Phase diagram for jammed systems
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Abstract

Jammed systems such as colloidal pastes, gels, granular materials, etc. undergo a viscosity
bifurcation at a critical stress: depending on the stress level, the steady-state viscosity is either finite
and low, or (almost) infinite. This implies that below a critical shear rate, the flows are unstable.
Under controlled flow rate this leads to a coexistence of ‘solid” and ‘liquid’ phases, i.e., phases with
infinite and finite viscosity. It follows that the stress-shear rate diagram for jammed systems is
analogous to the Van der Waals phase diagram determining phase coexistence for simple
substances in thermodynamic equilibrium, showing that the ‘jamming transition’ in these systems is
analogous to the phase separation associated with a first-order phase transition. This makes a direct

connection to the glass transition difficult.



Systems consisting of a more or less close packing of elements of mesoscopic size (colloidal
particles, grains, bubbles, droplets) are frequently encountered in everyday life: in foodstuffs,
cosmetic and pharmaceutical products, but also in civil engineering and natural flows; specific
examples are mayonnaise, creams, concrete, clayey soils, shaving foams etc. Recently, an attempt
was made to describe such ‘jammed’ systems in a single conceptual scheme [1], extending a
previous proposal for the analogy between glasses and granular matter [2]: jammed systems do not
flow and are consequently ‘glassy’ whereas unjammed systems are ‘liquid’. The analogy with the
glass transition comes from the identification of the blocked or jammed configurations with local
minima of the free energy in a complicated energy landscape with many metastable states. Given a
distribution of local energy minima [3], the response to an external forcing can be worked out
explicitly [4]. This proposal implicitly assumes a similarity between the glass transition (as a
function of temperature) and the mechanical transition between jammed and unjammed states (as a
function of the applied load) [1,2]. Subsequent calculations for specific model glasses subjected to
an external forcing indeed provided some evidence for this [5]: under an external forcing, the glass

transition is shifted to lower temperatures, but its nature does not change.

We will show here however that, contrary to what is found for the glass transition, under
forcing, coexistence between jammed and unjammed material is observed, underlining the
discontinuous nature of the transition between jammed and unjammed configurations. In addition,
we show that the analog of a phase diagram in the (load/deformation rate) plane can be drawn, in
which the coexistence region shrinks to disappear at a ‘critical point’, beyond which the
discontinuity disappears. This bears a strong analogy to equilibrium phase transitions, the
coexistence region corresponding to the phase separation associated with a ‘van der Waals’ loop.
The dynamical phase diagram we obtain can provide a unified description of the very different
materials mentioned above on the basis of their very similar mechanical properties. In addition, we
find that the (flow, temperature) history of these systems are crucial in determining for instance the
location of the ‘critical point’, showing that time is an additional factor that needs to be taken into

account (being absent from the ‘jamming phase diagram’ of [1]).

Jamming and unjamming are related to evolution of the configuration of the mesoscopic
elements constituting the material, which interact via various forces that are system-specific. Here
we consider systems made of an ensemble of elements (solid particles, liquid droplets, bubbles, or
polymer chains) which interact, e.g. by colloidal forces, direct contact forces, entanglements or
crosslinks between polymer chains, leading to a continuous network of forces throughout the
sample. The result of these interactions is that at a macroscopic level the material responds

elastically to a small stress applied to it: the system is said to exhibit a yield stress.



When submitted to a shear stress, the response of a perfect yield stress fluid is a slow flow
provided the stress is slightly beyond the yield point: its viscosity diverges in a continuous fashion
when the yield stress is approached from above. In practice, however, when submitted to flow, the
microstructure of the material is partly destroyed, generally observed as a viscosity that decreases in
time (‘thixotropy’). On the other hand, at rest the microstructure reforms or evolves spontaneously:
the systems are said to age. Experimentally, this is reported as an increase of an apparent yield
stress with time [6]. The mechanical behavior of these systems consequently results from the

competition between aging and rejuvenation by the shear flow.

We have shown recently that the direct consequence of this competition is that a bifurcation
in the rheological behavior occurs: for a given load, the fluid either stops flowing, or fluidifies [7].
Applying different stresses to a sample and following the viscosity in time, it was found that for

stresses smaller than a critical stress o, the aging wins over the thixotropy (which can be looked

upon as a shear rejuvenation [7]), i.e. the viscosity increases in time until the flow is halted
altogether: the steady-state viscosity is infinite. On the other hand, for a stress only slightly above

o, the rejuvenation ‘wins’ over the aging. As a consequence, the viscosity decreases in time; for
long times it reaches a (low) steady state value 77,. This implies that at the critical stress, the steady-
state viscosity jumps discontinuously from infinity to a finite and low value at o, . This bifurcation

was observed for colloidal gels and glasses, polymer gels and more recently also foams, emulsion
and granular matter [7], and is therefore believed to be general for “yield stress’ or ‘jammed’ fluids.
A direct consequence of the bifurcation is that, in steady-state, a whole range of shear rates is

inaccessible to the system [7].

