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The dynamical  behavior of a large one-dimensional  system obeying the cubic complex G i n z b u r g - L a n d a u  equat ion is 
s tudied numerically as a function of parameters  near a supercritical bifurcation. Two types of chaotic behavior  can be 
dist inguished beyond the Ben jamin -Fe i r  instability, a phase turbulence regime with a conserved phase winding number  
and no phase dislocations (space-time defects), and a defect regime with a nonzero density of defects. The  transition 
between the two can either be cont inuous or discontinuous (hysteretic), depending on parameters .  The spatial decay of the 
phase correlation function is inferred to be exponential  in both regimes, with a sharp decrease of the correlation length 
upon enter ing the defect phase.  The temporal  decay of correlations is exponential  in the defect regime. 

1. Introduction 

While there has been considerable progress in 
our understanding of the chaotic dynamics of 
dissipative systems involving a small number of 
degrees of freedom [1], there remains a challeng- 
ing question, and one of considerable ex- 
perimental relevance, concerning the behavior of 
spatially distributed systems with many active 
degrees of freedom. This situation is encoun- 
tered whenever the "energy injection" scale is 
considerably smaller than the "lateral" size of 
the system. It has been suggested [2] that chaotic 
behavior in the limit of an infinite system, i.e. 
extensive chaos, might be understood in terms of 
concepts derived from statistical mechanics and 
critical phenomena.  With this goal in mind, in 
the present work we study the chaotic behavior 

of a simple model, the complex Ginzburg-Land-  
au equation in one dimension [3-5] 

O,A=A+(I+ic~)O2A-(1-ic3)IA[2A, (1) 

on a domain 0-< x-< L with periodic boundary 
conditions and L chosen large enough to approx- 
imate the infinite system ( L -  103). Eq. (1) dis- 
plays a variety of regimes in different regions of 
parameter  space #~. In particular, for c~ = c 3 = 0 

~ T h e  minus  sign in front of the nonlinear term in eq. (1) 
corresponds  to a supercritical bifurcation. More generally, if 
we write eq. (1) as o , A = A + ( l + i c , ) O ~ A - g ( 1 - i c 3 )  
x tAI2A, we may always choose scales such that c 3 > ( ) ' and  
g2 = 1, and a natural extension of the phase diagram of fig. 3 
is in terms of the parameters  c~ and gc 3, both of which may 
change sign. For gc 3 > 0, the quadrant  with c~ < 0 was consid- 
ered by Brether ton and Spiegel [4], whereas for gc3 < O, 
(corresponding to a subcritical bifurcation) the quadrants  
with c t > 0  and c~ < 0  have recently been studied by Sch6pf 
and Kramer  [5]. 
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the dynamics is purely relaxational, while the c,, 

cj + m limit corresponds to the integrable non- 

linear Schrodinger equation [3]. For c,c, < 1, eq. 

(1) possesses linearly stable plane-wave solu- 
tions, A = a, e’(“i’+“‘), with of = 1 - k’ and ok = 

ci ~ (c, + c, )k’ in a band of wavevectors 1 k / s 
k,,,,,(c,. c,) which shrinks to zero along the line 

c,c3 = 1, corresponding to the Benjamin-Feir [6] 

(BF or modulational) instability of the uniform 

(k = 0) oscillatory state [3]. Coexisting (in the 

parameter space) with plane waves arc more 

complex wavetrains, corresponding to (small) 

local modulations of the wavenumber. and small 

adiabatic readjustments of the amplitude [7]. All 

these steady states are classified by an integer 

winding number 

o aJ+, t) dx , 

where 4 is the phase of A. 
The present paper is mostly concerned with a 

study of the phase diagram for c,c, 2 1 and 

Cl? c, - 0( 1). We find that beyond the BF in- 

stability, the system enters a “phase turbulent” 

regime similar to that of the Kuramoto-Sivashin- 

sky (KS) equation [S] (or its generalization [7] 

appropriate to v # 0), followed by a more 

strongly chaotic regime involving large- 

amplitude fluctuations and “phase defects” as 

will be discussed in some detail below. Curious- 

ly, the number of coexisting attractors, or alter- 

natively the dependence of the asymptotic be- 

havior on the initial conditions, appear to de- 

crease as c,cj increases beyond the BF in- 

stability. 

In the present paper we have not attempted to 

systematically explore all of the attractors of eq. 

