Force Response as a Probe of the Jamming Transition
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ABSTRACT: A few years ago a “jamming diagram” has been proposed as a nonequilibrium phase diagram to
describe the physics of glass transitions and granular materials in a unified way. Granular systems “jam”, i.e.
develop a yield stress, when their packing fraction reaches a certain critical value upon compression. At zero
temperature and load, this transition from “liquid” to “disordered solid” is governed by a critical point. We
calculate the linear response to a point force for frictionless packings of various pressure. From the averaged
response we obtain the effective Young modulus and Poisson ratio of the packings through fitting the coarse
grained behaviour to continuum elastic theory. The elastic coefficients obtained this way show scaling behaviour

near the jamming point.

1 INTRODUCTION

Many systems, including granular packings, glassy
materials, and foams undergo a transition from a
floppy, free flowing phase to a solid-like elastic phase
as the appropriate parameters of the system are varied.
The proposed interpretation in terms of a so-called
“jamming transition” (Liu and Nagel 1998) has re-
ceived a lot of attention because of its potential to be a
common framework to describe particle systems with
short range interactions of widely varying physical
origin. The practical definition of the jammed state is
that the internal stresses in the system are not relaxed
to zero during experimentally available time scales.
Dry granular media, with purely repulsive intergrain
interactions, present ideal systems to study the jam-
ming transition.

To fix the ideas, consider a system of macroscopic
Hertzian spheres confined in a box so large that they
fit in without touching or overlapping. Now quasistat-
ically decrease the volume of the box increasing the
packing fraction ¢. At some point the grains can-
not avoid touching each other anymore, and start to
build up a pressure; the systems jams. For particles
with finite-range repulsive interactions, the density at
which this happens is sharply defined (O’Hern et al.
2003). Hence, for simple systems with zero shear >
and zero temperature 7', there is a sharply defined
jamming transition, indicated by point J in the jam-
ming diagram (Figure 1).

O’Hern et al. (O’Hern et al. 2003) have shown that

Figure 1: The Jamming phase diagram. The axes are
inverse density 1/¢, temperature 7', and shear load ..
Point J is the well-defined transition at zero tempera-
ture and shear. [after (O’Hern et al. 2003)]

the granular system just beyond this point exhibits
scaling behaviour as a function of pressure or den-
sity. This is reminiscent of critical phase transitions,
and these findings immediately raise the question to
what extent the jamming transition at 7' = > = 0 is
similar to a second order phase transition. In particu-
lar, can we identify a length scale that diverges as the
transition is approached?

In this paper we investigate the behaviour of a gran-
ular system as p — 0, approaching the jamming tran-
sition from the jammed (solid-like) side. In our sys-
tem, the transition is induced by changing the degree
of confinement. While in everyday life most granu-
lar materials are confined by gravity, we confine, un-



der zero gravity, our granular system in a box with a
known force acting on the sides of the box, to avoid
depth dependent pressure. We have studied the crit-
ical behaviour as p is lowered from various angles,
by analysing elastic properties and vibrational spec-
tra, but focus here on the scaling behaviour of the ef-
fective elastic properties obtained from the system’s
response to a point loading.

2 RESPONSE TO EXTERNAL LOADS

In a jammed granular system (granular solid) at rest,
there is a network of contacts between grains. Each
contact carries a force such that there is force balance
on each particle. If an external force is applied on the
system, the contact forces change in a way which is
governed by the contact force law and the condition
that force balance on each particle is restored. We
consider the linear regime, where the applied force is
much smaller than the equilibrium forces, and break-
ing of contacts is negligible. The model system con-
sists of slightly polydisperse spheres with a Hertzian
contact law: f oc d*/2, where f is the force and d is
the overlap length of the contact.

The numerical procedure consists of two main
stages: a molecular dynamics part where a packing of
N =10, 000 particles is generated, and a response cal-
culation part which involves only linear algebra and
no more dynamics.

2.1 Packing generation

The two-dimensional packing are generated by com-
pressing a dissipative granular gas, for details see
(Somfai et al. 2004). The packings are periodic in the
x-direction, and are confined between hard walls in
the y-direction. They are made with pressures rang-
ing from p = 1072 to p = 107°, in units of the Young
modulus of the grains’ material.

2.2 Response calculating procedure

The linear response is calculated using what in con-
densed matter physics is called the dynamical ma-
trix. It contains all information about the geometry
of the contact network and the stiffnesses of the con-
tacts. For the nonlinear force law used here, these
stiffnesses depend on the equilibrium forces before
any external load is applied. More precisely, it is the
2N x 2N matrix of second derivatives of the elas-
tic energy of the system with respect to the coordi-
nates of the particles. It relates the displacements of
all particles in the packing in response to the exter-
nal forces acting on all particles in the packing as
MU = Fu, where M denotes the dynamical matrix,

U= (ugcl),uél),ugf),uéz),...,uéN)) is a vector col-
lecting the displacements of all particles, and Fiy =
(Fél),Fy(l),Ff),Fy@), . FN )) contains the exter-

nal forces on all particles.

