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Abstract

It is well known that the Poiseuille flow of a visco-elastic polymer fluid between plates or through a tube is
linearly stable in the zero Reynolds number limit, although the stability is weak for large Weissenberg numbers
(Wi). In this paper, we argue that recent experimental and theoretical work on the instability of visco-elastic
fluids in Taylor–Couette cells and numerical work on channel flows suggest a scenario in which Poiseuille flow
of visco-elastic polymer fluids exhibits anonlinear “subcritical” instability due to normal stress effects, with a
threshold which decreases for increasing Weissenberg number. This proposal is confirmed by an explicit weakly
nonlinear stability analysis for Poiseuille flow of an UCM fluid. Our analysis yields explicit predictions for the
critical amplitude of velocity perturbations beyond which the flow is nonlinearly unstable, and for the wavelength
of the mode whose critical amplitude is smallest. The nonlinear instability sets in quite abruptly at Weissenberg
numbers around 4 in the planar case and about 5.2 in the cylindrical case, so that for Weissenberg numbers somewhat
larger than these values perturbations of the order of a few percentage in the wall shear stress suffice to make the
flow unstable. We have suggested elsewhere that this nonlinear instability could be an important intrinsic route to
melt fracture and that preliminary experiments are both qualitatively and quantitatively in good agreement with
these predictions.
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1. Introduction

1.1. General motivation

In this paper, we reconsider the classical topic of the stability of visco-elastic Poiseuille flow in the
zero Reynolds number limit. From aweakly nonlinear expansion, we find that this flow is nonlinearly
unstable for high enough flow rates.

The first linear stability analysis of the flow of a so-called Oldroyd-B fluid—one of the simplest
continuum models for a visco-elastic polymeric fluid with nonzero normal stress differences, characterized
by a single relaxation timeλ [1]—was already performed almost 30 years ago[2]. Since the subsequent
careful linear stability analysis of Ho and Denn[3] it is generally accepted thatPoiseuille flow of an
Oldroyd-B fluid is linearly stable, even though the stability is weak for large values of the Weissenberg
number (Wi), the dimensionless quantity which measures the strength of polymer relaxation effects. The
definition used in this paper for the case of cylindrical coordinates relevant for pipe flow is

Wi = τrr − τzz

τrz

∣∣∣∣
wall

, (1)

where the term in the numerator is the normal stress difference of the flow. For the planar geometry, the
indexr has to be replaced byy, with they-axis taken normal to the plates. The term in the denominator
of (1) is the shear stress at the wall. For an Oldroyd-B or Upper Convected Maxwell (UCM) fluid, the
unperturbed flow fieldvunp is simply parabolic, and we get

Wi = 2λ
∂v

unp
z

∂r

∣∣∣∣
wall

= 4vmax
λ

R
. (2)

Here,vmax is the maximum velocity of the unperturbed profile,λ is the aforementioned relaxation time
characterizing the Oldroyd-B or UCM fluid, andR is the radius of the pipe. For the planar case,R has to
be replaced byd, half the spacing between the plates.

It is well known that visco-elastic Poiseuille flow is linearly stable for well-established models like
the UCM, Oldroyd-B[3] and the Giesekus model[4]. However, there are good reasons to reconsider
the nonlinear instabilityof this flow configuration. First of all, Atalik and Keunings[4] have recently
presented strong numerical evidence the visco-elastic Poiseuille flow is indeednonlinearly unstablefor
the UCM, Oldroyd-B and Giesekus model: when they injected the laminar flow field with a perturbation
of sufficiently large amplitude, instead of dying out (like one would expect for a strictly stable flow) the
perturbation grew and saturated at a finite value, resulting in a finite amplitude oscillatory flow. Such
behavior, in which the flow is always linearly stable but nonlinearly unstable, is also called asubcritical
instability. A recent experiment[5] also supports this nonlinear instability scenario. Secondly, as we will
discuss in detail inSection 1.2below, there are actually a lot of indirect indications from well-established
results on visco-elastic Taylor–Couette flow that planar Couette or Poiseuille flow between plates or in
a tube might have a subcritical instability. Last but not least is the following observation: if visco-elastic
Poiseuille flow is unstable, the nonlinear spatially and temporally oscillatory flow pattern it will give
rise to will inevitably result in distortions of the flow after exiting the pipe or slit. In other words, if
visco-elastic Poiseuille flow is unstable for large enoughWi, it automatically leads to an intrinsic route to
“melt-fracture” type phenomena, a generic name for the fact that a polymer extrudate normally develops
strong undulations or irregularities beyond some critical flow rate[6–8]. It is well-established that there
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are various mechanisms that can lead to such type of behavior (e.g., stick–slip behavior or exit instabilities
leading to sharkskin type patterns[6,7]). Most of these can be (partially) suppressed by the proper choice
of material or of the extruder shape and coating. Our main conclusion (in line with[4]) that polymer
Poiseuille flow is nonlinearly unstable for large enoughWi implies that melt fracture type behavior is
an unavoidable consequence of a nonlinear instability in the extruder. In this paper, we focus on the
subcritical instability of visco-elastic Poiseuille flow itself. Our arguments and experimental support for
this scenario are summarized in two recent letters[9,10], but the issue is complex and deserves further
experimental and theoretical study. We will come back to it in the future.

As stated, the calculations that we report in this paper give the details of the explicit nonlinear amplitude
expansion for the stability of visco-elastic Poiseuille flow in the case of fixed average pressure gradient
(we consider periodic modulations of the pressure, so there are periodic pressure modulations but the
average pressure drop remains unchanged). We show explicitly that for large values ofWi there is indeed
subcritical behavior, in other words that the flow exhibits a weakly nonlinear instability. Moreover, the
subcritical behavior sets in quite abruptly around a valueWic of order 5 for flow in a tube. This value
is consistent with the value where melt fracture type behavior is normally reported to set in[6–8], but
somewhat larger than the critical value of 0.1 found numerically for the related Oldroyd-B model with
viscosity contrast 10−3 and a Reynolds number of 0.1[4]. We will discuss the possible origins of these
discrepancies at the end of this paper.

Since the nonlinear amplitude expansion that we will employ has been used mostly in other fields of
physics, and since it involves some unusual subtleties, we present our results in some detail. For the
benefit of the reader not interested in the derivation, we summarize our main results inSection 1.3of this
introduction. Before doing so, we first discuss the relation of this work with the Taylor–Couette problem.

1.2. A nonlinear instability scenario motivated by the visco-elastic Taylor–Couette problem

Just over a decade ago, Larson et al.[12] investigated the stability of the flow of a visco-elastic
polymer solution in a Taylor–Couette cell, a cell consisting of two concentric rotating cylinders. They
found that in this system the flow does exhibit a well-defined linear instability for some value of the
Deborah number (De), which is analogous to the Weissenberg number. Their calculations were done for
the Oldroyd-B polymer model. In the same paper the predictions were confirmed experimentally by a
series of measurements on a polymer solution which is well described by this model. This work was later
extended by Joo and Shaqfeh[13,14], who considered the more general case of flow in a curved channel.
In the limit of boundary driven flow this reduces to the Taylor–Couette case, while in the limit of static
curved walls the flow is driven by a pressure gradient (so-called Dean flow). In all these cases, as well
as in the experimentally relevant cone and plate geometry[15,16], the flow is linearly unstable at large
enough flow velocities. The main conclusion from this line of research has therefore been that a linear
instability occurs in visco-elastic fluids due to “hoop stresses” if the stream lines are curved[17,18]. This
is confirmed by the observation that the various stability calculations show that the instability threshold
goes to infinity if the curvature of the walls goes to zero. For the Taylor–Couette system, this is the limit
in which the radius of the cylinders goes to infinity; for the Dean flow problem investigated by Joo and
Shaqfeh[13,14] this result is consistent with the weak stability of Poiseuille flow between two parallel
planes.

In the last few years, Groisman and Steinberg[19,20]have experimentally investigated the visco-elastic
instability in the Taylor–Couette system in detail. They find very good agreement with the theory for the
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Fig. 1. Qualitative sketch of the subcritical behavior of the visco-elastic instability in low Reynolds number polymer flow in a
Taylor–Couette cell, and of our proposal that the bifurcation curve for the case of Poiseuille flow should be thought of as the
limit in which the radius in the Taylor–Couette cell goes to infinity. See text.

onset of the instability when the polymer flow velocity is increased; however, an important result of
their careful study is that the bifurcation at the critical Weissenberg/Deborah number issubcritical or
“backward”[20,21].

Groisman and Steinberg[20] have also presented intuitive arguments why the instability in visco-elastic
Taylor–Couette flow at low Reynolds numbers is subcritical. In their arguments the fact that the flow is
occurring between curved walls plays essentially no role: the curvature of the walls is necessary to make
the flow linearly unstable, but the nonlinear positive feedback mechanism that in their picture gives rise to
the subcritical behavior does not rely on the curvature. This suggests the scenario sketched inFig. 1: the
stable nonlinear flow behavior, indicated in the figure by the full lines, is quite independent of the precise
radius or curvature of the cylinders, assuming the “gap” (distance) between the cylinders to be constant.
The points where the curves touch the horizontal axis correspond to the linear instability threshold. These
points therefore are strongly dependent on the curvature of the cylinders: as indicated in the figure, the
results of the theoretical analysis[13,14,17]imply that they shift to the right as the radiusR of the inner
cylinder increases, and that there is no linear instability in the limitR → ∞.