(1) for c,c7 2 0, but have rather concentrated on 

quantitative characterizations of the chaotic 

states and on the transition from KS-like weak 

phase turbulence to defect chaos. The two are 

distinguished by the presence of a finite density 

of phase dislocation events (here called “space- 

time defects”) in the latter state. These defects, 

which occur when A goes through zero locally, 

allow the winding number v to change#‘. In 

contrast, in the KS (phase turbulent) state. the 

density of defects vanishes, at least to within our 

numerical resolution, making the winding num- 

ber v a constant of the motion. We have thus 

confined our study of the phase turbulent states 

to those in the v = 0 sector. We find that as c, 

decreases the transition between phase and dc- 

feet chaos changes from continuous to discon- 

tinuous at a particular point in the (c, , c3) plane, 

below which there is a hysteretic (“bichaotic“) 

region. 

Besides a numerical calculation of the defect 

density H ,> WC have attempted to charactcrizc 

phase and defect chaos quantitatively by measur- 

ing correlation functions in space and time. The 

spatial correlation functions arc found to decay 

exponentially in the defect chaos regime. while 

in the phase chaos region the correlation length 

is very long (close to the limits of our numerical 

resolution) and the exponential decay of spatial 

correlations is inferred indirectly. Temporal cor- 

relations in the defect chaos regime also decay 

exponentially, while in the phase turbulent state 

we have observed long-time correlations of long- 

wavelength modes, indicative of diffusive or sub- 

diffusive relaxation. Although a number of 

studies of the chaotic dynamics of the Ginzburg- 

Landau model (1) in large systems have been 

undertaken since the pioneering paper of 

Bretherton and Spiegel [4], and in particular the 

transition from phase turbulence to defect turbu- 

lence was recently noted by Sakaguchi IY], wc 

believe that ours is the first attempt at a SYS- 

tematic study of the phase diagram of eq. (1) in 

the (c,, c,) plane, and at a quantitative dcscrip- 

tion of the chaotic states in terms of correlation 

functions. 

“The space-time defects discussed here should not be 

confused with vortices or dislocations which appear as topo- 
logical defects in 2d spatial configurations. 
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2. Numerical results and interpretation 

The complex Ginzburg-Landau  equation (1) 
was solved using a pseudospectral method with 
1024 or 512 modes (for L = 1000 and 500, re- 
spectively). The time step ranged from 0.02 to 
0.2 with typical run lengths being T ~  104-105. 

Fig. la ,b  shows space-time representations of 
the phase &(x, t) for two typical runs, one in the 
phase chaos regime and the other in the defect 
chaos regime. The latter clearly exhibits the 
defects which appear as space-time dislo- 
cations. The average density of defects in (1 + 1) 
dimensions was measured by sampling v(t) and 
recording its jumps v(t,,+l ) v(t,,), each one of 
which is attributed to the occurrence of a defect 
for some x ~ ( 0 ,  L)  and tE[t,,,t , ,+l ]. To avoid 
systematic undercounting the time sampling was 
adjusted to keep most lAy I-< 1. (Note that the 
probability of occurrence of pairs of defects of 
opposite sign during an interval At decreases 
with At.) The variations of n o along several lines 
in the (c~, c3) plane are shown in fig. 2 and the 
results are summarized in the phase diagram of 
fig. 3. While for c~ > c~ the transition between 
phase and defect chaos (line L 1 of fig. 3) appears 
continuous, for c 1 < c~ in the region of (c~, c3) 
delimited by the lines L2, L 3, and LBF of fig. 3 
we found that the two attractors coexist. This 
means that stationary statistical properties de- 
pend on the initial conditions, with hysteretic 
behavior of n o as illustrated in fig. 2. In addition, 
the defect chaos attractor persists in the BF 
stable regime #3. Near the L~ line, c 3 = ( 3 ( c 1 ) ,  

the measured defect density is consistent with 
ni ~ ( c  3 -  ~)2, though a subtle question con- 

(a) 

-0--, 

x (arb. units) 
Fig. 1. Lines of constant phase in a space-time plot. (a) 
Phase chaos regime (c~ = 2, c ~ -  0.91). Although the phase 
fluctuates the lines are continuous. (b) Lines of constant 
phase in the defect chaos regime (G = 2, c 3 = 1). The defects 
appear as space-time dislocations where a constant phase line 
stops. 

cerns discriminating between a continuous transi- 
tion at (3 (with n D = 0 in the phase chaos state), 
and a crossover scenario where n D ¢ 0  but is 
below our resolution, n o - 1 0  6, determined by 
the length of the run. Our data suggest that n D 

B F  vanishes algebraically at c- 3 > c 3 , rather than 
persisting into the phase turbulent state, e.g. 
riD exp[_(c3 ~v, 4, - c3 ) 1, as might naturally fol- 
low from a Gaussian probability distribution for 
Vch (see below) ~4. We thus interpret L~ as a 
continuous transition line and characterize the 
phase turbulent state by n D = 0, v(t)= constant. 

