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Polymer solutions and melts are among the best known and industrially most important visco-elastic complex fluids. When a polymer fluid is sheared with a shear rate 
[image: image1.wmf] larger than the inverse of the polymer relaxation time 
[image: image2.wmf], the polymers get oriented and stretched significantly; on hydrodynamic scales we then get a visco-elastic fluid that is anisotropic and elastic, and which relaxes slowly. This flow-induced stretching and anisotropy cause many surprising effects, and is known to drive low Reynolds number flows with curved streamlines unstable. These elastic instabilities, which occur when the so-called Weissenberg number 
[image: image3.wmf], have no counterparts in regular Newtonian fluids like water. It has been tacitly assumed for over 30 years that in line with this instability scenario, visco-elastic parallel shear flows (between plates or in a straight tube) are stable, since the streamlines are straight. Here we derive instead a general instability criterion, which shows that these flows invariably exhibit a nonlinear instability, with a critical threshold of the perturbation amplitude which falls of as 
[image: image4.wmf] and which is essentially independent of the wavenumber 
[image: image5.wmf]of the perturbation. Semi-analytic expansion techniques and numerical simulations confirm these predictions both qualitatively and quantitatively. The 
[image: image6.wmf]-independence of the threshold amplitude implies that many scales kick in as soon as the instability sets in, and hence that the flow is prone to become turbulent immediately. This scenario unifies several disparate empirical observations: earlier numerical hints of instabilities, rapid transitions to elastic turbulence in most experiments, and the ubiquity of industrial polymer processing instabilities.  
The nonlinear flow instabilities and susceptibility to turbulence discussed here trace back to flow-induced stretching and orientation effects, which have long been recognized (1-3) to lie at the heart of virtually all the surprising rheological phenomena of polymer solutions and melts. Simply put, the difference in speed of different layers tends to orient and stretch the polymers, as Fig. 1a illustrates. Typically, when the longest polymer relaxation time is 
[image: image7.wmf], the orientation and stretching become significant when 
[image: image8.wmf], where 
[image: image9.wmf] is the shear rate (equal to 
[image: image10.wmf] in the figure). In this regime, we can think of a polymer fluid to consist of oriented and stretched elastic bands with an average internal relaxation time that is large compared to the inverse of the typical shear rate 
[image: image11.wmf] of the flow. As illustrated, these flow-induced anisotropic elastic forces tend to pull in the direction along the streamlines on each fluid element. The Weissenberg number 
[image: image12.wmf] is the dimensionless measure of these anisotropic stress effects: it equals the ratio of the difference in the normal forces on the fluid element and the shear stress (1,2). In practice, since the anisotropy of the normal forces is intimately linked to polymer orientation, one has 
[image: image13.wmf] for not too high shear rates; in simple constitutive models this relation becomes a strict equality (1,2).

From daily life we know that normal Newtonian fluids like water tend to exhibit inertia-driven instabilities or turbulence when the Reynolds number (representing the ratio of inertial to viscous forces) of a flow gets large enough, signifying that on large scales the nonlinear inertial forces dominate over the viscous forces. Polymer fluids, on the other hand, are typically very viscous, so inertial effects are typically negligible. However, it has become increasingly clear over the last decades that as the anisotropy and strength of the elastic forces increase with increasing 
[image: image14.wmf], polymer flows with curved streamlines invariably exhibit non-inertial elastic instabilities (2-13). These linear instabilities, whose origin was first identified by Larson et al. (4), are illustrated in Fig. 1: in a sheared region with curved streamlines, the polymer sketched in Fig. 1b is drawn inwards towards the region of higher curvature. As a result, the elastic forces in the fluid become anisotropic and the effect, measured by 
[image: image15.wmf], is larger, the larger the curvature and the shear rate. This difference in elastic forces across and along curved streamlines gives rise to the so-called rod-climbing effect if the shear is caused by rotating a rod in an open beaker (1), and causes a flow instability in confined geometries: beyond some threshold a small displacement of one fluid element inwards and, by mass conservation, of the other one outwards, will continue to grow in time – the flow is linearly unstable. Pakdel and McKinley (6) have summarized the instability thresholds for various flow geometries in the form

Instability for:  
[image: image16.wmf].
[1].