The continuity found by Joo and Shaqfeh[13,14] in going from the Taylor–Couette flow to the case
of Poiseuille-like Dean flow between fixed curved planes, as well as the intuitive arguments of Groisman
and Steinberg[20] strongly suggest that the scenario for Poiseuille-flow through a channel will be very
close to the one sketched inFig. 1 for the limitR4 → ∞: the unperturbed flow is linearly stable for any
Wi, but nonlinearly unstable as if there is a subcritical bifurcation atWi = ∞. Moreover, just like the
rightmost curve forR4 → ∞ approaches the horizontal axis rapidly for sufficiently largeWi, implying
that the threshold for the nonlinear instability is small at largeWi, we expect that the threshold for the
subcritical-like nonlinear instability of visco-elastic Poiseuille flow is small for sufficiently largeWi. The
work done in this paper, summarized in the next subsection, fully confirms this expectation.

It is of interest to note that the scenario we propose here for visco-elastic fluids in the zero Reynolds
number limit has strong similarities to large Reynold number planar Poiseuille flow of Newtonian fluids:
planar Poiseuille flow of ordinary fluids becomes linearly unstable at a Reynolds number of 5772, but
in practice the flow becomes unstable at much lower Reynolds numbers of[22–24]. Thus, the transition
is subcritical. The scenario that has emerged is that the nonlinear branch extends down toRe ≈ 2500
for two-dimensional perturbations and toRe ≈ 1000 for three-dimensional flows, and in fact already
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over 30 years ago[25–28], an amplitude expansion for planar Poiseuille flow in the spirit of ours was
instrumental in showing that the instability atRe = 5772 is subcritical. The scenario we propose for
visco-elastic flow is even closer to the one that is found for the transition to turbulence in Poiseuille flow
of Newtonian fluids in a pipe: although the flow is also linearly stable for anyRe, the flow is nonlinearly
unstable forRe � 1000 with a threshold which decreases asRe−γ for Re → ∞ [29], very much like
we suggest inFig. 1 with the dashed line labeledR4 → ∞. The transition to turbulence of Newtonian
fluids therefore shows that whether or not there is a true linear instability is not very relevant in practice,
and we believe that this is true for visco-elastic flows too.

Let us conclude this subsection with the following observation. As noted in the preceding paragraphs, it
is generally accepted that when the stream lines are curved, visco-elastic flow becomeslinearly unstable
at sufficiently large flow rates. In accord with this visco-elastic Poiseuille flow is linearly stable since its
stream lines are straight: infinitesimal perturbations must and do decay. However, following this same
line of reasoning it is also very natural for visco-elastic Poiseuille flow or planar Couette to benonlinearly
unstable: in the presence of afiniteperturbation, the stream linesarecurved, and consequently we expect
the flow to be unstable to any finite perturbation for sufficiently large flow rates. This is the essence of
the subcritical instability scenario sketched above.

1.3. Summary of our main result for Poiseuille flow in the UCM model

In this paper, we will consider the limit that the Reynolds number

Re = Rv

η/ρ
, (3)

is negligible. Here,R is a characteristic length scale (d for the planar case, the radiusR for the case of a
cylindrical tube),v a characteristic velocity,ρ the density andη the viscosity of the fluid. AsRe measures
the strength of the inertial terms with respect to the viscous terms, in the limitRe ↓ 0 we can ignore
the nonlinear convective terms in the momentum (Navier–Stokes) equation, and make a quasi-stationary
approximation in which the temporal derivatives in the momentum equation are neglected.

As stated before, as the constitutive equation for the polymer fluid we take the so-called UCM model
[1], which expresses the stress tensor		τ of the polymer fluid in terms of the shear tensor	∇	v through

		τ + λ		τ(1) = −η( 	∇	v+ ( 	∇	v)†), (4)

where “the upper convected derivative” 		τ(1) is given explicitly inEq. (19)below, and whereλ is the
parameter with the dimension of time that characterizes the UCM model.

In this paper, we consider a perturbation of the velocity and stress fields with single wavenumberk

along the direction of the flow, and with amplitudeA(t), i.e.

perturbed fields∝ A(t)eikz + c.c. (5)

where c.c. means complex conjugate. Then, in an expansion in powers ofA, we determine to lowest
nonlinear order the equation forA,

dA

dt
= −iω(k)A+ c3|A|2A. (6)
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To linear order inA this equation simply reproduces the term iω(k) of the dispersion relation of a single
mode eikz−iωt; although we have to redo the linear stability analysis in order to proceed to the nonlinear
term, in principle this term is already contained in the analysis by Ho and Denn[3]. In particular, since
we know that every modek is linearly stable, Imω(k) < 0 for all k. The essence of our analysis consists
of calculating the coefficientc3 explicitly. In particular the real part ofc3 is of importance: if the real
part Rec3 < 0, then the nonlinear terms increase the damping of the amplitude and the unperturbed
state is, within this approximation, not only linearly, but also nonlinearly stable. On the other hand, if
Rec3 > 0, then the nonlinear term promotes the growth of the amplitude, and in particular amplitudes
satisfying

|A| > Ac =
√

Imω(k)

Rec3
(7)

grow without bound. Hence, in this approximationAc defined above constitutes thecritical amplitude of
the perturbation beyond which the flow in nonlinearly unstable.

In our analysis, we do find that indeed for sufficiently large Weissenberg number Rec3 > 0; we then
determine the value ofk for whichAc is smallest, and take this as the critical amplitude for the nonlinear
flow instability. The value ofAc obtained this way from our analysis is plotted as a function ofWi in Fig. 2
for the planar case and inFig. 3 for the cylindrical case. Our normalization is such thatA is the ratio of
the maximum perturbation in the shear rate at the wall over one wavelength, divided by the unperturbed
shear rate,

|A| = max[∂δvz/∂y]

∂v
unp
z /∂y

∣∣∣∣
wall

. (8)

As we see fromFigs. 2 and 3, the overall behavior of the critical amplitude required to trigger the
instability is in accordance with the picture as suggested inFig. 1: for R4 → ∞, the planar limit, the
threshold amplitude is expected to get increasingly small as one increasesWi, as indeed it does.

Fig. 2. The critical amplitude and the critical stress for the case ofplanar Poiseuille flow of an UCM fluid, as determined from
the weakly nonlinear expansion in this paper.



B. Meulenbroek et al. / J. Non-Newtonian Fluid Mech. 116 (2004) 235–268 241

Fig. 3. The critical amplitude and the critical stress for thecylindrical tube. Note that the critical values ofτr2/τ
unp
r3 have been

multiplied by 10 so as to be able to use the same scale.

In Fig. 4, we show the velocity profileδ	v corresponding with the linear eigenmode with wavelength
λ = 1.7R in the planar case. This wavelength is close to the one with the lowest instability threshold. The
roll-type structure of the flow-profile (which we also find in the planar case, seeSection 3) has very much
the same structure as the one in the Taylor–Couette cell that according to the arguments of Groisman and
Steinberg[20] underlies the subcritical instability in that case—this confirms that essentially the same
mechanism is responsible for the subcritical instability in Poiseuille flow.

An important feature of our results which is of practical importance is that the nonlinear instability sets
in quite abruptly: below some critical valueWic of the Weissenberg number, the flow in the cylindrical
case is within our approximation also nonlinearly stable as Rec3 < 0, while aboveWic the critical
amplitude, especially the critical amplitude for the shear stress at the wall, drops rapidly to a small value
(as we shall see, the case of planar Poiseuille flow is slightly different). We can make this more precise

Fig. 4. Plot of the velocity fieldδ	v corresponding to the linear eigenmode of the cylindrical geometry with wavelengthλ = 1.7R
atWi = 8. The basic flow profile is in the horizontal direction.
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as follows. In the general scenario, the nonlinear branch where the flow-profile is nontrivial and of the
form sketched inFig. 4, ends at a so-called saddle-node bifurcation point—this is the point marked with
a dot inFig. 1where the unstable dashed branch and the stable branch, indicated with a full line, meet.
For control parameters below the value corresponding to the saddle-node bifurcation, the nontrivial flow
pattern is not dynamically stable anymore. Now, as we extend our expansion only up to the first nontrivial
order in the amplitude, we are unable, from our expansion, to precisely locate the saddle-node bifurcation
point. However, it is reasonable to associate the approximate location with the point where Rec3 = 0. In
this approximation, our estimate for the saddle-node bifurcation, and hence for the possible onset of the
modulations in the flow profile and hence in the distortions of the extrudate, isWicyl

c ≈ 5.2. Note also
that the threshold value for the nonlinear instability drops quite sharply whenWi increases beyond this
value: Assuming even careful experiments cannot avoid perturbations of the order of a few percent, we
would expect to actually see the nonlinear state atWi values somewhat larger thanWicyl

c ≈ 5.2 in the
cylindrical tube. This is quite consistent with the Weissenberg valueWic where according to the literature
[6–8] extrudates typically exhibit undulations and deformations. In the planar case the value ofWipl

c is
somewhat less sharply defined, according to our results, but for all practical purposes it appears to be
somewhat smaller thanWicyl

c . We will discuss the competition between the unperturbed laminar flow
profile and the nonlinear profile further in the concludingSection 4.

A few remarks concerningFigs. 2 and 3, which constitute the main result of our analysis, are in order:

(i) Of course, our analysis is only based on an expansion to lowest nontrivial order inA; one may
therefore wonder how much higher order nonlinear terms affect the result forAc. Clearly, for small
Wi whereAc becomes of order unity, our results shouldnot be trusted quantitatively: higher order
(quintic) terms will change the answer (for the planar case, they may even give rise to the existence
of a true saddle-node bifurcation point). However, for large enoughWi, our resultscanbe trusted
quantitatively. This is because the linear damping term Imω becomes arbitrarily small at largeWi (it
varies roughly as Imω ∼ 1/Wi), so that then the amplitude expansion forAc becomes nicely ordered.