In this Letter we ask what happens within the fluid when such an inaccessible shear rate is
imposed on the system. We find that the consequences on the flow characteristics in terms of the

apparent shear rate can be described in a 'phase diagram' in the stress/shear rate ( 7,y ) plane (Fig.1).

As a particular example we consider here a colloidal gel, a solution of Bentonite which is a weakly
flocculated clay suspension; the results are believed to be general also for the other systems. For
this system, a viscosity bifurcation has been observed [7]. The rheometrical tests were done with a
Bohlin C-VOR controlled stress rheometer equipped with a (roughened) cone and plate geometry
(4°). A logarithmically increasing stress was applied to the materials starting from a low value. The

detailed observations are that:

1) for sufficiently small shear stresses, corresponding to small shear rates, the material does not
flow appreciably: the critical deformation at which the network breaks has not been reached

and as a result in this range the material is entirely in a 'solid' phase; the viscosity is very
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large. The corresponding critical shear rate for the onset of measurable flow sensitively
depends on the flow history, both because of intrinsic material structuration in time and

because most likely there exists in fact a critical deformation rather than a critical shear rate;

2) at a critical stress there is a 'coexistence' plateau (see below) associated to a wide range of
(apparent) shear rates; in our experiments the shear rate extremely rapidly increases at this

critical stress;

3) beyond a critical shear rate y,the material is entirely liquid and the stress increases as a

function of the apparent shear rate.

Upon increasing the particle concentration, in Fig.1(a) it is shown that one passes from a
continuously increasing flow curve for the lowest concentration to one with a plateau. The same
observations are made if we consider different initial degrees of jamming, i.e., different ages of the
same system (Fig.1(b)): "Young", fluid systems do not exhibit coexistence, but older, more jammed

systems do.

The main question is then what happens at the stress plateau; such a plateau is unphysical
since it implies that for a given stress several shear rates are possible, and that consequently the
system has several viscosities at this stress. We therefore measure the velocity profile of the sheared
fluid in the stress plateau; these results are obtained in steady state with a cone-and-plate rheometer
inserted in a magnetic resonance imager (MRI) (see details in [8]). The key observation is that for
shear rates smaller than a critical one, we observe a coexistence between sheared and unsheared
material, as can be observed directly from the determination of the velocity profiles (Fig.2).
Although in a cone-plate geometry the shear stressis constant, the velocity profiles are composed of
two regions: in the first region (close to the bottom) there is no apparent shear while in the second
region the fluid is sheared at alarge rate. It is worth noting that the effective rate of shear observed
in MRI tests in the sheared region is about 50s™, which approximately corresponds to the critical
shear rate at which the stress starts again increasing with shear rate in the phase diagram (for
¢ =6%); thus our MRI tests effectively prove that no coexistence occurs beyond this apparent
shear rate.

The stress plateau then signals a dynamic coexistence of unsheared (jammed) and sheared
(unjammed) material, in analogy with the plateau in the equilibrium pressure-volume phase diagram
for simple fluids. The observed coexistence of a sheared and an unsheared part of the materiad is
likely to be a genera property of these jammed systems. Indeed, measurements of the velocity
profile for instance in slowly sheared foams and granular systems typically show a strong
localization of the strain in a small band close to the moving wall, the rest of the material being
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essentially undisturbed [9]. Similar observations were made in pastes, as was shown in cone and
plate flows of silica suspensions [10] and the colloidal glass of Laponite [11]. However, besides the
observation of localization, no quantitative study was made; the width of the sheared region, for

instance, was often believed to be a material property.

The MRI observations show that for our system something very different happens: upon
increasing the rotation velocity of the cone the width of the sheared region increases (Fig.2). This
means that the macroscopically observed ‘viscosity’ in fact reflects the shear rate distribution rather
than some intrinsic viscosity of the sample. The macroscopic shear rate calculated from the relative
velocity (V') of the solid boundaries; is y =V/H where H is the sample thickness. In the cone-
plate geometry, the stress is homogeneous. However there is always some slight deformation of the
peripheral free surface, which may induce a slight heterogeneity of the stress distribution. Probably
due to these slight variations in stress, we observe that the viscosity bifurcation can take place

within the sample. We observe that the material is sheared at a rate 7, in a layer of thickness H
and at a rate ¥, = 0 in a layer of thickness (1-&)H . This is a priori always possible when the

apparent shear rate is imposed at the boundary, the only condition being that: &y, + (1-&)y, =y .

