]. Similar
considerations hold for domains in liquid crystals [11]. In studies of coarsening (the gradual
increase in the typical length scale after a quench of a binary fluid or alloy into the so-called
spinodal regime where demixing occurs), both smooth and sharp interface formulations are being
used [12—15].

At a summer school on statistical physics, it seems appropriate to note in passing that some of
the model equations which include the order parameter are very similar to those studied in
particular in the field of dynamic critical phenomena, such as model A,B,2, etc. in the classifica-
tion of Hohenberg and Halperin [16]. Here, however, we are not interested in the universal scaling
properties of an essentially homogeneous system near the critical point of a second-order phase
transition, but in many cases in the nonlinear nonequilibrium dynamics of interfaces between

2While the numerical code may be conceptually much more straightforward, the bottleneck with these methods is that
one now needs to have a small gridsize, so as to properly resolve the variations of the order parameter field on the scale
¼. At the same time, one usually wants to study pattern formation on a scale l

1!55%3/
<¼, so that many gridpoints are

needed. Hence, computer power becomes the limiting factor. Nevertheless, numerical simulations of dendrites using such
phase-field models nowadays appear to present the best way to test analytical predictions and to compare with
experimental data [6].
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a metastable and a stable state. This corresponds to the situation near a first-order transition.3
When we consider in Section 3 fronts which propagate into an unstable state, this can be viewed as
the interfacial analogue of the behavior when we quench a system through a second-order phase
transition, especially within a mean-field picture,4 where fluctuations are not important.5

Finally, we also stress that while thermal fluctuations are essential to second-order phase
transition, they can often be neglected in pattern forming systems, since the typical length and
energy scales of interest in pattern forming systems are normally very large (see Section VI.D of
[17] for further discussion of this point).

A word about nomenclature. For many physicists, front, domain wall and reaction zone are
words that have the connotation of describing smooth transition zones of finite thickness,6 while
the word interface is being used for a surface whose thickness is so small that it can be treated as
a mathematically sharp boundary of zero thickness. The approximation in which the interface
thickness is taken to zero is sometimes referred to as a moving boundary approximation. Since
neither this concept nor the meaning of the word “interface” is universally accepted, we will
sometimes use effective interface description or effective interface approximation as an alternative to
“moving boundary approximation” to denote a description of a front or transition zone by a sharp
interface with appropriate boundary conditions.

Of course, switching back and forth between a sharp interface formulation or one with a smooth
continuous order parameter field is only possible if the latter reduces to the first in the limit in
which the interface thickness ¼P0 (the interface width is illustrated in Fig. 8 below). Indeed, it is
possible to derive an effective interface description systematically by performing an expansion of
the equations in powers of ¼ (technically, this is done using singular perturbation theory or
matched asymptotic expansions [5,6,21—23]). In such an analysis, the wall or front is treated as
a sharp interface when viewed on the “outer” pattern forming length scale l

1!55%3/
<¼, and the

3This will be illustrated, e.g., by the Landau free energy f in Fig. 4b below. Here the states /"0 and /"/
s
both

correspond to minima of the free energy density f. In Section 2.1 fronts between these two (meta)stable states are
discussed.

4 In the mean-field picture, the Landau free energy has below ¹
#
one (unstable) maximum at /"0 and one minimum

at some /"/
s
O0. Fronts propagating into an unstable state precisely correspond to fronts between these two states.

Compare Fig. 9b, where »"!f.
5 It is actually rather exceptional to have propagating interfaces when we quench a system through the transition

temperature of a second-order phase transition, because the fluctuations make it normally impossible to keep the system
in the phase which has become unstable long enough that propagating interfaces can develop. Nevertheless, there is one
example of a thermodynamic system in which the properties of propagating interfaces were used to probe the order of the
phase transition: for the nematic—smectic-A transition, which was predicted to be always weakly first order, the dynamics
of moving interfaces was used to probe experimentally [18] the order of the transition close to the point which earlier had
been associated with a tricritical point (the point where a second-order transition becomes a first-order transition). These
dynamical interface measurements confirmed that the transition was always weakly first order [18]. Note finally that in
pattern forming systems, the fluctuations are often small enough (see the remarks about this in the next paragraph of the
main text) that fronts propagating into unstable states can be prepared more easily. For an example of such fronts in the
Rayleigh—Benard instability, see [19].

6And even this is not true: in adsorbed monolayers walls usually have only a microscopic thickness; e.g., light and
heavy walls are concepts that have been introduced to distinguish walls which differ in the atomic packing in one row; see,
e.g., [20].
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dynamics of the front or wall on the “inner” scale ¼ emerges in the form of one or more boundary
conditions for this interface. E.g., one boundary condition can be a simple expression for the
normal velocity of the interface in terms of the local values of the slowly varying outer fields, like
the temperature.

This brings us to the second theme and lecture of this course: for the adiabatic decoupling of slow
and fast variables underlying an effective interface description, an exponential relaxation of the front
structure and velocity is necessary. The point is that an interfacial description — mapping a smooth
continuum model onto one with a sharp interface for the analysis of patterns on a length scale
l
1!55%3/

<¼ — is only possible if we can make an adiabatic decoupling. In intuitive terms, this means
that if we “freeze” the slowly varying outer fields (temperature, pressure, etc.) at their instantaneous
values and perturb the front profile on the scale ¼ by some amount, then the front profile and
speed should relax as exp(!t/q

&30/5
) to some asymptotic shape and value which are given in terms

of the “frozen” outer field. If, moreover, the inner front relaxation time q
&30/5

vanishes as ¼P0 (e.g.,
in the model we will discuss q

&30/5
&¼), then indeed in the limit ¼P0 the relaxation of the order

parameter dynamics within the front region decouples completely from the slow time and length
scale variation of the outer fields, as in the limit ¼P0 both the length and the time scale become
more and more separated. The adiabatic decoupling then implies that for ¼;l

1!55%3/
the front

follows essentially instantaneously the slow variation of the outer fields in the region near the front.
Accordingly, in the interfacial limit ¼P0 the front dynamics on the inner scale ¼ then translates
into boundary conditions that are local in time and space at the interface. As we shall illustrate, for
fronts between two (meta)stable states, the separation of both length and time scale as ¼P0 is
normally the case, and this justifies an interfacial description.

Of course, stated this way, the above point may strike you as trivial, as it is a common feature of
problems in which fast variables can be eliminated [24]. However, it is an observation that we have
hardly ever seen stressed or even discussed at all in the literature, and its importance is illustrated
by our third theme: fronts propagating into an unstable state may show a separation of spatial scales in
the limit ¼P0, but need not show a separation of time scales in this limit. Our reason for the last
statement is that, as we will discuss, a wide class of fronts which propagate into an unstable state
(the interfacial analogue of the situation near a second-order phase transition) exhibits slow
power-law relaxation (&1/t). This certainly calls the possibility of an effective interface formula-
tion with boundary conditions which are local in space and time into question, but the conse-
quences of this power-law relaxation still remain to be fully explored.

The connection between the issue of the front relaxation and the issue of the separation of time
scales necessary for an effective interface description is still a subject of ongoing research of Ebert
and myself. We will in these lecture notes only give an introduction to the background of this issue
and to the ideas underlying the usual approaches, leaving the real analysis and a full discussion of
this problem to our future publications [25].

That our third theme is not a formal esotheric issue, is illustrated by the fact that it grew out of
our attempt to develop an interfacial description for streamers. As has been discussed by Ebert in
her seminar, streamers are examples of a nonequilibrium pattern forming phenomenon. They
consist of a very sharp fronts (¼+10lm) which shows patterns with a size l

1!55%3/
of order 1 mm

[32]. However, a streamer front turns out to be an example of a front propagating into an unstable
state [1], and we have found through bitter experience that the standard methods to arrive at an
interfacial approximation break down, and that the slow power-law relaxation lies at the heart of
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this. Apart from this, the power-law relaxation is of interest in its own right, especially at a summer
school on Fundamental Problems in Statistical Mechanics, as its universality is reminiscent of the
universal behavior near a second order critical point in the theory of phase transitions — the
common origin of both is in fact the universality of the flow near the asymptotic fixed point.

1. Gradient-driven growth problems and the Mullins—Sekerka instability

1.1. The dendritic growth equations

When we undercool a pure liquid below the melting temperature, the liquid will not solidify
immediately. This is because below the melting temperature the liquid is only metastable. More-
over, the solid—liquid transition is usually strongly first order, so that the nucleation rate for the
solid phase to form through nucleation at small to moderate undercoolings is low. If, however, we
bring a solid nucleus into the melt, the solid will start to grow immediately at its interfaces. Initially
the shape of the solid germ remains rather smooth (we assume the interface to be rough, not faceted
[29]), but once it has grown sufficiently large, it does not stay rounded (like an ice cube melting in
a softdrink), but instead branch-type structures grow out. An example of such a so-called dendrite
is shown in Fig. 1a. The basic instability underlying the formation of these dendrites is the
Mullins—Sekerka instability discussed below, and which in this case is associated with the build-up
near the interface of a diffusion boundary layer in the temperature. This in turn is due to the fact
that while the solid grows, latent heat is released at the interface. In fact, the amount of heat
released is normally so large that most of the heat has to diffuse away, in order to prevent the local
temperature to come above the melting temperature ¹

M
. E.g., for water the latent heat released

when a certain volume solidifies is enough to heat up that same volume by about 80°C. So, since the
undercooling is normally just a few degrees, most of the latent heat has to diffuse away in order for
the temperature not to exceed ¹

M
.