#3For example at the points c~ = 0.4, c3 = 1.5 and c~ = [).4, 
c 3 - 1.1 the defect state was reached by starting in the defect 
chaos region c~ - 1.3, c3 - 1.5 and reducing first c~ and then 
c 3. Clearly, because of the finite time of our numerical runs 
we cannot rule out the possibility that the defect chaotic 
states in the multiphase regions are long lived transients. 
Also note that in exploring the phase turbulent region, we 
have restricted ourselves to the v = 0 sector, so there may 
exist additional chaotic attractors with v ¢ 0. 

~4An exponentially small density of defects would be ex- 
pected if, for example, their appearance were triggered by 
the local phase gradient IV4'l exceeding some critical value 
(the width of the corresponding probability distribution being 
a smooth function of c 3 -  c 3By). An example of a simple 
model for which the defect density becomes exponentially 
small as a function of a control parameter has been proposed 
by Huse [10]. 
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Fig. 2. The defect density along various paths in the (c,, c,) 

plane. For c, = 3.5 the quantity n:,’ appears to vanish linear- 

ly as c, is decreased. For c, = 1.5 there is a hysteretic (or 

“bichaotic”) region 0.9 5 c, 5 1.1 where the value of n,, 

depends on initial conditions. The precise behavior of n,, for 

c, i 1.0 has not been determined. 

To further characterize the chaotic states we 

have evaluated the correlation function of the 

phase 4, 

C(x. t) = (e I(cb(r./)-~(cl.o)) 
> 

L 

dx’ e 
119(x’./‘)~O(s+l’.l+r’)I 

(2) 

I I I 

0 1 2 3 

c3 

Fig. 3. Phase diagram as determined from the defect density 

,rr). The line marked L,,,, (c, = cl) is the locus of the Ben- 
jamin-Feir instability. The defect density is nonzero to the 

right of the lines L, an d L,. Between the lines L1 and L; 
below the point (c:. CT), there is a bichaotic region (marked 
BC) where rr ,) shows hysteresis i.e. it depends on initial 

conditions. 

which increases dramatically as the line L, is 

approached from the right (see fig. 5). In the 

phase chaos regime to the left of L,. the falloff 

of C(x, 0) over the size of the system is not 

sufficient to allow a direct measurement of 5 

(which if it exists is comparable to or larger than 

the size of our system, L -2”‘). Instead, we 

measure a phase diffusion coefficient D defined 

by 
Similarly we define the gradient correlations 

([~(x,O)-~(O,O)]~)-~DX, (4) 

where henceforth the angular brackets have the 

same meaning as in (2). Fig. 4a shows 

C(x)C(x, 0) for 3 points in the defect chaos 

regime, from which we can extract an exponen- 

tial correlation length 

C(x, 0) ,_x exp( -x/S) , 

which is determined by the small-k behavior of 

the “power spectrum” 

r 

i(k) = __z dx g(x, 0) emlh’ , (3 

shown in fig. 4b. It is seen that g(k) apparently 

levels off at small k, to a value g(O) which 
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Fig. 4. (a) The equal-time phase correlation function C(x) in 
the defect chaos regime near the line L~, for c~ = 3.5. There 
is a regime of exponential decay with a correlation length 
which increases as L 1 is approached. (b) The power spectrum 
~(k) of the phase gradient correlation function for a point in 
the phase chaos regime. The dropoff of ~(k) for k/2rr <~ 10 -~ 
reflects the incomplete equilibration of the long-wavelength 
modes during the averaging time. The dashed line was used 
to estimate oa(k--* 0) for fig. 5. 

decreases as one enters the phase turbulence 
regime, and remains finite and small in that 
regime as expected from the Kuramo to -  
Sivashinsky equation [11]. The phase diffusion 
constant D = ½ ~(k ~ 0) is shown in fig. 5. In the 

300 

m 
i 

• / 

/ "i/ , / 
/ C1 =3.5 / 2 .  ,/ , , /  / / 

D //,,,/ o., /,/ /, ,/ 
/ / 

t . . . .  ~ - l I 

0.7 t0.8 10.9 1.0 1.1 

C3 

Fig. 5. The correlation length and phase diffusion constant 
D = ½o~(k---~0) along two paths in the (c I, c3) plane. The 
correlation length is obtained from plots such as the one in 
fig. 4a and can only be measured in the defect chaos regime 
to the right of the lines L t and L 3 of fig. 3. The diffusion 
constant is obtained from plots such as the one in fig. 4b, 
using an extrapolation shown by the dashed line. The arrows 
on the c3 scale indicate the values 63(c~) on the line L~ where 
n~ vanishes. 