Here 
[image: image17.wmf] is the characteristic radius of curvature of the streamlines, and 
[image: image18.wmf] is the characteristic distance over which perturbations relax along a streamline – in other words, 
[image: image19.wmf], with 
[image: image20.wmf] the typical velocity along a streamline and 
[image: image21.wmf], as above, is the polymer relaxation time. The critical value 
[image: image22.wmf] depends on the particular flow geometry, and was found to range from about 1 to 6 in the cases studied. From the form of this condition, which we will refer to as the Pakdel-McKinley instability condition, we recognize that indeed the instability is due to the combined effect of the normal stress differences which increase linearly with 
[image: image23.wmf], and the curvature of the streamlines, which is of order 
[image: image24.wmf]. Detailed experimental studies in various flow geometries have confirmed that the various instability conditions (4-8,15,16) as summarized by Eq. 1 capture the instability onset in various flow geometries quite well (6,17). At the same time such experiments reveal that the coherent flow patterns that emerge at onset tend to give way rapidly to well-developed turbulence at Weissenberg numbers 
[image: image25.wmf] only slightly larger than the critical value (8-13).

Extension of the Pakdel-McKinley argument to parallel shear flows 
During the past several decades of non-Newtonian fluid mechanics research, it has essentially always been tacitly assumed that parallel shear flows – flows with straight streamlines such as pressure-driven Poiseuille flow between plates or in a pipe, or plane Couette flow between plates moving at different speeds – are stable at small Reynolds numbers. At first sight, this is in line with the above argument and the Pakdel-McKinley condition 1, which states that flows with straight streamlines (and hence 
[image: image26.wmf]) are linearly stable for any 
[image: image27.wmf]. We here convincingly show, however, that this naïve idea is not right. Indeed, while this argument implies that such base flows are linearly stable for any 
[image: image28.wmf] (in that a perturbation of infinitesimally small amplitude must decay), it also implies that such flows must be nonlinearly unstable to perturbations of finite amplitude: a finite amplitude perturbation does create streamlines with a finite curvature, so if the curvature is large enough, a small perturbation of the curved streamlines should, according to the standard arguments, increase in time rather than die away (9,18,19). What so far has stayed unnoticed, apparently, is that this idea can also be made more precise with the aid of the Pakdel-McKinley condition. The condition 1 has so far always been interpreted as the condition for the threshold value of 
[image: image29.wmf] at which a base flow with given curvature 
[image: image30.wmf] of the streamlines goes unstable. However, if we consider parallel shear flow and interpret 
[image: image31.wmf] as the typical curvature of the perturbed streamlines, for large enough 
[image: image32.wmf], we can just as well ask how large the curvature of a finitely perturbed streamline needs to be at fixed 
[image: image33.wmf] to drive the flow unstable. To illustrate this, let us analyze the critical amplitude of finite-amplitude sinusoidal perturbations with wavenumber 
[image: image34.wmf] of the streamlines in plane Couette flow with plate spacing 
[image: image35.wmf]. In Fig. 1c we plot the situation in the fixed laboratory frame and in Fig. 1d in the frame moving with the upper plate. Viewed in the latter frame, the perturbation corresponds to vortices of diameter of about 
[image: image36.wmf] a distance of order 
[image: image37.wmf] from upper wall20. In terms of the critical amplitude 
[image: image38.wmf] of the first harmonic of the associated dimensionless shear rate modulation at the wall 
[image: image39.wmf], we have 
[image: image40.wmf] and 
[image: image41.wmf]. Substitution of this in the Pakdel-McKinley condition (1) and using 
[image: image42.wmf], we then simply get


[image: image43.wmf]      independent of 
[image: image44.wmf]  for 
[image: image45.wmf], 
[image: image46.wmf] sufficiently large.
(2)

Analysis of the streamlines in the laboratory frame, sketched in Fig. 1c, leads to the same condition, as it should (see supplementary information). Note that since the threshold is finite for any finite 
[image: image47.wmf], the predicted instability is indeed nonlinear (“subcritical”) – it will escape a linear stability analysis. We will first summarize our results which show that nonlinear analysis and numerical results fully confirm this prediction, and then discuss the implications of the 
[image: image48.wmf]-independence of the threshold.