The basic equations that model this physics are the diffusion equation for the temperature in the
liquid and the solid,

­¹/­t"D+ 2¹ , (1)

together with the boundary conditions at the interface

¸/c v
n
"!D[(+¹

l)
n,*/5

!(+¹4)
n,*/5

] , (2)

v
n
"(1/b)[¹

M
(1!(p/¸)i)!¹*/5] . (3)

Eq. (1) is just the normal heat diffusion equation for the temperature; it holds both in the liquid
(¹"¹

l) and in the solid (¹"¹4). At the interface, the temperature is continuous, so there
¹

l
"¹4"¹*/5. In Eq. (1), we have for simplicity taken the diffusion coefficient D in both phases

equal. The first boundary condition (2) expresses the heat conservation at the interface: v
n

is the
normal growth velocity of the interface, so ¸v

n
is the amount of heat released at the surface per unit

time (¸ is the latent heat per unit volume). If we consider an infinitesimal “pillbox” at the interface,
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Fig. 1. Examples of three growth patterns: a dendrite in (a), a viscous finger in (b), and streamer in (c). Usually, dendritic
growth is studied in liquids with a melting temperature near room temperature. The one shown in (a) was observed in
3He [30] at 100mK, and the fact that it is similar in shape and form to those usually observed illustrates the generality of
dendritic growth (courtesy of E. Rolley and S. Balibar). In (b), a top view of a viscous finger is shown. The air inside the
finger like pattern displaces the oil outside (from [31], with permission from the author). The streamer pattern is from
a numerical simulation [32].
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the heat produced has to be equal to the net amount of heat which is being transported out of the
flat sides through heat diffusion. The heat current is in general !cD+¹, with c the specific heat per
unit volume (the combination cD is the so-called heat conductivity), and we denote the components
normal to the interface by (+¹

l)
n,*/5

and (+¹4)
n,*/5

. After dividing by c, we therefore recognize in the
right-hand side of Eq. (2) the net heat flow away from the interface. Note that this equation is
completely fixed by a conservation law at the interface, in this case conservation of heat, and that it
can be written down by inspection. The only input is the assumption that the interface is very thin.
Moreover, it shows the structure we mentioned in the beginning, namely that the normal growth
velocity is proportional to the gradient of a bulk quantity — the larger the difference in the gradients
in the solid and the liquids is, the faster the growth can be.

Finally, the second-boundary condition at the liquid—solid interface (3) is essentially the local
kinetic equation which expresses the microscopic physics at the interface: We assume the interface
to be rough, so that the interface can be smoothly curved [29]. ¹

M
[1!(p/¸)i] is then the melting

temperature of such a curved interface, where p is the surface tension. Here the curvature i is taken
positive when the solid bulges out into the liquid; the suppression of ¹

M
in such a case can

intuitively be thought of as being due to the fact that there are more broken “crystalline” bonds if
the solid is curved out into the liquid, but the relation follows quite generally from thermodynamic
considerations [26]. The ratio (p/¸) is a small microscopic length, say of the order of tens of
A_ ngstroms. The necessity of introducing the suppression of the local interface melting temperature
will emerge later, when we will see that if we do not do so, there would be a strong short wavelength
(“ultraviolet”) instability at the interface.7

Now that we understand the meaning of ¹
M
(1!(p/¸)i) as a local melting term of a curved

interface, we see that Eq. (3) just expresses the linear growth law for rough interfaces [29]; 1/b in
this expression has the meaning of a mobility. If we take the limit of infinite mobility (1/bPR), the
interface grows so easily that we can approximate (3) by

(bP0) ¹*/5"¹
M
[1!(p/¸)i] , (4)

which is sometimes referred to as the local equilibrium approximation.
We stress that the boundary condition (3) is local in space and time, i.e., the growth velocity

v
n

responds instantaneously to the local temperature and curvature. There are of course sound
physical reasons why this is a good approximation: the typical solid—liquid interfaces we are
interested in are just a few atomic dimensions wide, and respond on the time-scale of a few atomic
collision times (of order picoseconds) to changes in temperature [35], while Eqs. (1)—(3) are used to
analyze pattern formation on length scales of order microns or more and with growth velocities of
the order of a lm/s, say. Hence, an interface grows over a distance comparable to its width in a time
of the order of 10~3 s, and the time scale for the evolution of the patterns is typically even slower.

7Due to the crystalline anisotropy, the capillary parameter actually depends on the angles the interface makes with the
underlying crystalline lattice. It has been discovered theoretically that this crystalline anisotropy actually has a crucial
influence on dendritic growth: without this anisotropy, needle-like tip solutions of a dendrite do not exist, and the growth
velocity of such needles is found to scale with a 7/4 power of the anisotropy amplitude. We refer to [26,28,34] for
a detailed discussion of this point.
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This wide separation of length and time scales justifies the assumptions underlying the interfacial
boundary conditions.

Eqs. (1)—(3), together with appropriate boundary conditions for the temperature far away from
the interface, constitute the basic equations that describe the growth of a dendrite into a pure melt.
They may look innocuous, as they appear to be linear equations, but they are not! The reason is
that they involve the unknown position and shape of the interface through the boundary
conditions, and that the dynamics of the interface depends in turn on the diffusion fields: the
location of the interface has to be found self-consistently in the course of solving these equations!
This is why such a so-called moving boundary problem is so highly nonlinear and complicated.

These equations (with crystalline anisotropy included in the capillary term (p/¸)) were actually
the starting point of Brener’s talk at the school, and the work he discussed [2] showed how
challenging the nonlinear analysis necessary to obtain a phase diagram of growth patterns can be.
Such work builds on many advances made in the last decade on understanding the growth velocity
and shape of dendrites, and for a discussion of these we refer to the literature [34,36].

1.2. Viscous fingering

In viscous fingering, or Saffman—Taylor fingering, one considers a fluid (typically an oil) confined
between two long parallel closely spaced plates. In Fig. 1b one looks from the top at such a cell
— the plates, separated by a small distance b"0.8mm, are thus in the plane of the paper. The two
black sides in this photo constitute the lateral side walls; the oil between the plates cannot penetrate
into these. The distance between these side walls is 10 cm, hence the lateral width of the cell is much
smaller than the spacing b of the plates. The thin line is the air—fluid interface and the region inside
the finger-like shape is air, while the oil is outside. The air is blown into the area between the plates
from the right side of the figure. If the air—fluid interface initially stretches all the way across the cell
from one sidewall to the other, one quickly finds that when the air is blown in, this interface is
unstable, and that after a while a single finger-shaped pattern like the one shown in Fig. 1b
penetrates to the left into the fluid. Understanding the shape and width of this finger has been
a major theme in interfacial pattern formation [34]. In simple fluids it is so well understood that the
analysis of the finger shapes when surfactants or polymers are added to the displaced fluid has
become a way to learn something about the resulting properties of the fluid and the air—fluid
interface [37]. We will content ourselves here with giving an introduction of the basic equations,
aimed at bringing out the same gradient-driven structure of the interface equations.

In viscous fingering experiments, the spacing b between plates is much smaller than the width of
the cell (the distance between the two dark sides in Fig. 1b). As a result, the average fluid flow field
varies in the plane of the cell only slowly over distances of the order of the lateral dimensions of the
cell. Locally, therefore, the flow in the small direction normal to the planes is almost like that of
homogeneous planar Poisseuille flow, for which we know that the average fluid velocity is
!b2/(12g) times the gradient of the pressure p. Here g is the kinematic viscosity of the fluid. Hence,
if we now introduce �(x, y) as the height-averaged flow field between the plates of the cell, which we
take to lie in the xy-plane, we have �(x, y)"!b2/(12g)+p. Taking the fluid to be incompressible,
+ ) �"0, implies that in the bulk of the fluid the pressure simply obeys the Laplace equation,

+ 2p"0 , (5)
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while at the interface the fact that the air displaces all the fluid is expressed by

v
n
"!(b2/12g)(+p)

n,*/5
. (6)

Furthermore, if we ignore the viscosity of the air and wetting effects, the pressure at the interface is
nothing but the equilibrium pressure of a smoothly curved air—fluid interface, i.e.,

pD
int
"p

0
!pi , (7)

where as before p is the surface tension and p
0

the background pressure in the gas. The curvature
term !pi is the direct analogue of the one in Eq. (3); in the context of air—fluid interfaces it is
known as the Laplace pressure term, and it corresponds to the well-known effect that the pressure
inside a soap bubble is larger than the one outside. As in the case of crystal growth discussed above,
the form of the boundary conditions can essentially be guessed on physical grounds and by
appealing to the fact that the microscopic relaxation time at the interface is typically orders of
magnitude smaller than the time and length scale of the pattern.

1.3. Streamer dynamics — a moving charge sheet?

We finally introduce a problem which is not at all understood in detail but whose similarity with
dendrites and viscous fingers motivated some of the issues discussed here [1]. The basic phenom-
enon is that when an electric field is large enough, an electron avalanche type can build up in a gas,
due to the fact that free electrons get accelerated sufficiently that they ionize neutral molecules, thus
generating more free electrons, etc. Streamers are the type of dielectric breakdown fronts that can
occur in gases as a combined result of this avalanche type of phenomenon and the screening of the
field due to the build-up of a charge layer. The basic equations that are being used to model this
behavior are the following continuum balance equations for the electron density n

%
and ion density

n
`
, and the electric field E [32]

­
t
n
%
#+ ) j

%
"Dn

%
k
%
EDa

0
e~E0@@E@ , (8)

­
t
n
`
#+ ) j

`
"Dn

%
k
%
EDa

0
e~E0@@E@ , (9)

and the Poisson equation

+ )E"(e/e
0
)(n

`
!n

%
) . (10)

The electron and ion current densities j
%

and j
`

are

j
%
"!n

%
k
%
E!D

%
+n

%
, j

`
"0 , (11)

so that j
%
is the sum of a drift and a diffusion term, while the ion current j

`
is neglected, since the

ions are much less mobile than the electrons. The right-hand side of Eqs. (8) and (9) is a source term
due to the ionization reaction: In high fields free electrons can generate free electrons and ions by
impact on neutral molecules. The source term is given by the magnitude of the electron drift current
times the target density times the effective ionization cross section; the constant E

0
in the ionization

probability depends on the mean free path of the electrons and the ionization energy of the neutral
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gas molecules. The rate constant a
0

has the dimension of an inverse length. The exponential
function expresses, that only in high fields electrons have a nonnegligible probability to collect the
ionization energy between collisions.