(ii) Since we have only determined the cubic nonlinearity in the equation, we cannot say anything
about the finite amplitude at which the instability will saturate. It is in fact questionable whether
the saturation amplitude can be determined fromanyperturbative method. One hint that this might
be possible to a reasonable approximation comes from the experiments of Bertola et al.[10,11],
which indicate that the amplitude of the perturbations of the extrudate just aboveWic is rather
small.

(iii) The scale on the vertical axis isnot arbitrary. InFigs. 2 and 3we have plotted the size of the shear
rate perturbation normalized to the shear rate at the wall in the unperturbed case. Using the equation

max[δτrz]

τ
unp
rz

∣∣∣∣
wall

= |C(1)Ac|, (9)

which holds both for the cylindrical case and the planar case (withr replaced byy), withC(1)a numer-
ical constant defined inAppendix B, we show inFigs. 2 and 3the ratio of the perturbed shear stress at
the wall over the unperturbed shear stress at the wall, beyond which the flow is unstable. Note also the
steep drop of the curve forWi just aboveWic: for all practical purposes the transition is quite sharp.

(iv) Our analysis also yields an idea of the value ofk of the mode with the smallest critical amplitude.
For large enoughWi that our analysis can be trusted, we find typical values about twice the diameter
of the slit or the tube both in the planar case and in the cylindrical case. A precise comparison has to
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be based on analyzing the frequency of the flow distortions measured at a fixed position, however,
since the flow distorts upon exiting the die—seeSection 4.

1.4. Outline of the paper

We present our nonlinear analysis in some detail for various reasons. First of all, an amplitude analysis
is normally used for problems with a true linear instability; the use of the method for cases like this one
without a true instability involves some unusual nontrivial subtleties. Second, such an expansion makes
use of left eigenvectors of the linear operator, whose behavior and boundary conditions are quite intricate
and worth discussing. Third, the analysis we introduce may be of relevant to other visco-elastic flow
problems as well.

In order to perform our weakly nonlinear analysis, we first have to reanalyze the linear stability problem.
The essential results are summarized inSection 2. In order to facilitate comparison with the earlier
work by Denn and coworkers[2,3], we write the equation for the stability eigenmodes in terms of the
stream function, which satisfies a fourth order linear differential equation. The coefficients that we have
(re)derived for this differential equation are given in appendices, and are the same as those given in the
appendix of[2]. A feature not discussed in the earlier work, however, is that there are various eigenmodes
with different symmetries in the vertical direction for the planar case. InSection 3, we first rewrite the
linear eigenvalue problem in a form which is closer to the one usually found in derivations of an amplitude
expansion[30,31]. This is then followed by a discussion of the derivation of the cubic nonlinearity in
the amplitude equation. A somewhat special feature of our approach that should be kept in mind is
that normally amplitude expansions are used for an expansion around a true bifurcation point where a
particular mode loses stability. Here the relevant linear modes are always weakly damped. This gives rise
to some slight differences in the formulation.

2. Linear stability analysis

After having formulated the problem for the planar case in the first subsection, we will summarize
the main steps of the linear stability analysis in the second subsection. Detailed expressions for the
coefficients are relegated to appendices. The numerical results for the dispersion relation of the linear
modes are presented in the last subsection.

2.1. Formulation of the problem

We would like to investigate the linear stability of polymeric flow between two plates, separate by a
distance of 2d, and through a cylinder of radiusR. The direction orthogonal to the planes will be our
y-direction, the direction of the unperturbed flow will be thez-direction—the advantage of this convention
is that both in the planar and in the cylindrical geometry the mean flow is in thez-direction. From now
on we take the flow two-dimensional by putting

vx = 0, vy,z = vy,z(y, z), (10)

in the planar case and

vθ = 0, vr,z = vr,z(r, z). (11)
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in the cylindrical case. The first step is the derivation of an expression for the unperturbed flow:

	vunp = (0,0, vunp
z (y)), 	vunp = (0,0, vunp

z (r)). (12)

The next step is the perturbation of the unperturbed flow:

	v = 	vunp + (0, δvy(y), δvz(y))e
i(kz−ωt), (13)

	v = 	vunp + (δvr(r),0, δvz(r)), (14)

τij = τ
unp
ij + δτij e

i(kz−ωt). (15)

We will keep the terms linear inδτij andδv and write theδτij andδvz in terms ofδvy (planar) orδvr
(cylindrical) and its derivatives. This will give us a fourth order equations forδvy or δvr. with boundary
conditions. Solving this equation yields the dispersion relationω(k); the imaginary part ofω determines
the stability of the flow.

2.2. Equations and boundary conditions

2.2.1. The equations
The flow is taken to be incompressible, so that the conservation of mass equation becomes the incom-

pressibility condition

	∇ · 	v = 0. (16)

Moreover, as was already explained in the introduction, since we are interested in the zero Reynolds
number limit, the Navier–Stokes equation, expressing conservation of momentum, reduces to the linear
equation

−	∇p− 	∇ · 		τ = 0. (17)

We will take the curl ofEq. (17) to eliminate the pressure. This leaves us with an equation for the
components of the stress tensor. The UCM model describes the stresses in the polymeric fluid[1]:

		τ + λ		τ(1) = −η( 	∇	v+ ( 	∇	v)†), (18)

where the stress tensor		τ(1) is defined in the following way[1]

		τ(1) = D		τ
Dt

− ( 	∇	v)† · 		τ − 		τ · ( 	∇	v), (19)

D

Dt
= ∂

∂t
+ 	v · 	∇. (20)

Eq. (18)illustrates that the UCM model is characterized by one time constantλ, which models the polymer
relaxation time. The “upper convected derivative”		τ(1) is the simplest frame-independent formulation that
implements this[1].

The UCM constitutive equation only models normal stress effects, no shear thinning. This is illustrated
by the well-known fact that upon using the Ansatz (12) forvunp, we find that the steady flow profile of a
UCM fluid is still parabolic,
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vunp
z (y) = vmax

[
1 −

(y
d

)2
]

(planar case), (21)

wherevmax is the maximum velocity at the center line. Furthermore, for the stress tensor of the basic
parabolic profile, one finds for the planar case simply

τunp
yz = τunp

zy = −η∂v
unp
z (y)

∂y
, (22)

τunp
zz = −2ηλ

(
∂v

unp
z (y)

∂y

)2

. (23)

All other elements ofτunpvanish. Note thatτunp
zz is nonzero and proportional to the square of the shear—this

is the normal stress effect.
The results in the cylindrical case are:

vunp
z (r) = vmax

[
1 −

( r
R

)2
]
, (24)

and

τunp
rz = τunp

zr = −η∂v
unp
z (r)

∂r
, (25)

τunp
zz = −2ηλ

(
∂v

unp
z (r)

∂r

)2

. (26)

The first step in a linear stability analysis is to linearizeEq. (18)to obtain expressions for theδτ which
are linear inδv. At this stage, it is useful to introduce the stream function�. Generally, the stream function
is introduced by writing (for the planar case)

vy = ∂Φ

∂z
, vz = −∂Φ

∂y
, (27)

so that the incompressibility condition(16) is satisfied automatically. For linear perturbations of the form
(13)we simply haveΦ = φei(kz−ωt), so that

δvy(y) = ikφ(y), δvz(y) = −∂φ(y)

∂y
. (28)

The stream function is slightly more complicated in the cylindrical case:

ik

r
φ(r) = δvr(r), −1

r

∂φ(r)

∂r
= δvz(r). (29)

It is also convenient to introduce dimensionless variables

ω̂ = ωd

vmax
, k̂ = kd, ẑ = z

d
, t̂ = tvmax

d
, ξ = y

d
(plane), (30)

for the planar die, and

ω̂ = ωR

vmax
, k̂ = kR, ẑ = z

R
, t̂ = tvmax

R
, ξ = r

R
(cylinder), (31)
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for the cylindrical die. For notational simplicity, we will renamek̂ ⇒ k, ẑ ⇒ z and t̂ ⇒ t andω̂ ⇒ ω;
it just means that we have to remember that all lengths are henceforth measured in units ofd or R,
inverse lengths in units of 1/d or 1/R, and times in unites ofd/vmax or R/vmax. The imaginary part of
ω determines the linear stability of the flow; the flow is linearly stable if Imω < 0. In order to facilitate
comparison of our explicit expressions for the linear equation, given inAppendix B, with the expressions
of Rothenberger et al.[2], we also introduce their dimensionless numberS [2],

S = Wi
2

= 2vmaxλ

d
. (32)

Using definition(28) we obtain equations for theδτ in terms ofφ(y). Eq. (16) is always satisfied
because of definition(28), Eq. (17)will give us a fourth order equation forφ(y) of the following form:

φ′′′′ + β3φ
′′′ + β2φ

′′ + β1φ
′ + β0φ = 0, (33)

where

βi = βi(k,S, ω; ξ). (34)

We used the symbolic manipulation program Maple to find the explicit expressions for theβi: these
expressions are the same as those given by Rothenberger et al.[2] and can be found in the Appendix A.