phase chaos regime, the relation between ~: and 
D can be derived from the reasonable observa- 
tion that V4~ has short spatial correlations, as 
seen from the behavior of g ( x ,  0) .  If ~ denotes its 
correlation length, then for ix I ~> ~, 

fx fb(x ,  t) - 4)(0,  t)  = Ox,ch(x' ) d x '  

[ xi+~ 
= S'~_~ Ox,~b(x') dx'  

i . J X  i 

behaves as a sum of essentially uncorrelated 
terms and thus leads to a Gaussian distribution 
[12] of ~b(x, t) - ~b(0, t). As a consequence one 
obtains 

C ( x )  = <e'l*(x'"~-~("'"~l> 
= e x p { - ½ < [ ( b ( x , 0 ) -  05(0,0)]2>) = e  D~ 

(7) 



246 B.I. Shraiman et al. / Spatiotemporal chaos in 1D CGL equation 

In the defect regime we expect extra contribu- 

tions to phase diffusion from the 2~r jumps of the 
phase across the defects, which would not con- 
tr ibute to the decay of C(x) .  Thus we expect in 
general 

s c ' <  ½#(0)= D ,  (8) 

with the equality holding in the phase chaos 
regime. The data in fig. 5 are not inconsistent 

with (8), although the equality could not be 
tested. 

The  different regimes also differ in their time 

correlations, with the correlation function C(t)  = 

C(x  = 0, t) falling off exponentially in the defect 
turbulent  regime. The correlation time ~- in- 
creases dramatically as L~ is approached from 
the right, roughly as ~- ~ (c~ - ~3) -2 (see fig. 6). 
The exponent  2 is anticipated if one makes the 
reasonable  assumption that the exponential 
decay of the temporal  correlation function is 

dominated by defects; then the correlation time 
is expected to be comparable  to the average time 

0.4 

0.3 

0.2 

0.1 

t 1 1 1 1 1 1 1 1 1 1  

0.0 t I k ~ ~ i I L ~ L 0.8 0.9 .0 
C3 

Fig. 6. The correlation time for the temporal correlation 
function C(x = 0, t) along a line in the (c~, c.0 plane. The 
time appears to diverge quadratically as L~ is reached. 

I I I I I I i 

100 
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i ~  C 1 = 3.5 

1°14 
r', 10 -2 ~ 8 7  

t07  "?" 

Fig. 7. The probability distribution function of the phase 
gradient P(V~) for various points near L~ with c~ = 3.5. Ill 
the phase chaos regime (c, 0.74) the distribution is asymp~ 
totically Gaussian, while in the defect regime the distribution 
falls off slower than exponentially. 

between the appearance of two defects near the 
l 

measurement  point. Hence,  one has 7 - n  D 

(c 3 - ~ 3 )  2. On the other side of L 1 w e  have 
observed long transients in the relaxation of the 

long-wavelength modes (e.g. in the ~(k) spec- 
t rum for k ~-2~r /L) ,  suggesting the existence of 

diffusive or subdiffusive [13] modes in the phase 
turbulent regime and possibly algebraic falloff of 
C(t). However ,  as with the spatial dependence of 
C(x,  0), the falloff of (~(k, t) with t ime for k ~ 1 
was too slow to allow a conclusive determination 

of the asymptotic behavior.  
Finally, we have also measured the probability 

distribution of the phase gradient, anticipating 
that it could affect the likelihood for the appear- 
ance of defects #4. In fig. 7 we show the probabili- 
ty P(Vq~) obtained from a sequence of configura- 
tions in steady state, for various points on either 
side of the line L I. On the logarithmic scale of 
the figure a Gaussian is a parabola,  so we see 
that the distribution is reasonably Gaussian for 
large fluctuations in the phase turbulence re- 
gime, while in the defect regime the distribution 
falls off slower than exponentially. 
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3. Discussion and conclusion 