The nonlinear instability and transition to turbulence scenario: numerical tests
We have first of all probed the accuracy of the threshold prediction with the nonlinear amplitude expansion which was developed to study the nonlinear stability of parallel shear flows to spatially periodic perturbations (18,19). These methods do indeed give a finite amplitude 
[image: image49.wmf] for large enough 
[image: image50.wmf], as Fig. 2a illustrates for plane Couette flow of the so-called Upper Convected Maxwell (UCM) constitutive equation (1,2). The range of 
[image: image51.wmf] over which such calculations can be performed is limited, due to numerical convergence problems at large 
[image: image52.wmf]. Nevertheless, over the limited range 
[image: image53.wmf] the threshold amplitude falls off approximately as 
[image: image54.wmf], and 
[image: image55.wmf]. The second important new result of these calculations, shown in Fig. 2b, is that for fixed 
[image: image56.wmf], the threshold amplitude 
[image: image57.wmf] is independent of 
[image: image58.wmf], in full agreement with our prediction Eq. 2. 

Secondly, fully implicit numerical simulations, based on exponentially convergent spectral methods (21), of two-dimensional Poiseuille flow for a fixed 
[image: image59.wmf] are consistent with the nonlinear instability scenario: Fig. 3 shows the temporal evolution of the flow streamlines at 
[image: image60.wmf] ensuing from a perturbation with amplitude greater than the critical value. Note from Fig. 3 that as time progresses, the curved region is convected in the flow direction and amplified before forming the vortices. This is consistent with the proposed elastic instability mechanism according to which sufficiently large normal stress gradients across curved streamlines can generate vortical flows. Fig. 3 also shows that progression of the instability causes more vortex-type structures to appear at smaller scales. This effect, which is intuitively consistent with the 
[image: image61.wmf]-independence of the threshold amplitude, is so strong that in the simulations the instability does not appear to saturate – our data are consistent with a blow-up in finite time! (We empirically find this finite-time blow-up to fit the dynamics of a cubic unstable Ginzburg-Landau equation.) We take this finding as a first signature that the nonlinear instability generates turbulent flow at many scales and that saturation effects only occur on polymer scales which are outside our model and numerical simulations. Because of the nonlinear energy transfer to shorter length scales, the threshold value observed in a simulation can be expected to depend on the length of the simulation and on the finite order of the Fourier expansion used until, in an asymptotic sense, a putative broad-band spectrum of a chaotic turbulent state is captured. We defer an extensive quantitative comparison and study of the cascade to smaller scales at rather large 
[image: image62.wmf], using fully-implicit simulations, to a future study.  

It is important to realize that our extension Eq. 2 of the Pakdel-McKinley condition is only correct for large enough 
[image: image63.wmf], since we implicitly assumed the change of the normal stresses induced by the modulation of the streamlines to be small, and used the large-
[image: image64.wmf] scaling of the eigenmodes (20). For small 
[image: image65.wmf], on other hand, the change in the normal stress components induced by the finite amplitude modulation is important. In order to investigate the low-
[image: image66.wmf] regime, we have performed extensive numerical simulations of the same model for plane Couette flow using a semi-implicit finite-difference scheme (22), which allows us to scan larger parameter ranges. In these simulations, a finite stress diffusion with a prefactor 
[image: image67.wmf] is added to the equations. Physically, a diffusive term is the first one to come in a gradient expansion aimed at accounting for the finite polymer scale, but we use an artificially large value of 
[image: image68.wmf] to allow full resolution by the numerical grid (23-25). These results are qualitatively consistent with our results for plane Poiseuille flow: a nonlinear instability resulting in blow-up is again found beyond some threshold modulation. Fig. 4 shows the critical threshold values in terms of the dimensionless normal stress modulation amplitude 
[image: image69.wmf] for small 
[image: image70.wmf] at various values of 
[image: image71.wmf] (here 
[image: image72.wmf] denotes the value in the unperturbed flow). We see that the threshold stress modulation amplitude values 
[image: image73.wmf] necessary to drive the flow unstable are essentially 
[image: image74.wmf]-independent, but so unrealistically large (a factor 12 at 
[image: image75.wmf] !), that in practice this nonlinear instability is not very relevant for small 
[image: image76.wmf]. It is unfortunately not really possible to extend the Pakdel-McKinley argument to the small-
[image: image77.wmf] regime, since there is no simple scaling of the perturbation modes with 
[image: image78.wmf], 
[image: image79.wmf] and wavenumber 
[image: image80.wmf]. Nevertheless, as the modulation of the stresses (and hence of the effective Weissenberg number) seems to be the dominant effect, we can replace Eq. 1 by 
[image: image81.wmf]. Since the xx component of the stress tensor is by far the largest while the shear stress does not change significantly, we can assume 
[image: image82.wmf] and 
[image: image83.wmf], and using 
[image: image84.wmf], we obtain 
[image: image85.wmf]. This suggests that the instability sets in at some critical value of the normal forces independent of 
[image: image86.wmf], yielding 
[image: image87.wmf]. Fig. 4 shows that our data are quite consistent with such a 
[image: image88.wmf] scaling, except at the smallest value of 
[image: image89.wmf]. Moreover, at the largest 
[image: image90.wmf] and smallest 
[image: image91.wmf] values our finite difference results yield values of 
[image: image92.wmf] which are within 25% consistent with the amplitude expansion results of Figs. 2. 