We recently introduced a model that accounts for the viscosity bifurcation [7], and show
here that a simple modification of this model provides a qualitative description of the results
obtained here also. As before, we assume that the ‘degree of jamming’ can be described by a single
parameter A. For the colloidal gel considered here, 4 could for instance represent the number of
attachments between particles per unit volume. This makes it a measurable quantity: the Young's
modulus of gels is on the order of kgT divided by the number of cross-links per unit volume [12].
The new —and physically important ingredient- is that for the type of system we consider here,
which have a very large but finite viscosity in the "solid" phase, the degree of jamming has a large
but finite equilibrium value. We implement the aging by assuming that in the absence of shear, 4
relaxes to its equilibrium value, Ao, with a characteristic relaxation rate 1/t. As before [7], we
suppose that the rate of decrease of A under shear (the shear rejuvenation) is proportional to the
shear rate y, since the number of elements pushed out of their potential wells is simply proportional

to the total strain [4]: A4 oc yAz. If we further suppose that the two processes (aging and shear

rejuvenation) are independent, the rate of variation of 4 can be written as:

ANA=1/1 (Juy 2) -7 A (1)



where ¢ is a material parameter. We further assume, as previously, that the viscosity of the

material is a simple, power-law function of A :

n=no(1+1") 2)

In steady state, L = Aeq/ @y 7 so that the shear stress becomes: o/ng = 7 (1+4.,"/(1+ay 7)"). Fig.3
shows the shear stress-shear rate curves predicted by the model: it gives a nearly Newtonian
behavior for small shear rates, with 6 = y (I+4,,"). For higher shear rates the stress-shear rate

curve has a negative slope when n is sufficiently large. A simple linear stability analysis [13] shows
that flows are necessarily unstable in the regions with a negative slope. This negative slope is the
hallmark of a shear banding transition, for which localization of the shear in part of the sample
occurs. We have shown here that this shear banding takes the form of a ‘phase coexistence’ in
which the width of the sheared region increases upon increasing the macrosopically imposed shear
rate. The unstable negative slope for the shear stress-shear rate curve in this region is then the
equivalent of the "van der Waals" loop for equilibrium systems. Consequently, there is a clear
transition between jammed and fluid systems, at the equivalent of a critical point in the phase

diagram (1/ p,v) of simple matter at different temperatures. Here the ‘critical point’ is encountered

as a function of the power n which measures the relative weight of the ‘background’ solvent
viscosity 1o to the non-Newtonian effects discussed here. It then follows naturally that upon
increasing the non-Newtonian effects (i.e., n), these start to dominate the flow behavior. The
behavior of the model for increasing n (cf. Fig.3) is analogous to that found experimentally in
Fig.1(a) for increasing densities: the extent of the coexistence region decreases for decreasing n

values (for a fixed value of A,) and disappears at the critical point corresponding to

1 1
n, :(kl;f +1)/(7:q; —1). Although phenomenological in nature, this model does well in

reproducing the experimental observations; it shows in any case that only minimal ingredients are

necessary to reproduce the 'critical point' that is observed in the experiments.

In conclusion, the effect of shear on jammed systems is likely to be more complicated than
was hitherto assumed. Models borrowed from studies of the glass transition show that an external
forcing leads to a decrease of the longest relaxation time that depends in a continuous way on the
forcing. As it is this relaxation time that diverges at the glass transition (and its divergence is also
believed to lead to jamming), this simply means that the main effect of the forcing will be that the
transition is displaced in the phase diagram [1,2,4]. We show here however that the nature of the
transition changes. Contrary to what is found for the glass transition, under forcing a coexistence
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between jammed and unjammed material is observed, underlining the discontinuous nature of the
transition between jammed and unjammed configurations. We have also shown that the observation
(or not) of coexistence depends on the previous flow history of the material [8]. This is in fact a
very peculiar observation since it implies that the system ‘remembers’ its entire flow history
indefinitely: the viscosity in steady state is found to be different for the same system subjected to
the same stress. This underlines that if a generalized 'phase diagram' for jammed systems can be

constructed, time is probably an important variable that has been overlooked so far.
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Captions

Figure 1: Shear stress-shear rate curves during increasing stress ramps imposed after a preshear

(500s™" during 20s) followed by a certain time of rest, for Bentonite suspensions at different

densities (a) (time of rest: 20s) or after different times of rest (b) (¢ =3.6% ). The dotted lines

indicate the probable position of the "phase" boundary.

Figure 2: MRI velocity profiles for a Bentonite suspension (¢ = 6% ): height in the sample at 4.6cm

from the center as a function of the tangential velocity, during cone-and-plate (angle=8°,

diameter=13cm) rheometrical tests at different rotation velocities of the cone.

Figure 3: Dimensionless shear stress cot/moieq as a function of imposed dimensionless shear rate

yot/A,, from the phenomenological model given by Egs. (1) and (2) for various values of the

exponent n, n=1,1.25, 1.5..3 and A.=6.6. For imposed stress, the range where the slope of the
stress-shear relation is negative will be dynamically unstable. As a result, the range of shear where
the slope is negative marks the region where homogeneously sheared solutions can not be obtained

experimentally for imposed stress.
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