2.2.2. Boundary and symmetry conditions, planar case
The aim of the linear stability calculation is to determineω(k) for fixed k andS, such thatφ satisfies

the usual stick boundary conditions:

vy = 0, vz = 0 at ξ = ±1. (35)

Forφ, these boundary conditions translate into

φ(ξ = ±1) = 0, φ′(ξ = ±1) = 0. (36)

Note that we have four boundary conditions, and a fourth order equation. At first sight, one might think
that therefore the equation might have unique solutions for anyω(k). However, because of the linearity
of the problem, if we find a solutionφ(ξ), Cφ(ξ) with C an arbitrary complex constant is a solution of
Eq. (33)as well. We eliminate this arbitrary degree of freedom by setting

φ′′(1) = 1. (37)

Since this eliminates two trivial degrees of freedom which do not affect the solution, it is now clear that
for a givenk andS, one or more unique branches of the complex quantityω(k) will be fixed by the
differential equation forφ.

Because of the vertical symmetry of the problem, eigenfunctions will either be asymmetric or sym-
metric. In the first case the boundary conditions on the center line are

vy = 0, v′′
y = 0, at ξ = 0 (asymmetric), (38)

which implies forφ(y)

φ = 0, φ′′ = 0, at ξ = 0 (asymmetric), (39)
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and in the second case the conditions are

v′
y = 0, v′′′

y = 0 at ξ = 0 (symmetric), (40)

which implies

φ′ = 0, φ′′′ = 0 at ξ = 0 (symmetric). (41)

We will explore the stability of both profiles below.

2.2.3. Boundary conditions, cylindrical case
We will take the usual stick boundary conditionsvr = 0, vz = 0 atξ = ±1. In the center we require

vr = 0, vz finite. In terms ofφ we haveφ = 0, φ′ = 0 at ξ = 1, and we chooseφ′′(1) = 1. We
have to be careful in the origin, because of the 1/ξ terms in the equations for theβi. The boundary
conditions on	v imply φ = 0,φ′ = 0 atξ = 0. In order to avoid numerical problems, we use a polynomial
φ(ξ) = a2ξ

2/2+ a3ξ
3/6 for ξ ∈ (0,0.01). At ξ = 0.01 we match both solutions by imposing equality of

φ and the first three derivatives.

2.2.4. Summary of the linear stability problem
In summary, we have to solveEq. (33)with the condition(37) and the boundary conditions(36) and

(39)for asymmetric modes or with the boundary conditions(36)and(41)in the case of symmetric modes.
This means that we have to find the two complex parametersφ′′′(1), ω(k), such that the conditions on
the centerline are satisfied. In the cylindrical case we have to solveEq. (33)with the boundary conditions
discussed above. This means that we have to find the four complex parametersφ′′′(1), ω, a2 anda3 such
that both solutions can be matched together.

2.3. Numerical results

2.3.1. The planar case
We have used a shooting program[32] to find the right parameters and to construct the eigenmodes

corresponding to the two classes of boundary conditions. We present the results below for the range of
k-values for which our program converged essentially to arbitrary precision. For larger values ofk the
convergence becomes poorer, but since these larger values do not appear to be relevant for the nonlinear
analysis ofSection 3, we content ourselves with reporting simply the range where sufficient precision
could be reached.

Fig. 5 shows the magnitude of the imaginary part of the eigenvalueω of the asymmetric modeas a
function ofk and for variousWi. For all values ofWi, Imω < 0. As the temporal behavior of the modes
is ase−εt, this confirms that the flow islinearly stable. Especially for largeWi, ε is very small, which
means that the flow is only weakly stable. This is the reason that we also introduce the dimensionless
temporal decay rateε = −Imω, so that the positive quantityε is a small quantity for sufficiently large
Wi. This is very important, as the smallness ofε will allow us to use an amplitude expansion in the next
section: this expansion is based on an adiabatic approximation for the growth of the amplitude relative
to the intrinsic oscillation of the waves with frequency Reω. Since the intrinsic frequency is of the order
of unity in our dimensionless units, the condition for the amplitude expansion to work is thatε � 1.

We found a second asymmetric mode close to the first one reported inFig. 5. This mode is slightly
more damped than the first one. The two asymmetric modes are shown inFig. 6. The symmetric mode
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Fig. 5. Dispersion relation for Imω = −ε of the weakest damped asymmetric mode forWi = 4,6,12 and 20 in the planar case.

lies between the two asymmetric modes, for, quite surprisingly, we have been able to show analytically
that the symmetric mode obeys

Imω(k) = − 2

S
⇔ ε = 2

S
= 4

Wi
. (42)

so that for the Weissenberg numberWi = 8 in Fig. 6 the damping rate of the symmetric mode is
ε = 0.5. For this mode the phase velocity Reω(k)/k is extremely close to 1, but the precise value has
to be determined numerically. Since the damping rates of all the three modes are very close, the above
analytical result nicely shows that the damping rate of the modes becomes arbitrarily small for suffi-

Fig. 6. The dispersion relation for the two different linear asymmetric eigenmodes atWi = 8 in the planar case, and the symmetric
mode whose damping rate is given exactly byEq. (42).
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Fig. 7. Dispersion relation for the cylindrical case forWi = 4,8,10 and 12.

ciently largeWi = 2S. Therefore, our amplitude expansion becomes self-consistent for sufficiently large
Wi.

Once the eigenmode has been obtained numerically, one has the velocity and shear stress fields as a
function of the coordinates.Fig. 8of the Introduction illustrates perturbed velocity field in the planar case
for Wi = 8 andk = 1.5.

Our nonlinear analysis in the next section will be based on using the asymmetric mode which is the
weakest damped. The reason for not basing our expansion on the symmetric mode is three-fold:

(i) The symmetry of the velocityvy of this mode is such that it corresponds to a type of undulation
mode between the plates, which does not generalize easily to the case of a cylindrical tube.

(ii) The result that the eigenvalueω(k) = (1 + δ)k − 2i/S for this mode, withδ a very small real
quantity, implies that the factorc(x) which appears at various places in the equations for theβi (see
Appendix B), becomes very large near the center. Consequently, the components ofτ become very
large, almost singular, near the center.

(iii) The asymmetric modeis the one least damped.

Fig. 8. Plot of the velocity fieldδ	v corresponding to the linear eigenmode mode of the planar slit geometry with wavelength
λ = 4π/3 atWi = 8. The basic flow profile is in the horizontal direction.
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Fig. 9. The data ofFig. 4plotted differently. Here, the componentδvz is shown in a three-dimensional plot; it illustrates how the
perturbation is largest at the center of the tube.

2.3.2. The cylindrical case
We now turn to the numerical results for the cylindrical case.Fig. 7 shows the magnitude of the

imaginary part of the eigenvalueω as a function ofk and for variousWi. As in the planar case, all values
of Wi, Imω < 0. As the temporal behavior of the modes is as e−iωt, this again confirms that the flow is
linearly stable; the decrease ofε with increasingWi again confirms that the linear stability becomes less
and less with increasing flow velocity, roughly asε ∼ 1/Wi.

In Fig. 4, we already showed the velocity profileδ	v corresponding with the linear eigenmode with
wavelengthλ = 4π/3 in the cylindrical case.Fig. 8confirms that the same type of behavior is found in
the planar case; the main difference is that in the cylindrical case, the mode is more confined close to
the center of the tube (see alsoFig. 9) than in the planar case. This is consistent with the fact that, as we
will see inSection 4, the nonlinearly most unstable mode has a shorter wavelength in the cylindrical tube
than in the case of the planar slit. In fact, the roll-type structure of the planar flow-profile is more evenly
distributed over the whole cross-section, its qualitative appearance is closer than the cylindrical one to
the flow pattern in the Taylor–Couette cell that according to the arguments of Groisman and Steinberg
[20] underlies the subcritical instability in that case.

3. Nonlinear analysis

We will start with an outline of the method that we use in the first section. As we shall see, in important
ingredient that we need to obtain to determine certain solvability conditions is the solution of the linear
adjoint operator. We will discuss the derivation of the adjoint problem inSections 3.2 and 3.3. We finally
discuss the numerical results inSection 3.4.
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3.1. Outline of the structure of the amplitude expansion

In order to perform the nonlinear analysis it is convenient to rewrite the equations in a vector notation.
We shall develop the framework for the planar case, and then indicate the changes in the cylindrical case
at the end of this section.

Since we only consider perturbations which are independent of the coordinatex in the planar case, the
stress componentsτxx, τxy, andτxz are all zero, also in the nonlinear regime. We can therefore capture
the nonzero fields in a five-component vectorV whose components areδvy, δvz, δτ22, δτ23 and δτ33.
Furthermore, we rewriteEqs. (16)–(18)in the following form:

LV = N(V, V), (43)

whereL is the linear operator associated with the linear problem ofSection 2, andN(V, V) contains all
the nonlinear terms. Thus, the linear problem is simplyLV = 0, andN(V, V) contains only terms from
the left hand side ofEq. (18); for the analysis below it is convenient to takeN symmetrized, so that
N(V1, V2) = N(V2, V1). Explicit expressions forN(V, V) andL can be found inAppendix A.