In Fig. 1c, we show a plot of the simulations of the above equations [32]. In this figure, a gap
between two planar electrodes across which there is a large voltage difference is studied for
parameters in the model that correspond to N

2
gas. Initially, the electron density is essentially zero

everywhere except in a very small region near the upper electron. The simulation of Fig. 1c shows
the situation 5.5 ns later; the lines in this plot are lines of constant electron density. The density
differs by a factor 10 between successive lines. Since these lines are closely spaced — the electron
density rises by a factor 1010 in a few lm — the simulations illustrate that a streamer consists of an
ionized region (inside the contour lines) propagating into a nonionized zone. Inside this zone,
almost all of the ionization takes place, and the total charge density is nonzero. It is this nonzero
charge density that also screens the electric field from the interior of the streamer. We can therefore
also think of the streamer as a moving charge sheet, whose shape is somewhat like a viscous finger.
In fact, if the upper electrode is spherical rather than planar, one finds branched streamers which
are reminiscent of dendrites [33]. Note that in this interfacial picture, the charge sheet is also the
reaction zone where most of the ionization takes place, and that the build-up of the charge in this
zone is at the same time responsible for the screening of the field in the interior of the streamer.

An immediate question that comes to mind is whether we can analyze such a streamer as
a moving interface problem by mapping the continuum equations onto a sharp interface of zero
thickness, by taking the limit in which the charge sheet becomes infinitely thin [1]. If such an
analysis can be done, very much along the lines of the analysis for combustion or for the so-called
phase-field models mentioned in the introduction, one would intuitively expect that the dynamics
in the transition zone would, in the ¼P0 limit, translate into boundary conditions at the
interface. In particular, one expects one equation expressing charge conservation, and a kinematic
relation for the normal velocity of the interface. Based on one’s experience with the other problems
described earlier, this kinematic expression might be guessed to express the local interface velocity
as a function of the instantaneous values of the “outer” fields at the interface. As we shall see in
Section 3, this does not appear to be necessarily possible for front problems like streamers, which
correspond to front propagation into unstable states. The physical reason that the nonionized
region into which the streamer fronts propagate is unstable, is that as soon as there are free
electrons, there is further ionization due to the source term on the right-hand side of the streamer
equations (8) and (9). This leads to an avalanch type of phenomenon, with exponential growth of
the electron density, characteristic of a linearly unstable state.

Let us nonetheless not let ourselves get discouraged, but follow our nose and assert that if the
electron diffusion is small, one would expect that the normal velocity of a streamer front like that of
Fig. 1c is approximately equal to the drift velocity of the electrons on the outer side of the charge
sheet,

v
n
+Dk

%
E`D"Dk

%
+U`D . (12)

Here U is the electrical potential, E"!+U, and the superscript # indicates the value of the field
at the charge sheet, extrapolated from the nonionized region. A linear relation, like Eq. (12) is
indeed found to a good approximation for negatively charged streamers [1]. Now, in the
nonionized region outside the streamer, the charge density is essentially zero [n

`
+0, n

%
+0 in
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Eq. (11)], and hence here

+ 2U+0 in the nonionized region . (13)

Thus, we see that if we do think of a streamer sheet as a moving charge sheet and assume that the
potential inside the streamer is roughly constant due to the high mobility of the electrons, it falls
within the same class of gradient driven problems as dendrites and viscous fingers: the normal
velocity of the charge sheet is proportional to the gradient of a field U, which itself obeys a Laplace
or diffusion equation.

1.4. The Mullins—Sekerka instability

We now discuss the Mullins—Sekerka instability of a planar interface. We will first follow the
standard analysis for the simplest case of a planar solidification interface [3,26—28], and then
indicate why in the long wavelength limit the same instability happens for all gradient-driven fronts
whose outer field obeys a Laplace or diffusion equation. The analysis of the planar interface
appears at first sight to be somewhat of an academic problem, as we will find such an interface to be
unstable. However, the analysis does identify the basic physics that is responsible for the formation
of natural growth shapes and it helps us to identify the proper length scale for the growth shapes
that result (the form of the dispersion relation also plays a role in analytical approaches to the
dendrite and viscous finger problem [34]).

We want to consider the stability of a planar interface which grows with velocity v. To do so, we
write the diffusion equation in a frame m

v
"z!vt moving with velocity v in the z-direction,

­¹/­t!v ­¹/­m
v
"D+ 2¹ . (14)

Note that now + 2 denotes the Laplacian in the moving x, y, m
v
frame. Furthermore, we consider for

simplicity the limit bP0 so that the other two basic equations are Eqs. (2) and (4),

(¸/c)v
n
"!D[(+¹

l)
n,*/5

!(+¹4)
n,*/5

] , (15)

¹*/5"¹
M
[1!(p/¸)i] . (16)

Let us first look for a steady-state solution, i.e., the solution for a plane growing with a constant
velocity v in the z-direction into an undercooled liquid. Since according to boundary condition (16)
¹*/5"¹

M
for a plane, the solution in the solid is ¹4

0
"¹

M
, while solving the diffusion equation

(Eq. (14)) for a solutions ¹
l

0
that are stationary in the m

v
frame yields

¹
l

0
(m

v
)"(¹

M
!¹

=
)e~mv@lD#¹

=
, ¹4

0
"¹

M
. (17)

Here we have taken the position of the plane at m
v
"0, ¹

=
is the temperature far in front of the

plane, and l
D
"D/v is the thermal diffusion length. The temperature profile given by Eq. (17) is

sketched in Fig. 2. Substitution of this result into the boundary condition for heat conservation (15)
yields

¸/c"(¹
M
!¹

=
) . (18)
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Fig. 2. Qualitative sketch of the temperature profile at a planar interface in solidification.

This equation shows that the temperature ¹
=

has to be precisely an amount ¸/c below the melting
temperature (this criterion is often refered to as unit undercooling), and it is an immediate
consequence of heat conservation. For, in order for the plane to be able to move with a constant
speed, the amount of heat in the diffusion boundary layer must be constant in time, in the
co-moving frame, and hence the net effect of the moving interface is that it replaces a liquid volume
element at a temperature ¹

=
by a solid volume element at a temperate ¹

M
, while the heat per unit

volume which is generated is ¸. Equating this to the heat c(¹
M
!¹

=
) necessary to give the required

increase in temperature gives Eq. (18).
In passing, we note that if the undercooling far away is less [(¹

M
!¹

=
)(¸/c], a planar

solidification front will gradually slow down (v&1/Jt) due to the slow increase of the thickness of
the boundary layer. This gradual decrease of the speed is slow enough that we can extend most of
the analysis below by making a quasistationary approximation for the velocity, but for simplicity
we will assume that condition (18) is satisfied.

We now turn to a linear stability analysis of this planar interface. To do so, we assume
that the interface is slightly perturbed, i.e., that the position of the interface deviates slightly
from the planar position m

v
"0. The strategy then is to write the interface position as m

v
"f(x, y, t)

with f(x, y, t) small, and to solve the diffusion equation and boundary conditions to first order in
f(x,y, t). Since the unperturbed planar solution is translation invariant in the xy plane, the
eigenmodes of the linearized equations are simple Fourier modes, and it suffices to analyze each
Fourier mode separately. Moreover, for simplicity, we can take this mode to vary in the x direction
only. We thus write the perturbed interface and the temperature field as single Fourier modes of the
form

f(x,y, t)"f
k
eXt`*kx, d¹l,4"d¹l,4(m

v
)eXt`*kx . (19)

Our goal is to determine the dispersion relation, i.e., X as a function of k. If X is positive, the
corresponding mode k grows, and the planar solution is unstable to that particular mode. Consider
first the temperature diffusion equation. Since it is already linear, the functions d¹l,4(m

v
) satisfy the

simple differential equations

d2d¹l,4
k

(m
v
)

dm2
v

#

1
l
D

dd¹l,4
k

(m
v
)

dm
v

"(X/D!k2)d¹l,4
k

(m
v
) . (20)
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The solutions of these equations are simple exponentials; when we impose that the perturbed
temperature fields d¹l,4 have to decay to zero far away from the interface, we get

d¹l

k
(m

v
)"d¹l

k
e~qmv, q"

1
2l

D

(1#J1!4l2
D
X/D#4k2l2

D
) , (21)

d¹4
k
(m

v
)"d¹4

k
eq{mv, q@"

1
2l

D

(!1#J1!4l2
D
X/D#4k2l2

D
) . (22)

Furthermore, continuity of the temperature at the interface implies ¹
l

0
(m

v
"f)#d¹l(m

v
"f)

"¹
M
#d¹4(m

v
"f). To linear order, we can take d¹l and d¹4 at m

v
"0, since they are already

linear in the perturbations. Expanding ¹
l

0
(m

v
"f) to linear order gives ¹

l

0
(m

v
"f)"

¹
M
!(¹

M
!¹

=
)f/l

D
#2 and so we simply get

d¹l

k
!(¹

M
!¹

=
)l~1

D
f
k
"d¹4 . (23)

Turning now to the boundary conditions (15) and (16), we note that the curvature i of the surface
m
v
"f becomes i"!­2f/­x2/[(1#(­f/­x)2)3@2]"!­2f/­x2#O(f2). The local equilibrium

interface boundary condition (16) therefore becomes with this result and Eq. (23)

d¹4
k
"!(p/¸)¹

M
k2f

k
, (24)

d¹l

k
"(¹

M
!¹

=
)l~1

D
f
k
!(p/¸)¹

M
k2f

k
. (25)

Finally, we need to linearize the conservation boundary condition (15). The relation between the
z-component of the interface velocity and the normal velocity v

n
is v

z
"v#fQ"v

n
cos h, where h is

the angle between the interface and the z or m direction. Since cos h"1/J1#(­f/­x)2, this gives to
linear order v

n
"v#fQ . Furthermore, the perturbed gradient at the liquid side of the interface has

two contributions, one from ¹
l

0
evaluated at the perturbed position of the interface, and one from

d¹l. One gets, using also Eq. (18),

X"(v/l
D
)[!1#ql

D
#D(q#q@)(!d

0
k2)] , (26)

where

d
0
"p¹

M
c/¸2 (27)

is the capillary parameter, which has a dimension of length. Just like the ratio p/¸, d
0

is typically
a small microscopic length, of the order of tens of A_ ngstrom, say.