Implications of the scenario and of the observations
In summary, we take our extension of the Pakdel-McKinley threshold condition to finite amplitude perturbations of visco-elastic shear flows together with our numerical results as convincing evidence that large 
[image: image93.wmf] number visco-elastic parallel flows are prone to nonlinear instabilities. Already at 
[image: image94.wmf] only a 6% change of the shear rate at the wall is sufficient to trigger the instability in plane Couette flow, and as the threshold amplitude 
[image: image95.wmf] decreases as 
[image: image96.wmf] the threshold amplitude becomes quite small at high 
[image: image97.wmf]: high-
[image: image98.wmf] flows are very prone to this nonlinear instability (26). The fact that the threshold amplitude is 
[image: image99.wmf]-independent (up to length scales set by the polymer length) strongly suggests that many modes will in practice kick in immediately, and hence that the instability will give rise to elastic turbulence. This is qualitatively consistent with the rapid transition to fully developed turbulence found in experiments (10-13) and with the absence of any saturation in our numerical studies: visco-elastic flows are prone to nonlinear instabilities that rapidly give rise to turbulence! Clearly many new open issues emerge: the origin of the blow-up we find numerically and of the transfer of energy to smaller length scales before the instability arises, a detailed large 
[image: image100.wmf] study of parallel shear flows both in two and three dimensions for various constitutive models, the fact that our numerical results do not give evidence for the existence of a minimum 
[image: image101.wmf] while the amplitude expansion does suggest the existence of a saddle-node point, and the role of transient amplification (27) of perturbations. Furthermore, there are many important immediate implications of our findings that need to be pursued: (i) the tendency to exhibit a sudden jump to a turbulent regime will also exacerbate simulations of high 
[image: image102.wmf] number flows, which are so prohibitively difficult that the apparent barrier is sometimes referred to as the “high Weissenberg number problem” (19,28). (ii) Our observations motivate simulations of the turbulent regime using self-consistent numerical schemes that preserve the evolutionary nature of the constitutive equations. (iii) Our results suggest that many melt-fracture phenomena which plague industrial polymer processing operations (3), and which are typically triggered in the same range of 
[image: image103.wmf], are due to or intimately connected with this nonlinear instability. (iv) Microfluidic experiments are very suitable to test our predictions experimentally. (v) The nonlinear transition scenario we find is very similar to the transition to turbulence scenario in Newtonian (29) and weakly elastic (30) fluids; likewise, purely elastic turbulence in pipe flows may be governed by coherent structures as well.

Methods 
Our semi-analytical calculations of the nonlinear stability of parallel shear flows is based on the amplitude expansion method (19) applied to the Upper Convected Maxwell (UCM) model, one of the basic constitutive equations for polymer rheology (1). A periodic modulation of amplitude 
[image: image104.wmf] with wavenumber 
[image: image105.wmf] in the shear direction is added to the flow. In the spanwise direction, the variation of the stress and velocity field is proportional to an eigenfunction of the linear stability operator. We then derive a dynamical equation for 
[image: image106.wmf] by expanding in powers of 
[image: image107.wmf] using amplitude equation methods. The coefficients in this equation can then be derived using essentially standard methods (18,19). Analysis of this expansion up to 11th order indicates that this series converges well. The curves shown in Fig.2a are based on the analysis of the series up to 11th order. Although the position of the saddle-node point in Fig. 2a (the leftmost point on the threshold branch) is somewhat dependent on the wavenumber, as shown in (13), the threshold amplitude 
[image: image108.wmf] is essentially 
[image: image109.wmf]-independent, as Fig. 2b shows. As discussed in (19), the divergence of the upper branch only slightly to the right of the saddle node point may be an artefact of our amplitude expansion, but it could also be interpreted as the amplitude expansions signal of the blow-up behaviour found in the numerics beyond the threshold. Note that both in our amplitude expansions and in our numerical simulations, we consider initial perturbations which are periodic in the streamwise direction; different choices would lead to somewhat different values of 
[image: image110.wmf], as the threshold amplitude for a nonlinear instability depends on the form of the initial perturbation (13).