Normally, an amplitude expansion is performed about the critical point where one of the modes is
marginal (i.e., neither grows nor decays) for a particular value of the wavenumberk [30,31]. This critical
wavenumber corresponds to a maximum of the linear dispersion relation. In the present case, the situation
is not quite like this: the dispersion relation does not have a clear maximum, and the linear modes are
always weakly damped. This difference is in practice not a great problem. First of all, we will not be
interested in spatial variations of the envelope; instead, we just pick a particular modek, and determine
the important one for our analysis at a later stage (through the requirement that the threshold amplitude be
minimal). It is therefore not necessary to expand about a maximum of the dispersion relation. Secondly,
the amplitude expansion is based on an adiabatic decoupling of the fast and slow scales. In this problem,
the fast scale is the period of the modes and the slow time scale is associated with the linear decay
time of the modes. We saw inSection 2that in dimensionless units, the frequency of the modes is
of order unity, while the damping rateε becomes much smaller than 1 for large enoughWi. Thus,
there is indeed a separation of times scales, and this is essentially all that is needed for the analysis
below.

In fact, for readers experienced with amplitude expansions, we could essentially go ahead pretending
we are expanding about a true critical point where the growth rate of one of the modes is zero, and then
at the end add the linear damping term by hand. Nevertheless, we prefer to formulate the analysis more
carefully by keeping the damping term as it stands.

A linear eigenmode of the equations is of the form

V0(ξ, z, t; k, ω) = Ṽ0(ξ; k, ω)e(ikz−iωt) = Ṽ0(ξ; k, ω)e(ikz−iωrt)e−εt, (44)

where we have introducedωr = Reω. Of course, all components ofV0 can just be obtained directly from
the results of the linear stability analysis ofSection 2.

In an amplitude equation formalism, one can in general also allow for spatial variations of the amplitude
on a slow scale. As we already remarked above, here we confine the analysis to the temporal evolution
of a single modek and its harmonics. We do so for two reasons: first of all, it simplifies the analysis,
secondly, our main goal is to determine whether there is a weakly nonlinear instability. Anticipating
that we will find that there is one, there is then not much to be gained in allowing for slow spatial
variations.
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Our aim thus is to study the weakly nonlinear evolution in time of the amplitudeA of a single mode of
the form

A(t)Ṽ0(ξ; k, ω)e(ikz−iωrt) + c.c. (45)

Of course, such a single mode is not really a solution of the (weak) nonlinear equation, but the corrections
are automatically accounted for in the amplitude equation formalism and are slaved to(45). We also note
that because of the normalization(37), φ′′(1) = 1, we have

max[∂ξδvz(ξ)|wall] = 2|A| (46)

which, because in dimensionless units the shear rate at the wall in the unperturbed flow field equals
2, leads immediately to the relation(8) between the maximum relative shear rate distortion at the wall
and the amplitudeA. Likewise the relation(9) between the amplitudeA and the maximum shear stress
distortion at the wall follows from the explicit linearized dynamical equations. These identifications are
important in translating our results to real values, as was already noted inSection 1.3andFigs. 2 and 3.

We want to know in particular whether the amplitudeA will grow or decay in time when the nonlin-
earities are taken into account. In the amplitude equation formalism,A(t) is expected to depend only on
the slow timescaleεt, but we have made this explicit, for reasons that become clear below. We have to
keep track of the fact that the true zero mode of our linear operatorL is V0 as given in(44). This term
includes the weakly damped exponential factore−εt, and this term is not explicit in(45). The amplitude
equation now proceeds by constructing the weakly nonlinear solution by writing[30,31]

V = ε1/2V s
0 + εV1 + ε3/2V2 + · · · , (47)

whereV s
0 is the real quantity defined as the sum

V s
0 = B(T )V0 + B,(T )V ,

0 , (48)

and where in writingB(T )we have anticipated that the amplitudeB varies on the slow timescaleT = εt.
Note that the real combinationV s

0 is needed because the vectorV refers to real physical fields. Once we
have derived the equation forB, comparison with(45)shows that we should make the association

A(t) ⇔ ε1/2B(T )e−εt. (49)

The other terms in(47) are then precisely the corrections to the dominant mode which are necessary to
construct a weakly nonlinear solution.

In the subsequent analysis, we have to keep in mind thatV0, with the temporal factor included, is the
true zero eigenmode of the linear operatorL: the temporal derivatives in the linear operator in fact work
explicitly on both temporal exponential factors in the expression(44) for V0. When substituting the form
(47) in the equations, we then also have to account for the time derivatives ofB(T ). For a product term
of the formB(T )e−iωt we then have

∂(B(T )e−iωt)

∂t
= B(T )

∂e−iωt

∂t
+ e−iωtε

∂B(T )

∂T
, (50)

which we can simply summarize by making the substitution∂t → ∂t + ε∂T in all the time derivatives in
the linear operator. Since only first order time derivatives enter the linear operatorL, we get an expansion
of L of the formL = L0 + εLT .



B. Meulenbroek et al. / J. Non-Newtonian Fluid Mech. 116 (2004) 235–268 253

The amplitude expansion now proceeds by substituting the expansions forL and(47) for V in the
nonlinearEq. (43)and collecting the terms order by order inε. For the first three orders inε, we get:

orderε1/2 : L0V
s
0 = 0, (51)

orderε1 : L0V1 = N(V s
0, V

s
0), (52)

orderε3/2 : L0V2 + LTV s
0 = N(V s

0, V1). (53)

Eq. (51)is satisfied identically, as it should, becauseV s
0 is the sum of two terms with wavenumberk and

−k which are both zero eigenmodes ofL. The components of theV0(ξ) follow from the numerical results
for φ of Section 2. We can now solveEq. (53)to findV1. This gives us

V1 = B2(T, t)e2i(kz+ωrt)−2εtṼ1(ξ)+ C(T )V0 + c.c. (54)

where we have to find the vectorṼ1(y) numerically, becauseN(V) contains only quadratic terms. The
second term is allowed with arbitraryC, sinceV0 is a zero mode of the linear operatorL0; it will not be
needed in the subsequent analysis. In principle, there would also have to be an additionalk = 0 term, but
this term is identically zero for the case of the asymmetric boundary conditions of interest here. OnceV1

is known, we can proceed toEq. (53); in this equation, the operatorLT works onB(T ) and its complex
conjugate only: we can write the equation as

L0V2 + (V0LTB + V ∗
0LTB

∗) = N(V0, V1). (55)

This equation determines the time derivative ofB through a solvability condition: since the operatorL0

has a right zero mode, it can be solved if and only if the other two terms in the equation are orthogonal
to the left zero mode ofL0 [30,31]. This requirement gives us the desired equation of dB/dT . To make
this explicit, we first have to define the adjoint problem and an inner product.

We define a space of 5-dimensional vector functions of the three variablesξ, z andt,

Ω = {f : R3 → R5 : f = f̃ (ξ, t)ei(kz−ωrt)}. (56)

The components of the functionsf satisfy the physical boundary conditions discussed inSection 2.
Furthermore, an inner productI onΩ is defined:

I(w, f) = 1

2

∫ 1

−1
dξ

2π

k

∫ 2π/k

0
dz

2π

ωr

∫ 2π/ωr

0
dt ⊗

5∑
i=1

w,
i (ξ, z, t)fi(ξ, z, t). (57)

On this space of functions, an adjoint operatorL†
0 is defined such that

I(w,L0f ) = I(L†
0w, f ) (58)

for every functionf in Ω. Because the adjoint operator is obtained through partial integrations with
respect toξ, the requirement that(58) does not yield any boundary terms from these partial integrations
yields the appropriate boundary conditions for the functionsg in the adjoint space. We will state these
explicitly for our case inSection 3.2.

LetW0 be the zero mode ofL†
0 . The solvability condition applied to(55) then becomes

I(W0, N(V
s
0, V1)− V0LTB − V,

0B
,) = 0. (59)
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Let us focus on the term withB; if we write

W0 =
∑
m∈Z

gm(y, T, t)e
im(kz−ωrt), (60)

we see that we only need the term withm = 1, since the inner product in(59) is seen to vanish for all
other terms after thez-integration is performed. For the same reason, we only need the terms which are
proportional to ei(kz−ωrt) from N(V0, V1). Using this we obtain the following equation for the derivative
of B:

1

2

∫ 1

−1
dξ(W,

0 ,−LTB + |B|2BN(V ,
0 , V1)) = 0. (61)

The complex conjugate of this equation is obtained from analyzing the term withB∗ in (59).
In (59), we have used the approximation thatε is sufficiently small that we are allowed to write∫ 2π/ωr

0
dt B(T )e−εt(·) = B(T )e−εt

∫ 2π/ωr

0
dt(·). (62)

This is nothing but the usual adiabaticity assumption. As we have shown inSection 2, this approximation
is justified for largeWi. We can summarize theEq. (61)in the form

∂TB = c0|B|2B, (63)

wherec3 is a complex quantity which is obtained from working out the two inner product terms. We
can now translate this result back into the lowest order nonlinear equation for the amplitudeA. Upon
combining(49), and(63), we finally get

∂tA = −εA+ c3|A|2A, (64)

which is nothing butEq. (6)of the Introduction in dimensionless units. As discussed there, the sign of
the real part ofc3 determines whether or not we are dealing with a subcritical bifurcation.

In the following sections the boundary conditions of the adjoint problem are derived, and we then
proceed to solve adjoint problem and to determinec3.

The framework laid out above can be extended rather easily to the case of the cylindrical tube. In that
case we consider axially symmetric perturbations only, so that bothτθr andτθz vanish; note, however, that
τθθ is nonvanishing in this case. The vectorV therefore now has six components,δvr, δvz, δτrr , δτrz, δτθθ
andδτzz. Apart from this change, the structure of the expansion is essentially the same, except for trivial
changes like the fact that the first integration in(57)should now be taken over the two-dimensional scaled
radial coordinateξ.