Eq. (26) is the dispersion relation for the growth rate X we were after. In this general form, it is
not so easy to analyze8 for general k, since q and q@ depend k and X through Eqs. (21) and (22).

8 It is easy to verify from expressions Eqs. (21) and (22) that X"0 for k"0. This is a consequence of the fact that the
system is translation invariant, so that a perturbation that corresponds to a simple shift of the planar interface neither
grows nor decays.
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Fig. 3. (a) Sketch of the dispersion relation (28) for the stability of the planar solidification interface, in the quasi-
stationary approximation. The linear behavior of X with DkD is generic for gradient driven growth problems, while the
stabilization for larger k values depends on the problem under consideration. (b) Sketch of the compression of the
isotherms in front of a bulge of the interface. If such a bulge appears on a long enough length scale that the capillary
suppression of the local melting temperature is not too large, then the enhanced heat diffusion near the bulge associated
with the compression of the isotherms makes the interface unstable. This is the origin of the Mullins—Sekerka instability,
which is generic to gradient-driven growth problems.

The expression for X becomes much more transparent if the diffusion coefficient D is large
enough and the perturbations of short enough wavelength that both9X;Dk2 and kl

D
;1. This is

actually the relevant limit for small wavelengths, as then l
D

is very large and timescales are slow. In
this case, Eqs. (21) and (22) show that q@+q+DkD, and then the dispersion relation (26) reduces to

X+vDkD[1!2d
0
l
D
k2] . (28)

This is the form in which the dispersion relation is best known. As Fig. 3 illustrates, X grows
linearly for small k (long wavelength), and all modes with wave number k(k

/
"1/J2d

0
l
D

have
positive growth rates and hence are unstable (k

/
is the neutral wave number for which X"0).

Hence, a mode with this wave number neither grows nor decays). The maximum growth rate is for
k
.!9

"k
/
/J3, i.e., for a wavelength j

.!9
"2p/k

.!9
"2pJ6d

0
l
D
. We thus see that the planar

interface is unstable to modes within a whole range of wavenumbers. Hence, even if we could
prepare initially a (nearly) flat interface, we would soon see that small protrusions, especially those
with a spatial scale of order j

.!9
, would start to grow out. Quite soon, the interface evolution is

then not described anymore by the linearized equations, and one has to resort to some nonlinear
analysis to understand the morphology of the patterns that subsequently arise. Typically, j

.!9
still

is an important length scale even for these growth shapes, but it definitely is not the only parameter
that determines the scale and morphology of the patterns [26—28,34]. An example of this was
discussed at the school by Brener [2].

9One cannot choose X independently to satisfy these conditions; nevertheless, one can show that Eq. (28) is a good
approximation to Eq. (26) if the diffusion coefficient is large enough that the conditions in the text are satisfied [27].
Physically, we can think of this limit as the one where the diffusion is so large that the temperature diffusion equation can
be approximated by the Laplace equation.
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Qualitatively, the origin of the Mullins—Sekerka instability is easy to understand with the help of
Fig. 3b. If the interface has some protrusion into the liquid, then the isotherms are compressed in
the neighborhood of this protrusion, provided the length scale of the protrusion is large enough
that the suppression of the local melting term due to the capillary correction is small. This means
that the heat diffusion away from the interface is enhanced, i.e., that the latent heat produced in this
region of the interface diffuses away more easily. Hence, the interface can grow faster there, and the
protrusion grows larger in time.

It is important to realize that the instability that we identified above only occurs upon growth,
and not upon melting if the heat necessary to melt the crystal is supplied through the melt. This is
why ice cubes keep a smooth rounded shape during melting. You are encouraged to repeat the
qualitative arguments of Fig. 3b to convince yourself of this.10 See [26] for help and further
discussion of this point.

Clearly, the physical mechanism underlying the Mullins—Sekerka instability is not limited to
crystal growth: it arises wherever the growth of or dynamics of a free interface is proportional to the
gradient of a field which itself obeys a Laplace equation or diffusion equation — in fact, the
approximation q+q@+k that allowed us to reduce the dispersion relation to Eq. (28) amounts to
replacing the diffusion equation by the Laplace equation in the quasi-stationary limit! Now that we
have done the analysis once in detail, it is easy to see that the linear dispersion X&DkD which we
found for solidification for small k (See Fig. 3a), is a general feature of diffusion limited or gradient
driven interface dynamics. To be specific, consider an interface whose normal velocity v

n
is

proportional to the gradient of some field U, which obeys the Laplace equation,

v
n
"+UD

*/5
, + 2U"0 in the bulk . (29)

For a planar solution with velocity v, we have then the solution U
0
(z)"U@

0
z"vz. Again, we

consider perturbations f"feXt`*kx of the interface. In order that dU then obeys the Laplace
equation, it must be of the form

dU"dU
k
e*kx~@k@z, z'0 . (30)

Since to linear order the interface velocity v
n
in the presence of the perturbation is v#fQ , we now

have

Xf
k
"!DkDdU

k
. (31)

Finally, the boundary conditions on the planar interface are such that they can be written in terms
of derivatives of the fields or the interface shape, and if the basic equations are translation invariant

10But nature always comes up with surprising exceptions: if a spin-polarized 3He crystal melts, a magnetic boundary
layer builds up in the crystal, i.e., one now has a diffusion layer building up in front of a melting interface, while the
temperature field is approximately homogeneous since the latent heat is small and the temperature diffusion fast. The
Mullins—Sekerka instability upon melting that this results into due to the fact that both the interface velocity and the
position of the diffusion boundary layer are reversed, was predicted in 1986 [38]. It has just this summer been observed in
the low temperature group in Leiden by Marchenkov et al. We emphasize that in general, the presence or absence of the
Mullins—Sekerka instability depends both on the ratios of transport coefficients, and on the direction of the gradients. As
stressed to me by John Bechhoefer, it is the fact that impurity diffusion is usually negligible in the solid phase that makes
the instability so asymmetric at most solid—liquid interfaces. In Bechhoefer’s thesis work on nematic—isotropic interface
dynamics, the transport coefficients are roughly the same in both phases, and in this case both melting and freezing
instabilities were observed.
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(i.e., there is no external field that tends to pin the position of the interface), then we must have in
linear order

U
0
(m

v
"f

k
)#dU

k
"terms of higher order in k , (32)

hence, since U@
0
"v,

dU
k
"!vf

k
as kP0 . (33)

Using this in Eq. (31), we find

X+vDkD as kP0 . (34)

This clearly shows the generality of the presence of unstable long wavelength modes with linear
dispersion in gradient-driven interface dynamics. Not only solidification, but also viscous fingering,
streamer formation and flames [7,8] are subject to this same type of instability, as our discussion
earlier in this section demonstrates. The differences between the various problems mainly occur in
the stabilizing behavior at short distance scales. These depend on the details of the physics, and are
usually different for different problems. They have to be included, however, since otherwise the
interface would be completely unstable in the short wavelength limit kPR.

1.5. The connection between viscous fingering and DLA

An interesting illustration of the above observation is given by diffusion-limited aggregation
(DLA), in which clusters grow due to accretion of Brownian particles. Hence the driving force for
growth is essentially the same physics as above, a long-range diffusion field governed by the
Laplace equation, but in this case there are no stabilizing smoothing terms at shorter wavelength.
Only the particle size or the lattice serves as a short distance cutoff, and in this case the growth is
fractal [4].

The connection between the viscous fingering problem and DLA is actually quite deep. In the
viscous fingering case, the growth is deterministic, and controlled by solving the Laplace equation
in the bulk. In DLA, the probability distribution of the random walkers is also governed by
the Laplace equation and the flux at the boundary of the growing cluster is proportional to the
gradient of the probability distribution of walkers — as we saw, this is the basic ingredient of the
Mullins—Sekerka instability. More importantly, however, the DLA growth process is intrinsically
noisy as one particle is added at a time, and as there is no relaxation at the boundary of the cluster.
As pointed out by Kadanoff et al. [39,40], the noise can be suppressed by having a cluster grow
only at a site once that site has been visited a number of times by a random walker, and by allowing
particles at the perimeter to detach and re-attach to the cluster with a probability that depends on
the number of neighbors at each site. With increasing noise reduction, DLA in a channel crosses
over to viscous fingering.

Another surprising connection is that the mean occupation profile of the average of many
realizations of DLA clusters in a channel approaches the shape of a viscous finger. See [41,42] for
details.
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2. Smooth fronts as effective interfaces

2.1. Fronts between a stable and a metastable state in one dimension — existence, stability and
relaxation

We now turn our attention to a different but related issue, namely the question when we can map
a model with a smooth front, domain wall or transition zone, onto a sharp interface model, with
boundary conditions which are local in space and time. The answer to this question, namely that
this typically can be done for problems in which the interface separates two (meta)stable states or
phases may not be that surprising. Nevertheless, thinking about these issues helped us clarify some
of the points which we feel have not been paid due attention to in the literature, and which come to
the foreground in our work with Ebert and Caroli on streamers [1]. There you really run into
trouble if you blindly apply the formalism as it is usually presented in the literature. This will be
discussed in detail in our future publications with Ebert [25], and I will keep you in suspense till
Section 3 for a brief sketch of our present results and implications. Further motivation for the
analysis of this section was given in the introduction.