We have carried out a numerical simulation of 
the one-dimensional complex Ginzburg-Landau 
equation (1) on a large interval, in order to 
develop means of quantitative characterization 
of extensive chaos. We have found two distinct 
chaotic phases, "defect  chaos" characterized by 
the presence of space-time defects, fluctuations 
of the winding number  and exponential decay of 
temporal  correlations, and "phase turbulence" 
with apparently constant winding number, a van- 
ishing density of defects, and slower than ex- 
ponential  decay of temporal  correlations. Al- 
though we have observed substantial equal-time 
spatial correlations on the length scale of our 
system in the phase turbulent state, we have 
argued in favor of exponential decay of C(x)  on 
the basis of the proposed relation between the 
inverse correlation length ~:-~ and the phase 
diffusion constant D (both of which turn out to 
be numerically small for the values of cl,  c 3 
considered).  If one extends this argument to 
higher dimensions, assuming that the small-k 
behavior of the gradient correlation function 
~(k) is unchanged [i.e. ~ ( k - - ~ 0 ) = 2 D ]  one ob- 

tains 

([~b(x, O) - ~b(O, O)l 2) - x 2-a + const. (9) 

The correlation function C thus goes as a power 
law for d = 2, and shows long-range order for 
d = 3, a familiar result from equilibrium systems 
with 0 ( 2 )  continuous symmetry [14]. In that case 
the diffusion constant D (for d = 1) or the power 
law exponent  (for d = 2) are proportional to the 
tempera ture  T, whereas in our case we have a 
chaotic state and we have assumed that the width 
of the distribution of Vd~ plays the role of tem- 
perature.  These considerations, however, deal 
only with the spatial dependence of the equal- 
t ime correlations and shed no light on their 
temporal  behavior. On the other hand, the sup- 
pression of defects in the phase chaos regime is 
surprising, especially from the statistical point of 

view based on stationary distributions. If true, 
the defect "suppression" must be of dynamical 
origin. A study of the dynamic correlation func- 
tions (and of suitable response functions) is a 
necessary next step towards the "statistical 
mechanics" of extended chaotic systems [2]. An 
obvious question is whether our phenomeno- 
logical discussion of the phase turbulent state in 
terms of a Gaussian P(V4~) is correct. Why is the 
diffusion constant D = ~:-~ so small in the phase 
chaos regime? Can one develop a theory describ- 
ing both static and dynamic correlations in terms 
of statistical mechanics in (d + 1) (i.e. 1 + 1) 
dimensions, as proposed by Bunimovich and 
Sinai [15] for a particular coupled map system? 

Although the phase diagram and characteriza- 
tion of phases we have obtained seem to be a 
good first approximation, many other questions 
are left unanswered. Will our description of the 
phase turbulent state, and the identification of 
the transition to the defect chaos regime hold up 
in the asymptotic large system and long time 
limit? A careful further study of finite-size and 
finite-time effects on the defect density and cor- 
relation functions is required to rule out (and/or  
understand) a possible smooth crossover be- 
tween the phase and defect regimes. Of particu- 
lar interest here is the possibility of an exponen- 
tially small density of defects in the phase turbul- 
ent regime (below the resolution of the present 
study). It would also be desirable to calculate the 
temporal  correlation function more accuratel:, 
since we expect it to exhibit a change from 
exponential  to algebraic decay [13] across the L 1 
line; this would allow the correlation time to be 
interpreted as a disorder parameter  for the tran- 
sition. In addition, further calculations are 
needed to fully map out the phase diagram of eq. 
(1). For example, what is the behavior in the 
u # 0  sectors of the phase chaos regime [7] #5. 
Also, there are preliminary indications that in 
the limit c 1---~0 (over a range of c3) there are 

'~SFor u ¢ 0 we have also observed traveling pulse-trains,  
see ref. [16]. 
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slow time scales in the system and possibly a 
"freezing" transition leading to a state with long- 
range temporal correlations but only short-range 
spatial order. Another interesting regime is 
c~, c3----> + 2  i.e. the approach to the nonlinear 
Schr6dinger equation, where some analytic pro- 
gress might be possible. The other quadrants of 
the (c~, c3) plane #l, as well as higher-dimension- 
al systems [17] for all cj and c 3 also merit further 
study, since qualitatively different phenomena 
are expected to appear (true "amplitude" chaos, 
long-range order, topological defects, "wave col- 
lapse", etc). 

Finally, an important issue concerns the ex- 
perimental relevance of our results. It has been 
noted that the variant of eq. (1) valid for a 
subcritical bifurcation [5] might be a model for 
chaos in binary-fluid convection [18], and other 
systems with traveling waves may also be repre- 
sented by this model. It would be interesting to 
have experimental determinations of n D and of 
the correlation functions C(x, t) and g(x, t). 
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