3.2. The adjoint operator and associated boundary conditions

In this section, we will calculate the components of the adjoint operatorL†
0 using the defining

Eq. (58). We will follow again the planar case, and indicate the major changes for the cylindrical
case at the end an in the appendices. WritingV = (v1, . . . , v5) and W = (w1, . . . , w5) we
have
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L0V =




∂yv1 + ∂zv2

∂y∂zv3 + (∂2
z − ∂2

y)v4 − ∂y∂zv5

Cv1 + Av3

Dv1 + Ev2 + Bv3 + Av4

Fv1 + Gv2 + 2Bv4 + Av5



. (65)

The various functions and coefficients in this expression are given inAppendix A. We will illustrate the
structure of the calculation by analyzing two terms ofI(W,L0V), and simply state the results for the other
terms. One term we get isw,

3Av3:∫
w,

3Av3 =
∫
w,

3(1 + ∂t + 1
2Sv0

z(ξ)∂z)v3

=
∫
(1 − ∂t − 1

2Sv0
z(ξ)∂z)w

,
3v3 + 1

2S
∫
∂z(w

,
3v3)+

∫
∂t(w

,
3v3). (66)

Both integrals on the last line vanish, the first one because the integrand is a partialz-derivative of a term
which is periodic inz, the second one because the integrand is a partialt-derivative of a term which is
periodic int. Thus, we simply obtain∫

w,
3Av3 =

∫
(1 − ∂t − 1

2Sv0
z(y)∂z)w

,
3v3. (67)

In short: we pick up a minus sign for every partial integration and in performing the partial integrations we
get, in general, boundary terms which have to vanish. In the above example, the boundary terms trivially
vanished because of the periodicity of the terms with respect tot and z, but the partial integrations
with respect toξ do not automatically vanish. In particular, from the various terms we get the following
boundary conditions:

w,
3v1(1)− w,

3v1(−1) = 0,

w,
4v1(1)+ w,

4v1(−1) = 0,

w,
4v2(1)− w,

4v2(−1) = 0,

w,
5v2(1)+ w,

5v2(−1) = 0,

w,
1v1(1)− w,

1v1(−1) = 0,

(68)

and

w,
2∂zv3(1)− w,

2∂zv3(−1) = 0,

w,
2∂yv4(1)− w,

2∂yv4(−1) = 0,

∂yw
,
2v4(1)− ∂yw

,
2v4(−1) = 0,

w,
2∂zv5(1)− w,

2∂zv5(−1) = 0.

(69)

The first set of conditions(68) is always satisfied, becauseV satisfies the boundary conditions of the
original problem:v1(±1) = vy(±1) = 0 andv2(±1) = vz(±1) = 0. By settingw2 = 0 atξ = ±1, we
have only one condition left of the second set:

∂ξ(1)w
,
2v4(1)− ∂ξw2(−1),v4(−1) = 0. (70)
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In order to understand how many boundary conditions we need to impose, it is good to realize that
the operatorL actually works on physical, and hence real functions; thus, we need the real part of this
combination to be zero. Thus, we can still choose the phases of both amplitudes: we use this freedom to
set the phase difference between the adjoint solutionW0 and the solutionV such that the combination
w,

2v4(1) becomes purely imaginary. This shows us that if we impose

Re(∂ξw
,
2|1v4(1)− ∂ξw

,
2|−1v4(−1)) = 0, (71)

all conditions are satisfied for physical functions. We can give allwi in terms ofw2 and its derivatives.
This gives a fourth order equation forw2 which we solve using a shooting method. We will discuss the
appropriate symmetry conditions in the next section.

In the cylindrical case, we needw2 to be bounded. In the present case, this can be achieved by putting
w2(0) = 0,w′′

2(0) = 0. These conditions are satisfied if we expandw2(ξ) = a1ξ + 1
6a3ξ

3, for 0 < x <

0.01. Furthermore we can seta1 = 1 to eliminate the degree of freedom we have. This leaves us with one
shooting parameter,a3. We again have the boundary condition thatw2 vanishes on the wall,w2(1) = 0.
We choosea3 such that this condition is satisfied.

3.3. Symmetry of the solution and the adjoint solution

As we discussed in sectionSection 2, the linear planar mode that we investigate is asymmetric, which
means that its symmetry is

Ṽ (ξ) = (odd,even,even,odd,even) (72)

which can be verified, seeAppendix B. For the adjoint solution, we have also have two zero modes with
different symmetry,

W̃
(1)
0 (ξ) = (even,odd,even,odd,even), (73)

and

W̃
(2)
0 (ξ) = (odd,even,odd,even,odd). (74)

It turns out that for our choice of the linear mode(72), the second modeW(2)
0 does give a solvability

condition. This can be seen as follows. Only the last three components of the vectorV contain a derivative
∂T . Thus, only the overlap of the third, fourth and fifth component ofW0 andV0 comes in; because of the
symmetry of the opposite symmetry of the components, all these integrals vanish. The same holds for the
N-term, and hence the solvability condition is trivially satisfied. As a result,W

(1)
0 is the adjoint zero mode

which gives the nontrivial boundary condition. The oddness of the componentw2 is then guaranteed by
taking

w2(0) = 0, w′
2(0) = 1, w′′

2(0) = 0. (75)

These conditions, together with the boundary condition atξ = ±1 completely fix the adjoint zero mode.
As with the linear problem discussed inSection 2, we solve the differential equation together with the
boundary conditions with a shooting method.

In the cylindrical case, we have just one single mode, also for the adjoint problem; the boundary
conditions that we already derived above for the cylindrical case are completely analogous to the above
boundary conditions(75).
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3.4. Numerical results

In summary, the nonlinear termc3 whose real part governs the weak nonlinear stability is obtained
numerically as follows. We first solve the fourth order equation for the stream functionφ0, derived in
Section 2. This gives us the components of the vectorV0(ξ). A second routine of this program generates the
termN(V0, V0) too. A second program calculates the stream functionφ1 of the inhomogeneousEq. (52)
from which we obtain the components of the vectorV1(y). A third program solves the adjoint problem
and gives the vectorW0. Because we haveW0 ∼ ei(kz−ωrt), V0 ∼ ei(kz−ωrt) andV1 ∼ e2i(kz+ωrt) we have
trivial z andt integrations in the inner product(61). Theξ-integration is done numerically from 0 to 1
because of symmetry. This then gives us the coefficientc3.

We first discuss the cylindrical case. InFig. 10, we plot the value of the critical amplitudeAc(k),
determined fromc3 by Eq. (7), as a function of the wavenumberk for three different values of the
Weissenberg number. The curves illustrate that forWi > Wic there is a band of wavenumbers where
Rec3 > 0 and that hence there is, in our approximation, a critical amplitude beyond which the flow is
unstable. The sharp rise of the critical amplitude at the edges of the bands shown inFig. 10is caused by
Rec3 → 0. Note also that forWi = 7.5, the critical value still has a rather sharp minimum neark = 4,
but that for increasing values ofWi the bottom of the band flattens rapidly. For decreasing values ofWi,
especially whenWi approaches about 5, the band likewise sharpens; we will see this from a different
perspective below.

Fig. 10also shows the behavior of the critical amplitudeAc(k) as a function ofk shows rather com-
plicated structure. ForWi = 7.5 there is a plateau in the critical value ofAc(k) aroundk = 2.7; upon
increasingWi, this plateau shifts and disappears, whereas the absolute minimum of the curve shifts to
smallerk values while a new minimum develops at largerk. Already atWi = 8.25, the two minima almost
correspond to the same values ofAc, but for slightly largerWi the minimum at largerk value becomes
the absolute minimum. This is further illustrated inFig. 11, where we plot the values ofk corresponding
to the absolute minima of the curves, as well as the values corresponding to an amplitude 1.1 times the

Fig. 10. The value of the critical valueAc as a function of the wavenumberk for three different values of the Weissenberg number
(Wi) for the case of the cylinder.
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3

4

5

Fig. 11. The value ofk corresponding to the minimum value of the curves inFig. 10as a function ofWi, and the values ofk at
which the amplitudeA is 1.1 times the minimum value. The jumps of the curves are due to fact that a curve ofAc as a function
of k has several minima.

minimum value, as a function ofWi. The figure illustrates that betweenWi ≈ 6.5 andWi ≈ 8, the
minimum of the curve shifts to smallerk values, but that aroundWi ≈ 8 a local minimum at higher
k-values becomes the absolute minimum.

As explained inSection 2.2.4, our normalization is such thatA is the maximum perturbation in the shear
rate at the wall over one wavelength, divided by the shear rate at the wall of the unperturbed parabolic
profile (SeeEq. (8)). Upon increasingWi, the minimum values of the curves, which were already plotted
in Fig. 3, quickly decrease. As we already mentioned in the introduction, we have also analyzed the
critical value for the relative shear stress perturbation at the wall beyond which the flow is unstable [see
Eq. (9)]. The data for this ratio as a function ofk for the same values of the Weissenberg number as
in Fig. 10 are shown inFig. 12. There are several important things to note about this figure. First of
all, the curves of the critical shear stress perturbation have just one minimum, contrary to those for the
critical shear perturbation, and secondly, the values for the critical shear stress perturbation are typically
a factor ten smaller than those for the critical shear. AsFig. 12 shows, forWi = 9.5 a perturbation
of about 1% in the wall shear stress is sufficient to render the flow unstable. This is why inFig. 3 the
values of the critical shear stress amplitude (the values corresponding to the minima of the curves in
Fig. 12) are multiplied by 10 to draw them on the same scale asAc. Finally, we note that the edge of
the band of unstable shear stress perturbationsτ is the same as the edge of the band of unstable shear
perturbations—this is simply due to the fact that the edge of the band is marked by the point where
Rec3 = 0.
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Fig. 12. The values of the dimensionless shear stressτ beyond which the flow is unstable in the cylinder, as a function ofk for
the same three values ofWi as inFig. 10.