I am convinced most — if not all — elements of the discussion below must appear at many places in
the literature. For example, the first part of the analysis appears in one form or another in [12—15],
but since it will arise in almost any Ginzburg—Landau type of analysis — the working horse of
condensed matter physics — I presume most ingredients can be found at many more places (similar
questions arise in the analysis of instantons in field theory). Nonetheless, we have not come across
any discussion from the perspective that we will emphasize in [25], the relation between relaxation,
interface limits, and solvability. The present section is intended to provide a summary of the
background material that can be found at scattered places in the literature and to serve as an
introduction to our papers [25].

To be concrete, we will present our discussion in terms of a dynamical equation in one dimension
of the form

­//­t"­2//­x2#g(/) . (35)

Here / is a real order parameter. This equation is about the simplest model equation for the
analysis of relaxation dynamics, but it captures the essentials of the issues that also arise in more
complicated variants and extensions.

Later, in our discussion of the coupling to other fields, it is useful to introduce appropriate
parameters to tune the time and spatial scales of the variation of /, but for the present discussion of
Eq. (35) we will not need these. We have therefore used the freedom to choose appropriate time and
spatial scales to set the prefactors of the derivative terms to unity.

It will turn out to be useful to express g(/) in terms of the derivative of two other functions, which
both play the role of a potential in different circumstances:

g(/),!df (/)/d/,d»(/)/d/ , (36)

so that equivalent forms of Eq. (35) are

­/
­t

"

­2/
­x2

!

df (/)
d/

Q
­/
­t

"

­2/
­x2

#

d»(/)
d/

. (37)
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As we shall see later on, f has the interpretation of a free energy density in a Ginzburg—Landau
picture, while » will play the role of a particle potential in a standard argument in which there is
a one-to-one correspondence between front solutions and trajectories of a particle moving in the
potential ».

We are interested in cases in which g(/) has two zeroes g(/
4
) with g@(/

4
)(0; these correspond to

(meta)stable homogeneous solutions /"/
4
of Eq. (35). Indeed, if we linearize this equation about

/
4
, and substitute */&eXt`*kx (very much like we have done before), then we find

X"g@(/
4
)!k2(0, which confirms that the state is linearly stable. Without loss of generality, we

can always take g(0)"0 (»@(0)"0), so that /"0 is one of the stable states. We will label the other
linearly stable state simply /

4
. Although this is not necessary, we will for simplicity also take

g antisymmetric [g(!/)"g(/)], so that the potentials f and » are symmetric. A typical example
of a function g(/) and its corresponding potentials is sketched in Fig. 4. Note that there is also
a third root of g(/) in between 0 and /

4
, and that here g@(/

6
)'0. A homogeneous state /"/

6
is

therefore unstable (X"g@!k2'0 for small k).
Let us now focus right away on front or domain wall type solutions of the type sketched in

Fig. 5a: they connect a domain where /+/
4
on the left to a domain where /+0 on the right.

Fig. 4. The function g(/) and the associated potentials f (/) and »(/) used in our discussion of front solutions of Eq. (35).

Fig. 5. (a) Example of the type of moving front solution we are looking for. (b) The potential ». A moving front solution
like the one sketched in (a) corresponds in the particle-on-the-hill analogy to the solution of the dynamical problem in
which the particle starts at the top at /

4
, moves down the hill and up the one in the center, and comes to rest at the center

top as the quasi-time m
v
PR.
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Obvious questions are: what does the solution look like? In which direction will the front move?
And how does it relax to its moving state? The answers to these questions can be obtained in a very
appealing and intuitive way for this simple model equation by reformulating the questions into
a form that almost every physicist is familiar with. However, the two main points — the existence of
a unique solution and exponential relaxation — have more general validity.

We can look for the existence of moving front solutions by making the Ansatz
/
v
(x!vt)"/

v
(m

v
), with m

v
"x!vt. Such solutions are uniformly translating in the x frame, and

hence stationary in the co-moving frame m
v
. Substitution of this ansatz into Eq. (37) gives, after

a rearrangement

d2/
v

dm2
v

"!v
d/

v
dm

v

!

d»(/
v
)

d/
v

. (38)

This equation is familiar to you: it is formally equivalent to the equation for a “particle” with mass
1 moving in a potential», in the presence of “friction”. In this analogy, which is summarized below,
m
v
plays the role of time, and v the role of a friction coefficient:

(39)

Clearly, the question whether there is a traveling wave solution of the type sketched in Fig. 5a
translates into the question, in the particle-on-the-hill analogy: is there a solution in which the
particle starts at the top of the potential » at /

4
at “time” m

v
"!R, rolls down the hill, and

comes to rest at the top of the hill at /"0? In the language of the analogy the answer is
immediately obvious: if the value »(/

4
) of the potential at /

4
is larger than at /"0, i.e., if

*»,»(/
4
)!»(0) (40)

is positive, then there must be a solution with a nonzero positive value of the velocity (the “friction
coefficient”). Such a solution corresponds to a front which moves to the right so that the /+/

4
domain expands. In the opposite case, when the potential at /

4
is lower than at 0 so that *»(0,

then such a solution only exists for “negative friction” so that enough energy is pumped into the
system that the particle can climb the center hill. Negative friction corresponds to a left-moving
front with v(0, so that the /+ 0 domain expands.

Let us make this a bit more precise by first asking what happens when the “friction” v is very
large. Then, there is no solution where the particle moves from the top at /

4
to the one at /"0: for

large friction the particle creeps down the hill and comes to rest in the bottom of the potential.
When the friction is reduced, the particle loses less energy, and is able to climb further up on the left
side of the well. Hence, if we keep on reducing the “friction” v, at some value v"v

0
the particle has

just enough energy left to climb up all the way to the top at /"0, and get to rest there. In other
words, at v"v

0
, there is a unique solution of the type sketched in Fig. 5a. If v is reduced slightly

below v
0
, the particle overshoots a little bit, and it finally ends up in the left well. So for v just below

v
0
, there are no solutions with /

v
P0 for m

v
P 0. However, if we keep on reducing v, there comes
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a point v"v
1
where the particle first overshoots the middle top, then moves back and forth once in

the left well, and finally makes it to the center top — the profile /
v1
(m

v
) then has one node where

/
v1
(m

v
)"0. Clearly, we can continue to reduce v and find values v

2
, v

3
, v

4
,2 where the profile

/
vi

has 2, 3, 4,2 nodes. As is illustrated in Fig. 6, we thus have a discrete set of moving front
solutions. Which one is stable and dynamically relevant? Intuitively, we may expect that the one
with the largest velocity, v

0
, is both the stable and the dynamically relevant one, since the multiple

oscillations of the other profiles look rather unphysical. This indeed turns out to be the case: if you
start with an initial condition close to the profile /

v1
with velocity v

1
, you will find that the node

either “peels off ” from the front region and then stays behind, or moves quickly ahead to disappear
from the scene on the front end. In both cases, a front with velocity v

0
emerges after a while. The

stability analysis of the front solutions which we will present later confirms that only the fastest
v
0

front solution is linearly stable.
Before turning to the linear stability analysis, we make a brief digression about the connection

with a more thermodynamic point of view that is especially popular in studies of coarsening
[12—15].

It is well known that Eqs. (35) and (37) can also be written as

­/
­t

"!

dF
d/

, F"PdxC
1
2A

­/
­xB

2
#f (/)D . (41)

In a Ginzburg—Landau-like point of view, F plays the role of a free energy functional, whose
derivative dF/d/ drives the dynamics, and f (/) is the coarse grained free energy density. This
formulation brings out clearly that the dynamics is relaxational and corresponds to that of
a non-conserved order parameter (the conserved case corresponds to ­//­t"#+ 2dF/d/, so that
:dx/ remains constant under the dynamics). Note also that in statistical physics one often starts
with postulating an expression for a coarse grained free energy functional like F, and then obtains
the dynamics for / from the first equation in Eq. (41). One should be aware that in pattern
formation, one usually has to start from the dynamical equations, and that these usually do not
follow from some simple free energy functional [43].

An immediate consequence of Eq. (41) is that

dF
dt

"Pdx
dF
d/

­/
­t

"!PdxA
dF
d/B

2
40 , (42)

Fig. 6. Graphical representation of the fact that a discrete set of moving front solutions is found at velocity values
v
0
, v

1
, v

2
,2 The number of nodes of the corresponding profiles /

vi
is i.
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so that under the dynamics of /, F is a non-increasing function of time — it either decreases or stays
constant (in technical terms: F is a Lyapunov functional). Since the homogeneous steady states
/"0 and /"/

4
correspond to minima of f (/) and hence of F, this immediately shows that a front

moves in the direction so that the domain whose state has the lowest free energy density f expands.
Since f"!», this is equivalent to the conclusion reached above, that the domain corresponding
to the maximum value of the potential » expands.

Consider now the case in which the states /"0 and /
4

have the same free energy density:
*f,f (/

4
)!f (0)"!*»"0. They are then “in equilibrium”, and a wall or interface between

these two states does not move. Then the excess free energy per unit area, associated with the
presence of this wall, which is nothing but the surface tension p is

p"PdxC
1
2A

­/
0

­x B
2
#f (/

0
)!f (0)D . (43)

We can rewrite this by using the fact that energy conservation in the particle picture implies that
the sum of the kinetic and “potential” energy (!f ) is constant, so that 1

2
(­/

0
/­x)2!f (/

0
)

"!f (0), since far away to the right ­/
0
/­xP 0 and /

0
P0. Using this in Eq. (43), we get

p"Pdx(­/
0
/­x)2 , (44)

which is an expression which is very often used in square-gradient theories of interfaces. In our case,
we can use it to obtain a physically transparant expression for the velocity v of the moving front: If
we multiply Eq. (38) by d/

v
/dm

v
and integrate over m

v
, the term on the left-hand side becomes

:dm
v
(d/

v
/dm

v
)(d2/

v
/dm2

v
)"1

2
:dm

v
(d/dm

v
)(d/

v
/dm

v
)2"0 since d/

v
/dm

v
vanishes for m

v
P$R. As

a result, we are left with

v"
:dm

v
[d/

v
/dm

v
df/d/]

:dm
v
(d/

v
/dm

v
)2

"

!*f
:dm

v
(d/

v
/dm

v
)2

. (45)

This expression confirms again that the domain whose state has the lowest free energy f expands.
But it shows more: for small differences *f, the velocity is small, so we can approximate /

v
in the

denominator by /
0
, the profile of the interface in equilibrium. But in this approximation, the

denominator is nothing but the surface tension of Eq. (44), so

v+!*f/p, v small . (46)

Thus, the response of the interface is linear in the driving force *f and the surface tension p plays the
role of an inverse mobility coefficient. The above expressions are often used in the work on
coarsening, and can be extended to include perturbatively the effect of curvature or slowly varying
additional fields on the interface velocity. We will come to this later.