For a stable packing, the matrix M is symmetric
positive-definite, so it can be inverted to find the dis-
placement field U for a given external load Fiy:

U = M_lFexta (1)

which we do numerically using a conjugate gradient
algorithm. The same procedure has recently been ap-
plied to packings of Lennard-Jones particles (Leon-
forte et al. 2004).
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Figure 2: Centred zoom picture of the response to an
in-plane external force on a single particle. The upper
image is at p = 1073, the lower at p = 107%. Black
(grey) lines indicate an increase (decrease) in contact
force, the thickness corresponds to the magnitude of
the change.




Figure 3: Comparing the average stress response of a
few hundred granular packings (p = 1073, dotted) to
analytic elasticity calculations (v = 0.62, solid). The
left panel displays contours for o, the right for o,.

2.3 Results for point loading

For a unit force in the negative y-direction on a par-
ticle in the middle of the packing, the response net-
works are shown in Figure 2, for a high pressure and
a low pressure packing. Comparison of these graphs
shows that the fluctuations become larger when the
pressure decreases, and spread out over longer dis-
tances. We will analyse this in more detail elsewhere
and focus here on the average elastic properties.

From the response networks we calculate the
changes in the stress tensor, coarse grained over a
length scale of the order of one grain diameter (Gold-
hirsch and Goldenberg 2002). Averaged over many
realisations, this stress response field compares very
well to analytic calculations of two-dimensional elas-
ticity. In Figure 3 this is shown for packings that were
generated at p = 1073, In such a comparison, the pois-
son ratio v used in the analytic calculations is the only
adjustable parameter. We find that it can be extracted
very precisely from these fits. It changes with pres-
sure, approaching unity as p — 0, which is the max-
imum value in 2D elasticity. For lower pressures the
fluctuations are larger (see also Figure 2) so the ob-
tained v is slightly less accurate, but the average still
fits elastic behaviour quite well.

From a comparison of the displacement field of the
granular packing and the analytic calculation we can
find the Young modulus Y of the packing in a similar
way. A suitable quantity for doing this is the average
y-displacement of all particles in a narrow strip at a
certain height y

1 .
Viy) = Soul?, )
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the analytic counterpart of which looks like

1 (L=
vy = — [ wayd. O

where the origin is in the lower left corner, u,(x,y) is
the vertical component of the displacement field, and
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Figure 4: The average vertical displacements of all
particles around height y (solid) and the analytic fit
(dashed), for p = 1073 (left) and p = 107° (right).

L, is the width of the system, The Young modulus
appears in this function as an overall multiplicative
constant, which makes it easy to fit, as is shown in
Figure 4.

Y and v determine the properties of an isotropic
linear elastic medium. The bulk modulus K and shear
modulus p can be calculated from these using the fol-
lowing relations:

Y

K= 2(1—v)’ @
Y
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All these quantities are plotted in Figure 5, as a
function of pressure. They are found to scale as power
laws of pas p — 0:

Y o plo0£001 (6)
(1-v) o pO234003 7
K o p038£002 (8)
§ oc phesEool 9)

The exponenents for K and p match those found
by different methods by O’Hern et al. for various
(2D, 3D, mono- and bidisperse) systems, including
Hertzian spheres (O’Hern et al. 2003).

3 OUTLOOK

Averages over many packings have provided us with
information about the global elastic properties of
granular packings. However, single experiments show
fluctuations around this average. The size and range
of these fluctuations depend on pressure, and presum-
ably the range of these fluctuations is one of the im-
portant length scales which is found to diverge upon
approaching point J. We have various indications that
to identify this scale, it is useful to consider a global
shear as external force, instead of the localized point
force. This is illustrated by Figure 6. The higher pres-
sure picture (on the left) is more homogeneous, and
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Figure 5: Scaling of the elastic moduli with pressure.
The dotted lines are Equations 6 to 9. Bulk, shear and
Young moduli are all expressed in units of the Young
modulus of the constituent particles.

looks like an elastic response already on the scale of
a few grains. In the low pressure case, one would
have to average over a larger scale to see a smooth
response.

4 CONCLUSIONS

The linear response calculations provide us with a
displacement field and changes in contact forces for
given external loads on granular packings. We have
shown that these can be used to extract the global elas-
tic moduli for these systems. The elastic moduli van-
ish with pressure as power laws, with exponents that
are consistent with earlier work. We will show else-
where that many of these features are also observed
for frictional particles, and that also the vibrational
spectra change strongly as a function of pressure.
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Figure 6: Zoom picture of the response to a global
shear, with only the compressed contacts drawn. The
left image is at p = 1073, the right at p = 1075,
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