In Fig. 13we plot the band in which modes are nonlinearly unstable beyond some critical value as
a function ofWi. This figure clearly illustrates that the width of the band vanishes atWi = Wic ≈ 5,
since below this value Rec3 < 0 for all k. This figure is somewhat reminiscent of the so-called “Busse
balloon” of Rayleigh-Bénard convection[30], but one should keep in mind that the interpretation is
slightly different as we are dealing with a subcritical (inverted) bifurcation. Thus, the regions marked
“Stable” indicate the regions in the diagram where the perturbations with a wavenumberk in that region
are nonlinearly stable in our approximation. The basic Poisseuille flow profile is, however, nonlinearly

Fig. 13. Plot of the width of thek-band where the corresponding modes render the basic cylindrical Poiseuille flow nonlinearly
unstable. The dashed line indicates thek-value of the mode which is most unstable to shear perturbations, i.e. the minimum of
the curves plotted inFig. 10.
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unstable at allWic to modes whose wavenumber lies in the band marked “Unstable”. In reality, we expect
that the flow pattern will settle to some kind of stable nonlinear behavior dominated by modes in this band.

Although the band of unstable modes widens toward smallk-values forWi between 6 and 7.5—a
feature which is related to the plateau inFig. 10 for Wi = 7.5—at flow rates (Weissenberg numbers)
about 50% beyond the critical value, the band of unstable wavenumbers ranges from just over 2 to a
value somewhat larger than 4. Although with our expansion to cubic order in the amplitude we cannot
probe the stable nonlinear patterned flow regime nor the nonlinear selection of the wavenumber (it need
not correspond to the most unstable mode), it seems reasonable to assume that the wavenumbers of the
pattern in the tube will lie in the range identified byFig. 13.

Because nearWic the critical amplitude is relatively large, and again because we have only expanded
up to cubic order, one has to interpret our results nearWic with caution. Nevertheless, our results appear
to identify the location of the saddle-node bifurcation to nontrivial flow patterns nearWic ≈ 5. Since the
band of unstable modes in this limit is very small, it appears likely that if one follows the nontrivial flow
pattern down to this value, its wavenumber is should be close to the value where the band inFig. 13closes,

Wi ≈ Wic ≈ 5 : ⇒ k ≈ 3.75, (76)

since the basic profile is then nonlinearly stable to perturbations with wavenumber that differs significantly
from this value. In dimensional units, this implies for the wavelengthΛ of the pattern

Wi ≈ Wic ≈ 5 : Λ ≈ 2πR

3.75
≈ 1.7R. (77)

It is important to keep in mind thatk is the wavenumberinsidethe cylindrical tube. If the (near)periodic
flow and stress patterns inside the tube indeed cause the surface undulations that are the first stage leading
to melt fracture outside the tube at larger flow rates, then one should keep in mind thatk is not the
wavenumber of these surface undulations. For, the polymer extrudate swells upon leaving the tube, and
the flow velocity profile of the polymer becomes essentially constant after leaving the tube. A better
way to compare our theory with measurements on the extrudate is therefore to compare the (dominant)
frequency of the undulations: since no oscillations will disappear at the outlet of the tube, the frequency
measured inside the tube must be equal to the frequency with which the extrudate width oscillates after
flowing out of the tube[10]. Of course, the frequency of the oscillations on the nonlinear flow branch
corresponding to the solid line inFig. 1cannot be obtained precisely from our expansion; assuming that
the nonlinearities do not change this frequency too much, we estimate it from our results for the linear
modes. From our analysis of the linear eigenmodes inSection 2we find that the dimensionless frequency
Imω of the modes is to a very good approximation (better than to a percent or so) given by

Imω = k − 0.93

Wi
. (78)

This result implies that for large Weissenberg numbers, the phase velocity Imω/k approaches 1. Since
according to(31)we measure velocities in units ofvmax, this means that the periodic stress pattern moves
essentially with the maximum velocity of the flow in the large Weissenberg limit. This indicates that the
linear mode more and more concentrated near the axis of the tube for largeWi. The above result gives as
an estimate for the frequencyf in dimensional units

f = vmax
(k − 0.93/Wi)

2πR
. (79)
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1

Fig. 14. Plot of the critical amplitudeAc as a function ofk in the planar case for three different values ofWi.

Finally, using that we expect the transition to occur atWic ≈ 5 andk ≈ 3.75, and that for the unperturbed
(parabolic) profile of a UCM fluidvmax = 2vav with vav the average flow velocity in the tube, our estimate
for the frequency at the transition becomes

f ≈ 1.13
vav

R
(at transition). (80)

It is important to realize that this estimate is based on the assumption that the frequency (or phase
velocity) does not get renormalized significantly by the nonlinearities. This is maybe not unreasonable
near threshold, where the amplitude of the periodic modulation of the pattern will be smallest (keep
in mind that since we are dealing with a subcritical bifurcation, the amplitude near threshold remains
finite).

Especially further above threshold, we expect the renormalization of the frequency to be significant.
Although this cannot be calculated from our first nontrivial nonlinear term in the amplitude expansion,
we can reasonably estimate the frequency at values ofWi of the order of 50–100% above threshold, say,
as follows. As we noted above, in this range, the band of unstable wavenumbersk ranges from just over
2 to about 4.5 (seeFig. 14). It is unlikely that the range of wavenumbers will change drastically due
to nonlinear interactions, since according to our calculations outside this range both the linear and the
cubic term in the amplitude expansion are stabilizing. On the other hand, the frequency of oscillations,
if one studies the pattern in a fixed lab frame, will get strongly renormalized: once the pattern gets well
developed, we expect (but have no proof) that the nonlinearly modulated profile moves with theaverage
speedvav rather than with the maximum speed of the unperturbed parabolic profile (keep in mind that in
linear order, the periodic linear eigenmode does not affect the average speed, as it averages out to zero over
one wavelength, but that this does not remain true in nonlinear order). Which particular wavenumber will
be selected nonlinearly (or whether in fact a well-defined sharp wavenumber will be selected nonlinearly
in a carefully controlled experiment) we do not know, but with the assumption that it lies in the unstable
bandkmin < k < kmax and that it moves with the average speed, we get the following estimate for the
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Fig. 15. Plot of the critical amplitudeτc as a function ofk in the planar case for three different values ofWi.

dimensional frequency3

kminvav

2πR
� f � kminvav

2πR
, (81)

which gives

0.3vav

R
� f � 0.72vav

R
. (82)

We finally turn to a brief discussion of our results for the case of a planar slit. The main difference
between the cylindrical and planar case is that in the latter case, the coefficient Rec3 is always found to be
positive. This is also illustrated byFigs. 14 and 15, which show that in the case of the planar slit there is
no finite band of nonlinearly unstable wavenumbers for the critical shear rate (Fig. 14) and critical shear
stress (Fig. 15) as a function ofk. Note also that in both cases these curves just have a single minimum,
contrary to what we found for the cylindrical tube. As a result of this, the wavenumber corresponding the
minimum of the amplitude shear rate critical valueAc now decreases smoothly withWi, seeFig. 16.

The absence of a finite band of wavenumbers and of a value ofWi below which Rec3 < 0 for all k
(as in the cylindrical case), appears to have fewer practical implications than one might expect at first
sight. After all, the overall behavior of the minimal value of the critical amplitudes as a function ofWi
shows quite the same behavior as in the case of the cylinder, compareFigs. 2 and 3: upon decreasingWi,
the critical values rapidly decrease belowWi ≈ 5. As we have stressed before, our expansion ceases to
be valid in this regime whereAc becomes of order unity. We expect that in reality there is also a true
saddle-node bifurcation point where the branch ends in the case of planar Poiseuille flow; possibly, our
results indicate that in the planar case the corresponding critical valueWic is lower than in the cylindrical
case. However, our results do imply that it is difficult to make a prediction for the wavenumber near
this (presumed) critical value than in the case of the cylinder. Nevertheless, since the wavenumber of the

3 Note that the band extends to slightly smaller values at flow rates about 50% beyond threshold. In this range, the lower
estimate for the frequency might be better replaced by 0.25vav/R.
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Fig. 16. The valuekc of the wavenumber corresponding to the minimum ofAc as a function ofk for the case of planar Poiseuille
flow.

mode whose threshold to nonlinear instability is smallest is about 1.8, it seems reasonable to expect for
the dimensional wavelength near threshold

Wi ≈ Wic : Λ ≈ 2πd

1.8
≈ 3.5d, (83)

where the width of the slit equals 2d. Like for the case of flow in a pipe, according to our linear results the
phase velocity is very close to the maximum velocity at the center line between the plates, so the above
result for the most likely wavelength near threshold yields a frequency of about 2.7vav/d. However, since
we do not find a finite band of unstable modes above threshold, it is difficult to determine the range of
frequencies expected further above threshold, even though we do expect here too that the patterns move
roughly with the average velocity.