We now return to the question of stability of the front solutions with velocity v
0
, v

1
,2, using an

analysis that is inspired by a few simple arguments in [44]. Keep in mind that we will study the
stability of front solutions in one dimension themselves, not the stability of a planar interface or
front to small changes in its shape, like we did in Section 1. To study the linear stability of a front
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solution /
v
(m

v
), we write

/
vi
(m

v
, t)"/

vi
(m

v
)#g(m

v
, t) , (47)

and linearize the dynamical equation Eq. (35) in g in the moving frame m
v

to get

­g
­t

"v
i

­g
­m

v

#

­2g
­x2

#g@(/
vi
)g#O(g2) . (48)

Since the equation is linear, we can answer the question of stability by studying the spectrum of
temporal eigenvalues. To do so, we write

g(m
v
, t)"e~Ete~vmv@2t

E
(m

v
) (49)

so that all modes with eigenvalues E'0 are stable. Upon substitution of this in Eq. (48), we get

(50)

which is nothing but the Schrödinger equation (with +2/m"1) and which explains why we used
E for the temporal eigenvalue in the ansatz (Eq. (49)). In the analogy with quantum mechanics
which we will now exploit, º(m

v
) plays the role of a potential, and we are interested in the energy

eigenvalues E of the quantum mechanical particle in this potential. If we find a negative eigenvalue,
the profile /

vi
is unstable, i.e., there is then at least one eigenmode of the linear evolution operator

whose amplitude will grow in time under the dynamics. In other words, if we take as an initial
condition for the dynamics the uniformly translating profile /

v
we considered plus a small

perturbation about this which has a decomposition along this unstable eigenmode, the perturba-
tion proportional to this eigenmode will grow in time.

Consider first the form of the potential º(m
v
) for v"v

0
. In this case the front has a smooth

monotonically decreasing profile of the form sketched in Fig. 5a. Both for m
v
P!R and for

m
v
PR, g@(/

v0
) is negative, so º(m

v
) is positive for m

v
$R. In between, around /

v0
"/

6
, g@(/) is

positive as Fig. 4a shows, and so º(m
v
) is smaller than its asymptotic values in this range. The

resulting shape of º(m
v
) is sketched in Fig. 7 for a case in which º(!R)'º(R). Armed with

a physicist’s standard knowledge of quantum mechanics, we can now immediately draw the
following conclusions:

(1) The continuous spectrum corresponds to solutions t
E

that approach plane wave states as
m
v
PR in the case drawn in Fig. 7, and so they have an energy E5º(R)"(v2

0
/4#Dg@(0)D)'0.

In other words, the bottom of the continuous spectrum lies at a positive energy, and all the
corresponding eigenmodes relax exponentially fast.

(2) Next, consider the discrete spectrum. Since the original equation is translation invariant, if
/
v0
(m

v
) is a solution, so is /

v0
(m

v
#a)"/

v0
(m

v
)#ad/

v0
(m

v
)/dm

v
#2. In other words, as the

perturbation is nothing but a small shift of the profile, the perturbation should neither grow nor
decay. This implies that d/

v0
(m

v
)/dm

v
must be a “zero mode” of the linear equation, i.e., be a solution
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Fig. 7. Sketch of the potential º(m
v
) which enters in the stability analysis of the front /

v0
between a stable and

a meta-stable state. The asymptotes º(R) and º(!R) are both positive. The resulting eigenvalues spectrum is
sketched on the right. Note that there always is an eigenvalue E"0 due to the translation mode.

of the Schrödinger equation Eq. (49) with eigenvalue E"0:11

E"0: t
0
(m

v
)"d/

v0
(m

v
)/dm

v
. (51)

(3) Clearly, the “translation mode” d/
v0
(m

v
)/dm

v
with eigenvalue zero is a “bound state solution”

[as it should, in view of Eq. (1)] since it decays exponentially to zero for m
v
P$R. Moreover,

since /
v0

decays monotonically, d/
v0
(m

v
)/dm

v
(0, so the translation mode d/

v0
(m

v
)/dm

v
does not

have a zero, i.e., is nodeless. Now it is a well-known result of quantum mechanics [45] that the
bound state wave functions can be ordered according to the number of nodes they have: the ground
state with energy E

0
has no nodes, the first excited bound state (if it exists) has one node, and so on.

If we combine this with our observation that t
0
"d/

v0
(m

v
)/dm

v
is nodeless and has an eigenvalue

E
0
"0, we are led immediately to the conclusion that if there are other bound states, they must

have eigenvalues E'0.
Taken together, these results show that apart from the trivial translation mode all eigenfunc-

tions12 have positive eigenvalues E and so are stable: they decay as tPR. Moreover, there is a gap:
if the form of the function g(/) is such that there are bound state solutions, then the mode that
relaxes slowest is the first “excited” bound state solution t

1
with eigenvalue E

1
'0. Otherwise, the

slowest relaxation mode is determined by the bottom of the continuous spectrum. In either case, all
nontrivial perturbations around the profile /

v0
relax exponentially fast.

It is now easy to extend the analysis to the other front profile solutions /
v1
,/

v2
, etc. Consider, e.g.,

/
v1
. The analysis of the continuous spectrum proceeds as before so the continuous spectrum again

11You can easily convince yourself that this is true by substituting /
v0
(m

v
#a) in the original ordinary differential

equation for the profile Eq. (38), expanding to linear order in a, and transforming to the function t. You then get Eq. (49)
with E"0 and t

0
"d/

v0
(m

v
)/dm

v
.

12There is actually a slightly subtle issue here that we have swept under the rug. In quantum mechanics, wave
functions t which diverge as m

v
P$R are excluded, as these cannot be normalized; due to the transformation Eq. (49)

from g to t, there can be perfectly honorable eigenfunctions g of fronts that do not translate into normalizeable wave
functions t. In the present case, these eigenfunctions turn out to have large positive eigenvalues, and so they do not affect
our conclusions concerning the relaxation, but for fronts propagating into unstable states one has to be much more
careful. See Section 3 and [25] for further details.
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has a gap. Again, the translation mode d/
v1
(m

v
)/dm

v
neither grows nor decays, so has eigenvalue

zero, but now the fact that /
v1

goes through zero once and then decays to zero implies that
d/

v1
(m

v
)/dm

v
has exactly one node. According to the connection between the number of nodes of

bound state solutions and the ordering of the energy eigenvalues, there must then be precisely one
eigenfunction with a smaller eigenvalue than the translation mode which has E"0. In other
words, there is precisely one unstable mode. Likewise, all other profiles /

vi
with i'0 are unstable

to i modes.
In summary, our analysis shows that in the dynamical equation Eq. (35) for the order parameter

/, there is a discrete set of moving front solutions. Only the fastest one is stable, and its motion is in
accord with simple thermodynamic intuition. Moreover, the relaxation towards this unique
solution is exponentially fast, as e~*Et, where *E is the gap to the lowest bound state eigenvalue, if
one exists, or else to the bottom of the continuum band.

2.2. Relaxation and the effective interface or moving boundary approximation

As explained in the introduction, in many cases one wants to map a problem with a smooth but
thin front or interfacial zone onto one with a mathematically sharp interface with appropriate
boundary conditions. We have termed this the effective interface approximation. Reasons for using
this mapping can be either to replace a sharp interface problem by a computationally simpler one
with a smooth front (e.g., a so-called phase-field model for a solidification front [5,6,46]) or to
translate a problem with a thin transition zone (e.g., streamers [1], chemical waves [9,10],
combustion [7,8]) onto a moving boundary problem, so as to be able to exploit our understanding
of this class of problems. We will refer to this literature and to [23] for detailed discussion of the
mathematical basis of such approaches. Here, we just want to emphasize how the exponential
relaxation of front profiles that we discussed above is a conditio sine qua non for being able to apply
this mapping.

For concreteness, let us consider the following phase-field model which is a simple example of the
type of models which have been introduced for studying solidification within this context [6,46]

­u/­t"+ 2u#­//­t , (52)

e ­//­t"e2+ 2/#g(/, u) , (53)

g(/, u)"!­f/­/, f (/, u)"/2(/!1)2#ju/ . (54)

In this formulation, / is the order parameter field, and u plays the role of a temperature. For fixed u,
we recognize in Eq. (53) the order parameter equation that we have studied before: the potential
f has a double-well structure for ju small. At u"0 the states /"0 and /"1 have the same
free energy f, and the “liquid” state /"0 and “solid” state /"1 are then in equilibrium. As
we have seen, an interface beween these two states then neither melts nor grows. For j'0,
a positive temperature u makes the liquid-like state at the minimum near /"0 the lowest free
energy state, and below the melting temperature u"0 the solid-like minimum near /"1 has the
lowest free energy. The order parameter equation is coupled to the diffusion equation Eq. (52) for
the temperature through the term ­//­t. This term plays the role of a latent heat term when
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solidification occurs: it is a source term in the interfacial zone, where / rapidly increases from about
zero to one. Moreover, if the interface is locally moving with speed v

n
, then ­//­t+!v­//­m

v
, so

if we integrate through the thin interfacial zone we see that this term contributes a factor v
n
, in

agreement with the fact that the latent heat released at the solid-melt interface is proportional to v
n
.