The numerical simulations of Fig. 3 are based on an implicit, exponentially convergent (in space) Chebyshev-Fourier spectral scheme developed and tested extensively for a sinusoidal channel flow using the Oldroyd-B model which also takes into account the viscous stresses through the parameter 
[image: image111.wmf] which represents the ratio of solvent to polymer contribution to the viscosity (21). Addition of this parameter helps enhance numerical stability.  The viscosity ratio 
[image: image112.wmf] in these simulations was taken to be relatively small (
[image: image113.wmf]). (In the limit as 
[image: image114.wmf], the UCM model is recovered.) Inclusion of finite chain extensibility effects does lead to an increase in critical 
[image: image115.wmf], but does not qualitatively influence the nonlinear instability mechanism (21).

In the finite-difference simulations of Fig. 4, the local terms in the

Oldroyd B model are updated using an explicit Euler algorithm on a rectangular grid.  Third order upwinding is used for the convective term. After Fourier transforming in the flow direction, the diffusive term is updated using a semi-implicit Crank-Nicholson algorithm. Incompressibility is ensured via a stream function.
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       fig 1d
Figure 1. (a) Qualitative sketch of the shear-induced stretching of polymers in the regime 
[image: image125.wmf]. The polymers tend to orient normal to the shear gradient, and the stretched polymers tend to pull in the direction along the streamlines on the surfaces of fluid elements normal to the streamlines. (b) Illustrates how a polymer in a curvilinear flow tends to be drawn inwards. After some time, a polymer molecule starting in configuration 1 is stretched (configuration 2) due to the velocity difference between the streamlines (shear). As the result, the centre of mass of the polymer moves towards the region of higher curvature and shear rate. A finite-wavelength instability results from the fact that this effect increases on fluid elements that move inwards, and decreases on those which move outwards. (c, d) Two views of a perturbed streamline in the case of plane Couette flow – flow between plates moving in opposite direction. In the laboratory frame, a streamline near the upper plate is a wavy line with wavelength 
[image: image126.wmf], in a frame moving with a speed almost that of the upper plate, streamlines are vortex-like rings of diameter 
[image: image127.wmf]. The fact that vortices close to the plate are most unstable is related to the fact that the stable linear eigenmodes have a peak in a region of diameter 
[image: image128.wmf] near the plates. 
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fig 2b
Figure 2. (a) Critical amplitude of sinusoidal perturbations of plane Couette flow, according to the amplitude expansion results of Ref 19 for the UCM model with wavenumber 
[image: image131.wmf]. Initial perturbations whose amplitude is larger then the critical value given by the solid line grow in time, indicating nonlinear instability. The dashed line corresponds to the function 
[image: image132.wmf]. (b) Critical amplitude as a function of the wavenumber k, for various values of Wi, according to amplitude expansion calculations for plane Couette flow.
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Figure 3. Color plot of the  stream function of two-dimensional plane Poiseuille flow illustrating the development of the instability. The bottom panel shows the initial condition, where the flow is perturbed with an eigenmode of the linear stability operator. Later panels, corresponding to 
[image: image134.wmf],
[image: image135.wmf] and 
[image: image136.wmf], show how the perturbation grows into a vortex-like structure while it gets advected away. Time is measured in units of 
[image: image137.wmf], the wavenumber of the initial perturbation is 
[image: image138.wmf], and the simulations are performed following Ref 21 with the Oldroyd-B model with 
[image: image139.wmf] at 
[image: image140.wmf]. The supplementary information includes a plot of the corresponding streamlines.
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Figure 4. Critical threshold 
[image: image142.wmf] as a function of 
[image: image143.wmf] for various 
[image: image144.wmf], where 
[image: image145.wmf] measures the strength of the diffusion term 
[image: image146.wmf] in the Oldroyd-B constitutive equation for the polymer stress tensor 
[image: image147.wmf] (1-3,22). The dashed line is a fit to a 
[image: image148.wmf] behaviour.
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