4. Discussion and outlook

In this article we have shown that for the simplest model of a polymer fluid with normal stress effects,
the UCM model, Poiseuille flow through a planar channel or cylindrical tube becomes weakly nonlinearly
unstable for Weissenberg numbers somewhat larger than unity. Stated differently, since the UCM model
only includes the essential normal stress effect, we find that the nonlinear flow instability is character-
izedby the Weissenberg number only, and the phenomenon appears to be very robust in that almost any
more complicated polymer fluid model that includes normal stress effects will exhibit the same insta-
bility in the same range of Weissenberg numbers. We presented evidence in[9,10] that this instability
yields an intrinsic route to melt fracture behavior in the absence of other mechanisms such as stick–slip
phenomena.

One should also keep in mind that our expansion is only carried out to lowest order in the nonlinearity,
so one may wonder about the robustness of these results as long as higher order terms in the expansion
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are unknown. Investigations of these issues for Couette flow and Poiseuille flow are underway and will
be reported in due course.

The critical Weissenberg number we find is a factor 10 larger than the values for which Atalik and Ke-
unings[4] observed self-sustained quasi-periodic oscillations in their numerical simulations of Poiseuille
flow. The two results are not necessarily inconsistent however: while all of our calculations apply to the
UCM model, their simulations were done for the Oldroyd-B model, with a viscosity ratio of 10−3 and
Re = 0.1. Moreover, Atalik and Keunings added a stress diffusion term to their equations to improve
numerical stability. Further analysis is clearly necessary to investigate the effects of these differences—a
detailed comparison of the simulations with the amplitude expansion results for one and the same model,
is called for.

Just above the onset of a well-defined linear (or “supercritical”) instability threshold, the wavelength
of the pattern is well-defined: upon approach of the threshold, the wavenumber of the pattern approaches
the wavenumberkc at which the instability sets in. Here, however, it is more difficult to draw sharp
conclusions about the wavelength of the pattern close to onset. First of all, our expansion cannot be
fully trusted quantitatively for Weissenberg numbers of the order ofWic, as the damping rate is large
there, not small as is needed in our method. This technical caveat aside, one should keep in mind that
once the instability sets in the nonlinear flow behavior which will develop cannot be addressed by our
expansion method. Hence it is difficult to rule out the possibility of nonlinear interaction terms changing
the velocity of the pattern in the die to a value different from the one we have assumed, namely the average
flow velocity va. If on the other hand the flow pattern stabilizes in some weakly nonlinear regime, then
one would expect its wavenumber to be close to the onset value we calculate and the frequency to be
close to the one we have estimated inEq. (80). As a rule of thumb, the wavelength of the undulations of
the extrudate is typically about twice the diameter of the die.

In conclusion, our nonlinear analysis establishes the nonlinear flow instability essentially beyond
reasonable doubt and predicts onset values which are consistent with those reported experimentally
[3,8,10,11]. Moreover, the hypothesis of highly similar subcritical behavior in Taylor–Couette geome-
tries [19,20] and Poiseuille flow (and hence possibly melt fracture) is fully confirmed by our calcu-
lations. Indeed, the similarity between the flow field perturbation shown inFig. 8 and the roll-type
pattern which Groisman and Steinberg have argued gives rise to the subcritical nature of the insta-
bility [20] in Taylor–Couette flow is striking. From this perspective, the only difference between the
two cases is that the general mechanism[12,17,18] that in visco-elastic flows the curvature of the
streamlines makes the flowlinearly unstableis operative in Taylor–Couette cells but obviouslynot
in Poiseuille flow. Nonlinearly, the two flows appear to be much more closely connected. From this
perspective, the evidence for “turbulence without inertia”[33,34] as a result of these elastic effects is
intriguing.
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Appendix A. Explicit expressions for the operator L and the nonlinear term N

In this section, we give the expressions for the operatorsL andN from the equation

LV = N(V, V), (A.1)

in the planar case and the cylindrical case in dimensional form.
For the planar case, we have

L =




∂y ∂z 0 0 0

0 0 ∂y∂z ∂2
z − ∂2

y −∂y∂z
C 0 A 0 0

D E B A 0

F G 0 2B A


 ,

where the operatorsA−G are defined in the following way:

A = 1 + λ∂t + λv0
z(y)∂z, (A.2)

B = −λ∂v
0
z(y)

∂y
, (A.3)

C = 2(η∂y − λτ0
yz(y)∂z), (A.4)

D = η∂z − λ

(
τ0

zz(y)∂z − ∂τ0
yz(y)

∂y

)
, (A.5)

E = η∂y, (A.6)

F = λ∂yτ
0(y)zz, (A.7)

G = −2λ(τ0
zz(y)∂z + τ0

yz(y)∂y)+ 2η∂z (A.8)

and

N1 = 0, (A.9)

N1 = 0, (A.10)

N3 = λ

(
−vy ∂τyy

∂y
− vz

∂τyy

∂z
+ 2

(
∂vy

∂y
τyy + ∂vy

∂z
τyz

))
, (A.11)

N4 = λ

(
−vy ∂τyz

∂y
− vz

∂τyz

∂z
+ ∂vz

∂y
τyy + ∂vy

∂z
τzz

)
, (A.12)

N5 = λ

(
−vy ∂τzz

∂y
− vz

∂τzz

∂z
+ 2

(
∂vz

∂y
τyz + ∂vz

∂z
τzz

))
. (A.13)
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For the cylindrical case, we get

L =




1

r
+ ∂r ∂z 0 0 0 0

0 0 ∂z

(
∂r + 1

r

)
0 M −∂r∂z

B 0 A 0 0 0

C D E A 0 0

F 0 0 0 A 0

G H 0 I 0 A



, (A.14)

where the operatorsA−M are defined in the following way:

A = 1 + λ∂t + λv0
z(r)∂z, (A.15)

B = 2η

(
∂r + λ

∂v0
z(r)

∂r
∂z

)
, (A.16)

C = η

(
∂z − λ

∂2v0
z(r)

∂r2
− λ

r

∂v0
z(r)

∂r
+ 2λ2

(
∂v0

z(r)

∂r

)2

∂z

)
, (A.17)

D = η∂r, (A.18)

E = −λ∂v
0
z(r)

∂r
, (A.19)

F = 2η

r
, (A.20)

G = −4ηλ2∂v
0
z(r)

∂r

∂2v0
z(r)

∂r2
, (A.21)

H = 2η∂z + ηλ
∂v0

z(r)

∂r

(
2∂r + 4λ

∂v0
z(r)

∂r
∂z

)
, (A.22)

I = −2λ
∂v0

z(r)

∂r
, (A.23)

K = −1

r
∂r + 1

r2
− ∂2

r + ∂2
z , (A.24)

M = −1

r
∂z, (A.25)

and the vectorN has components

N1 = 0, (A.26)

N2 = 0, (A.27)
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N3 = λ

(
−vr ∂τrr

∂r
− vz

∂τrr

∂z
+ 2

∂vr

∂r
τrr + 2

∂vr

∂z
τrz

)
, (A.28)

N4 = λ

(
−vr ∂τrz

∂r
− vz

∂τrz

∂z
+ ∂vz

∂r
τzz+ ∂vz

∂r
τrz − vr

r
τrz

)
, (A.29)

N5 = λ

(
−vr ∂τθθ

∂r
− vz

∂τrz

∂z
+ 2

vr

r
τθθ

)
, (A.30)

N6 = λ

(
−vr ∂τzz

∂r
− vz

∂τzz

∂z
+ 2

(
∂vz

∂r
τrz + ∂vz

∂z
τzz

))
. (A.31)

Appendix B. Explicit expressions for the coefficient βi

The coefficients of the equation for the streamfunction in the planar case:

β0 := k2(k2 + ikS + 2k2S2ξ2 − 6iC(ξ)kS3ξ2 − iC(ξ)kS + 3C(ξ)S2

+ 6iC(ξ)2kS3ξ2 + 4C(ξ)2S4k2ξ4 + 2C(ξ)2k2S2ξ2), (B.1)

β1 := 2k2Sξ(ik − 2S + 4C(ξ)S − 2iC(ξ)kS2ξ2 − iC(ξ)k − 2C(ξ)2S + 2iC(ξ)2kS2ξ2), (B.2)

β2 := −k(3iS + 2k + 2kS2ξ2 − 3iC(ξ)S − 4C(ξ)kS2ξ2 + 2C(ξ)2kS2ξ2), (B.3)

β3 := 2ik[Sξ(−1 + C(ξ))], (B.4)

C(ξ) := 2

2 + ikS(1 − ξ2 − c)
, (B.5)

where the complex dimensionless coefficientc = ω/k is used by Rothenberger et al.[2].
The coefficients of the streamfunction in the cylindrical case are

β0 := k3(k − 4iC(ξ)S3ξ2 + 4k[S4ξ4C(ξ)2 + 2kS2ξ2C(ξ)2 + 4iC(ξ)2S3ξ2 + 2kξ2S2]), (B.6)

β1 :=
−2S2ξ4k2 + 2k2ξ2 − 2ik3ξ4SC(ξ)− 3 + 4S2ξ4C(ξ)k2 + 2ik3ξ4S

− 2C(ξ)2S2ξ4k2 + 4ik3ξ6C(ξ)2S3 − 4ik3ξ6C(ξ)S3

ξ3
, (B.7)

β2 := −−3 − 4S2ξ4C(ξ)k2 + 2C(ξ)2S2ξ4k2 + 2k2ξ2 + 2S2ξ4k2

ξ2
, (B.8)

β3 := 2
−ikξ2S − 1 + iSξ2C(ξ)k

ξ
, (B.9)

C(ξ) := 1

1 + i/2kS(1 − ξ2 − c)
. (B.10)
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