In writing Eqs. (52)—(54), the space and time scales have been written in units of the “outer” scale
on which the temperature field u varies. In these units, the interface width in the order parameter
field / should be small, and this is why the parameter e;1 has been introduced in Eq. (53): it
ensures that the interface width ¼ scales as e and that the time scale q for the order parameter
relaxation is also of order e. It thus allows us to derive the effective interface equations mathemat-
ically using the methods of matched asymptotic expansions or singular perturbation theory
[5,21,22] by taking the limit eP0. Since both ¼ and q scale as e the response of the interface
velocity v

n
stays finite as e goes to zero.

Although the mathematical analysis by which effective interface equations can be obtained is
certainly more sophisticated and systematical than what will transpire from the brief discussion in
this section, what seems to be the essential step in all the approaches is the following. In the term ju
in g or f, which is often treated for convenience as a small perturbation, it is recognized that in the
interfacial zone (of width of order e) u does not change much and hence can effectively be treated as
a constant in lowest order. Moreover, since the shape of the interface is curved on the “outer” scale,
the curvature i of the interfacial zone, when viewed on the inner scale of the front width, is treated
as a small parameter which enters, as we shall see below, the equations in order e. This is because
when ¼P0, the front becomes locally almost planar. As is illustrated in Fig. 8, one now
introduces a curved local coordinate system o(r, t), s(r, t) where the o is oriented normal to the front
and points in the direction of the /+0 phase, which in a Ginzburg—Landau description is
normally associated with the disordered phase (we thought of it as the “liquid” phase before). By
choosing, e.g., the line o"0 to coincide with the contour line /"1

2
, we ensure that this line follows

the interface zone. In the limit oP 0 we then have

lim
o?0

­o/­tDr"!v
n
(s, t), lim

o?0

+ 2o"i(s, t) . (55)

The derivation of an effective interface approximation now proceeds by introducing the stretched
(curvilinear) coordinate m

v
"o/e for the analysis of the inner structure of the front profile, and

assuming that the fields / and u can be expanded in a power series of e as

‘‘inner region”: /"/*/
0
(m

v
, s, t)#e/*/

1
(m

v
, s, t)#2 ,

u"u*/
0
(m

v
, s, t)#eu*/

1
(m

v
, s, t)#2 ,

(56)

‘‘outer region”: /"/065
0

(r, t)#e/065
1

(r, t)#2 ,

u"u065
0

(r, t)#eu065
1

(r, t)#2 .
(57)

These “inner” and “outer” expansions then have to obey matching conditions [23,46] (according to
the theory of matched asymptotic expansions [21,22], the outer expansion of the inner solution has
to be equal to the inner expansion of the outer solution). We will not discuss these here, but instead
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Fig. 8. Qualitative sketch of a curved front of width ¼, and the local curvilinear coordinate system (o, s) used in the
derivation of an effective interface model.

limit ourselves to an analysis of the inner problem.13 On the inner scale, we have14

e2+ 2"(­2/­m2
v
)#ei(­/­m

v
)#O(e2) . (58)

Furthermore, we shall treat the term u in g formally as a term of order e and write v"v
1
e#2 and

u"u
1
e#2 — this is not so elegant and not necessary either, but it gets us to the proper answer

efficiently. As the velocity is then also of order e, this implies that /
0

is then the stationary front
profile (­/

0
/­m

v
"0) between two phases in equilibrium, so that from Eq. (54) the lowest order

equation becomes

­2/*/
0
(m

v
)/­m2

v
#g(/*/

0
(m

v
), 0)"0 . (59)

The solution of this equation is just the equilibrium profile /
0

that we introduced in our discussion
of the surface tension. Of course, it is not at all surprising that Eq. (59) emerges in lowest order,
since at u"0 the two phases are in equilibrium. Now, in the next order, we get

A
­2

­m2
v

#g@(/*/
0
)B/*/

1
(m

v
)"!(v

1
#i)

­/*/
0
(m

v
)

­m
v

!

­g(/*/
0
, u)

­u K
u/0

u
1

. (60)

This equation allows us to solve for /*/
1

in principle. But even without doing so explicitly, we can get
the most important information out of it. The operator between parentheses on the left is nothing
but the linear operator we already encountered before: the Schrödinger operator in our discussion
of stability. We then saw that this operator has a mode with eigenvalue zero, the translation mode
d/

0
/dm

v
. Moreover, since the operator is hermitian, it is also a left eigenmode with eigenvalue zero

13You may easily verify yourself that by substituting Eq. (57) into Eqs. (52)—(54) the equation for /065
0

reduces to
g(/065

0
,u065

0
)"0 which shows that /065

0
is just “slaved” to u065

0
: to lowest order, the order parameter in the bulk (outer)

region is the value of /065
0

which minimizes the free energy density f at the local temperature u065
0

.
14You can easily convince yourself of the correctness of this result by taking the interface as locally spherical with

radius of curvature R. In spherical coordinates, the radial terms of + 2 are ­2/­r2#(2/r)­/­r, which gives
e2+ 2+ e2(­2/­r2#(2/R)­/­r)"­2/­m

v
#(ei)­/­m

v
#2.
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of this operator. This implies that for the equation to be solvable, the right hand side has to be
orthogonal to the left zero mode d/

0
/dm

v
. This condition leads to a so-called solvability condition.

Upon multiplying Eq. (60) by d/
0
/dm

v
and integrating, we can write this condition as an expression

for the normal interface velocity v
n

to lowest order in e,

v
n
"!i!

:dm
v

d/
0

dm
v

­g(/
0
, u)

­u
u
1

:dm
v
(d/

0
/dm

v
)2

. (61)

Here, we used the fact that /*/
0
"/

0
. Moreover, in the integration on the right hand side, we can

take u constant, since the temperature does not vary to lowest order in the interfacial region (its
derivatives do — see [46] for more details).

The above expression is our central result. The fact that the prefactor of the curvature term on
the right is unity comes from the fact that the curvature enters according to the expansion Eq. (58)
of the diffusion term + 2 in precisely the same way as the velocity term that arises from the
transformation to the co-moving curvilinear from m

v
. When u

1
"0, i.e., when we consider an

interface between two equilibrium phases, it expresses the tendency of the interfaces to straighten
out. This effect drives coarsening [12—15], and the motion is sometimes referred to as motion by
mean curvature. The second term gives the driving term when the interface temperature u is not
equal to the equilibrium temperature. The structure of this term is also quite transparent. In the
denominator, we recognize the surface tension Eq. (44), and as we already discussed, the inverse of
the surface tension plays the role of an interface mobility in the context of the type of models we
consider. In the numerator we can write g in terms of !­f (/

0
, u)/­/

0
and then do the integral in

the same way as before in deriving Eq. (45); we then simply get

v
n
"!i!

1
p

d*f
du K

u/0

u , (62)

where now *f is the difference in free energy densities at opposite sides of the interface. Clearly, the
second term is exactly what we could have guessed on the basis of what we already knew before,
and together with the curvature term it has exactly the same type of structure as the boundary
condition Eq. (3) that we introduced in our first discussion of solidification. The complications that
are necessary to model anisotropic kinetics and surface tension with a phase-field model are
significant [6], but conceptually the analysis is essentially the same.

By taking big steps, we have not done justice to the systematics of the analysis, and there is much
more to say about it. If you want to know more, you will find entries to the literature in [5,6,23,46].
However, the point we want to bring to the foreground, following [25] is that in all such
approaches, a hidden assumption is made in writing the inner expansion as /*/"/*/

0
(o/e, s, t)#2

in Eq. (56). In doing so, we basically already assume that on the slow time scale t, the profile
responds instantaneously to variations in the outer field u. This is why on the inner scale, the
changes in the profile (like /*/

1
) are given by ordinary differential equations with coefficients which

may vary on the outer slow time scale. As it happens, this is actually justified for these type of
problems. For, we have seen that the relaxation of a profile goes exponentially fast, as the spectrum
of temporal eigenvalues E has a finite gap *E. In the present case, where the time scale q in the
order parameter equation scales as e, this means that the relaxation of the front profile goes as
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e~*Et@e. This shows that as eP0, the adiabatic assumption implicit in the above analysis is right, as
the relaxation on the inner scale completely decouples from the slow scale variation of the outer
fields. In other words, we have left out exponentially small terms as eP0, but that is something
that almost always happens when we perform an asymptotic expansion! As we shall see now, the
adiabatic approximation cannot be made for fronts moving into an unstable state, such as
streamers.15

3. Some elements of front propagation into unstable states — relaxation and the effective
interface approximation

We now briefly touch on a few elements of fronts propagating into unstable states. In view of the
length restrictions on the contribution to the proceedings of the school, we only highlight some
recent results obtained in collaboration with Ebert [25], which show that a large class of fronts
propagating into an unstable state show universal power-law relaxation and that this makes the
mapping of such fronts onto an effective interface model questionable.

Our own motivation comes from our attempt to understand the streamer problem, but examples
of fronts propagating into an unstable state arise in various fields of physics: they are important in
many convective instabilities in fluid dynamics such as the onset of von Karman vortex generation
[52], in Taylor [53] and Rayleigh-Bénard [19] convection, they play a role in spinodal decomposi-
tion near a wall [54], the pearling instability of laser-tweezed membranes [55], the formation of
kinetic, transient microstructures in structural phase transitions [56], the propagation of a super-
conducting front into an unstable normal metal [57], or in error propagation in extended chaotic
systems [58]. The experimental relevance of the understanding of the relaxation of such fronts is
illustrated on propagating Taylor vortex fronts. Here the measured velocities were about 40%
lower than predicted theoretically [53], and only later numerical simulations [59] showed that this
was due to slow transients.

When one of the states is unstable, even a small perturbation around this state will grow out and
spread; therefore, the properties of fronts that propagate into an unstable state depend on the initial
conditions. If the initial profile is steep enough, arising, e.g., through local initial perturbations, it is
known that the propagating front in practice always relaxes to a unique profile and velocity
[44,47—49,51]. Depending on the nonlinearities, one generally can distinguish two regimes: as
a rule, fronts whose propagation is driven (“pushed”) by the nonlinearities, resemble very much the
fronts which propagate into a metastable state and which we have discussed extensively in
Section 2 (e.g., their relaxation is also exponential in time). We will therefore not consider this
regime, which is often refered to as “pushed” [50,51] or “nonlinear marginal stability” [49] any

15At the summerschool, Roger Folch Manzanares nicely illustrated to me how one can go wrong with an effective
interface approximation if one does not think about the stability of the equations on the inner scale: in a first naieve
attempt to formulate phase field equations for the viscous finger problem, he had explored equations which did reduce to
the standard viscous finger equations if one blindly followed the standard recipe for analyzing the eP0 limit. However,
the coupling of the phase field with the outer pressure-like field was such that the equations were completely unstable on
the inner scale for small e. So do watch out!
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Fig. 9. The functions g and » in the case of front propagation into unstable states. Compare Fig. 4, where the functions
are drawn for the case of a front between a stable and a metastable state.

further. If, on the other hand, nonlinearities mainly cause saturation, fronts propagate with
a velocity determined by linearization about the unstable state, as if they are “pulled” by the linear
stability (“pulled” [50,51] or “linear marginal stability” [48,49] regime).

Almost all important differences between “pulled” or “linear marginal stability” fronts propagat-
ing into an unstable state and those propagating into a metastable state trace back to the fact that
in the latter case there typically is a discrete set of front solutions, only one of which is stable as was
illustrated in Fig. 6, while in the former case there generally is a family of moving front solutions
[44,47—49]. To illustrate this, we again turn to Eq. (35), but now take g(/) of the form sketched in
Fig. 9a. In this case, g@(0)'0, so the state /"0 is unstable. If we again consider fronts propagating
into this state, the potential » corresponding to this function g is the one shown in Fig. 9b. Now,
the question of the existence of a uniformly translating profile /

v
(x!vt)"/(m

v
) translates into the

question “is there a solution in the particle on the hill analogy in which the particle starts at time
m
v
"!R at the top, and comes to the bottom as m

v
PR?”. Obviously, there is such a solution

for any positive value of the “friction coefficient” v: there is a continuous family of uniformly
translating front solutions.

It is useful to consider the relation between the velocity v which labels the front solutions, and the
asymptotic decay rate K: if we linearize Eq. (35) around the state /"0 and write /

v
& e~Kmv, then

we get vK"K2#g@(0), so

K
B
"1

2
v$J1

4
v2!g@(0), g@(0)'0 . (63)

For v'2g@(0), the roots are real, and K
~
(K

`
. For v(2g@(0), the roots are complex, meaning that

the front solutions decay to zero as /
v
&cos(IK

B
m
v
)e~RK

Bmv. Clearly, the velocity v*"2g@(0) is
a special value, as the two roots coincide there K

~
"K

`
"K*. It is a well-known result that in such

a degenerate case, the front profile does not decay as a single exponential, but that instead in this
case

/
v
*(m

v
)&(m

v
#const.)e~K*mv , (64)

so that the dominant behavior for large m
v
is the m

v
e~K*mv term.

The special status of the value v* also becomes clear when we look at the stability analysis of the
fronts /

v
(m

v
). If we retrace the stability analysis of Section 2, then in this case the potential º(m

v
) in

the Schrödinger-type equation for the spectrum has an asymptotic value (v*)2/4!g@(0)"0. Hence,
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according to our arguments the continuous spectrum associated with quantum mechanically
allowable eigenfunctions16t comes all the way down to zero, i.e., there is no gap. This already gives
a hint that there will be nonexponential relaxation.

In the derivation of effective interface equations, we encountered solvability conditions which
involved integrals of the form :dx(d/

0
/dx)2 — see Eq. (61). In the present case, the front velocity is

always nonzero, and as a result the stability operator is non-Hermitian [25]. If one tries to derive
effective interface equations for such fronts using the same type of approach as discussed at the end
of Section 2, one needs the zero mode of the adjoint operator of the problem with vO0 in the
corresponding solvability condition. Because of the non-hermitian nature of this operator for
vO0, this zero mode turns out to be evmv(d/

v
/dm

v
), and one encounters integrals of the type

:dm
v
evmv(d/

v
/dm

v
)2 (note that for v"0, the zero mode of the adjoint operator reduces to the one we

used before, ­/
0
/­m

v
). As m

v
PR, the integrand behaves as17 e(v~2K

~)mv"eJv2@4~g{(0)mv. As a result,
the integrals that arise if one naively applies the standard analysis do not converge. Although there
have been some suggestions [61] that one might regularize such integrals by introducing a cutoff
which is taken to infinity at the end of the calculations, such fixes do not appear to work here and
obscure the connection of this problem with the slow relaxation discussed below.

We have not yet discussed the origin of the result that “pulled” fronts which emerge from
sufficiently localized initial conditions move with a speed v* determined by the linear behavior of
the dynamical equation [in our case, the fact that v* is determined solely by g@(0)]. The origin lies in
the fact that any perturbation about the unstable state grows out and spreads by itself. This leads to
a natural spreading speed of linear perturbations, and v* is nothing but this speed itself [49,60]. If
nonlinearities mainly suppress further growth, then indeed the dynamically relevant front is
“pulled” [50] by the leading edge whose dynamics is governed by the linearized equation. Ebert
and I have recently found that one can build on this idea to analyze the relaxation of front profiles
towards /

v
* [25]. The main idea can be illustrated within the context of the dynamical equation

(Eq. (35)) as follows. Let us use the freedom of choosing appropriate space and time scales to take
g@(0)"1. As the discussion following Eq. (63) shows, v*"2 and K*"1 in this case, and the
linearized dynamical equation reads

­/(x, t)/­t"­2/(x, t)/­x2#/(x, t) . (65)

We now write the equation in the moving frame m
v
"x!v*t moving with velocity v*"2, and

make the transformation /(m
v
, t)"e~mvt(m

v
, t). This is essentially the same type of transformation

that we did before in Eq. (49) when we performed the stability analysis of moving front solutions.
With these transformations, t simply obeys the diffusion equation

­t(m
v
, t)/­t"­2t(m

v
, t)/­x2 . (66)

16At this point, the warning of footnote 12 becomes important: for fronts propagating into an unstable state, there are
important eigenfunctions of the stability operator which are not in the class of eigenfunctions that are allowed in
quantum mechanics, as they diverge as m

v
P$R. These are especially important when studying the stability of front

solutions with velocity v'v*, as these are the type of solutions whose eigenvalue continues all the way down to zero. As
a result, the stability spectrum is always gapless. See [25] for further details.

17The factor Jv2/4!g@(0) in the exponential is zero at v*. At v*, the integrals still diverge, but only as a power law
[25].
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As is well known, in many diffusion type problems the long time asymptotics is governed by the
fundamental similarity solution or one of its derivatives, like

t4:.
1

"(1/t1@2)e~m2v@4t or t4:.
2

"!­t4:.
1

/­m
v
"(m

v
/2t3@2)e~m2v@4t , (67)

so it is not unreasonable to expect that one of these similarity solutions also governs the long time
asymptotics in the leading edge here. If so, the corresponding function /(m

v
, t) should approach the

dominant m
v
e~mv term of Eq. (64) for large times. As t"eK*mv/, this means that the spatial

dependence of the similarity solution t4:. that we are looking for should go as m
v

for m2
v
;t.

Clearly, the appropriate one is t4:.
2

. Hence, this simple argument suggests that in the frame moving
with velocity v*"2, the dominant long time dynamics in the leading edge is

/&(m
v
/t3@2)e~mv~m2v@4t"e~mv~3@2-/ t`-/ mv~m2v@4t . (68)

If we now track the position m
h
(t) of the point where /(m

v
, t)"h, we get to dominant order from the

requirement that the exponent in the above expression remains constant

m
h
"!3

2
ln t#2 Q mQ

h
"!(3/2t)#2 (69)

As mQ
h

is the velocity of the point where /"h, we see that in the leading edge of the profile the
velocity relaxes towards v* as !3/(2t). This is precisely what was found by Bramson [62] from
a rigorous analysis. Although the above argument is rather handwaving, we have recently found
[25] that it can be made into a systematic asymptotic analysis which applies not just to the
second-order dynamical equation (Eq. (35)), but also to higher-order partial differential equations
which admit uniformly translating front solutions. The surprising finding is that not just the
leading order &1/t relaxation term in the velocity is universal, but also the first subdominant
&1/t3@2 term, which cannot be obtained from the sove argument: independent of the “height”
h whose position we track, we find that the velocity v

h
(t)"v*

#mQ
h

relaxes to v* as

v
h
"v*!

3
2K*tA1!

Jp

K*JDtB#OA
1
t2B , (70)

where for the order parameter equation (35) with g@(0)"1, v*"2, K*"1 and D"1. In the more
general case, D is a coefficient which plays the role of a diffusion coefficient, and which can
be determined explicitly from the dispersion relation of the linearized equation. Moreover, also the
shape of the profile relaxes with the same slow power laws in a universal way which is related to the
existence of a family of front solutions. We refer to [25] for details.

The above 1/t power law relaxation is clearly too slow to make an effective interface approxima-
tion with boundary conditions which are local in space and time possible for “pulled” fronts whose
propagation into an unstable states originates in diffusive spreading and growth. To see this,
consider, e.g., a spherically symmetric front in Eq. (35) in three dimensions which grows out from
some localized region around the origin. For long times the front region is thin in comparison with
the distance r

&
from the origin and the curvature of the front is small and of order 2/r

&
+2/(2v*t).

Thus, the curvature is of the same order as the dominant relaxation term of the front, and one
cannot simply express the instantaneous front velocity in terms of v* plus some kind of curva-
ture correction, as we saw one can do for fronts between a stable and a metastable state. Some
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preliminary numerical investigations have confirmed this. Whether some other interfacial descrip-
tion with memory type of terms can be developed, or whether there are other unexpected
consequences of this slow relaxation, is at present an open question.
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