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Evidence for slow velocity relaxation in front propagation in
Rayleigh–Bénard convection
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Abstract

Recent theoretical work has shown that so-called pulled fronts propagating into an unstable state always converge very
slowly to their asymptotic speed and shape. In the light of these predictions, we reanalyze earlier experiments by Fineberg
and Steinberg on front propagation in a Rayleigh–Bénard cell. In contrast to the original interpretation, we argue that in
the experiments the observed front velocities were some 15% below the asymptotic front speed and that this is in rough
agreement with the predicted slow relaxation of the front speed for the time scales probed in the experiments. We also discuss
the possible origin of the unusually large variation of the wavelength of the pattern generated by the front as a function of the
dimensionless control parameter.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Although the propagation of a front into an unstable
state plays an important role in various physical situa-
tions ranging from the pearling instability[1,2] to di-
electric breakdown[3], detailed experimental tests of
the explicit theoretical predications, especially those
for the velocity of so-called “pulled” fronts are scarce.
One of the reasons lies in the difficulty in preparing
the system in the unstable state.
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If the initial front profile is steep enough the prop-
agating front converges to a unique shape and veloc-
ity. Theoretically, one distinguishes two regimes for
front propagation into unstable states: the so-called
“pushed” regime, where the front is driven by the non-
linearities and the so-called “pulled” regime where
the asymptotic velocity of the propagating front,vas,
equals the spreading speedv∗ of linear perturbations
around the unstable state:vas = v∗. Pushed fronts are
by definition those for which the asymptotic speedvas

is larger thanv∗: vas > v∗. It is thus as if a “pulled”
front is literally “pulled” by the leading edge whose
dynamics is driven by linear instability of the unstable
state[4–7]; the nonlinearities merely cause saturation
behind the front. We focus here on the experimental
tests of the dynamics of such pulled fronts; sincev∗
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is determined by the equations linearized about the
unstable state, the front velocity of pulled fronts can
often be calculated explicitly, even for relatively com-
plicated situations.

There have been two experiments aimed at testing
the predictions for the speed of pulled fronts. Almost
20 years ago Ahlers and Cannell[8] studied the propa-
gation of a vortex front into the laminar state in rotating
Taylor–Couette flow. The measured velocities were
about 40% smaller than expected from the theoretical
predictions. A few years later, however, Fineberg and
Steinberg (FS)[9] published data which appeared to
confirm the expected velocity in a Rayleigh–Bénard
convection experiment to within about 1%. The issue
then seemed to be settled when it was also shown that
the discrepancy observed by Ahlers could be traced
back to slow transients[10].

The theoretical developments of the last few years
give every reason to reconsider the old experiments by
FS: it has been shown[7] that the convergence of the
velocity of pulled fronts isalways very slow, in fact
with leading and subleading universal terms ofO(1/t)
andO(1/t3/2) with prefactors which follow from the
linearized equation. This slow relaxation implies that it
will in general be very difficult to measure the asymp-
totic front speed to within a percent or so in any realis-
tic experiment. Hence, from this new perspective, the
proper question is not why in the Taylor–Couette ex-
periment the measured velocity was too low, but why
apparently in the Rayleigh–Bénard experiment of FS
the asymptotic front speed was measured.

The main purpose of this paper is to address this
issue, and to reanalyze the experiments in the light of
the present theory. We will conclude that the data of
FS actually do show signs of the predicted power law
convergence of the front velocity to an extrapolated
asymptotic value which is about 15% larger than their
transient value. This of course implies that there is
then a discrepancy of order 15% between the value
of vas = v∗ as extrapolated from their data, and the
one claimed in the original experiments. We will argue
that the most likely reconciliation of the two results
is that the value of the correlation lengthξ0 in the
experimental cell of FS is somewhat larger than the
theoretical value used by FS to interpret their data.

Of course,only new experiments can settle whether
the interpretation we propose is the correct one. We
do consider new experiments along the lines of FS in
fact very desirable, not so much as they might settle
the numerical value of the velocity, but more because
they hold the promise of being the first accurate ex-
perimental test of the universal power law relaxation
of pulled fronts.

In Section 2, we will first summarize the relevant
theoretical predictions for the velocity of pulled fronts.
Then we will discuss the experiments of FS in the
light of these results inSection 3, where we will also
reanalyze their data. Finally, inSection 4we turn to a
brief discussion of the wavenumber of the pattern se-
lected by the front. Here, the results of FS were not
quite consistent with the predictions for the asymptotic
wavenumber from the Swift–Hohenberg equation. As
we shall discuss, the wavelength of the pattern is af-
fected by various effects which are not easily con-
trolled, but the most likely interpretation of the data of
FS is that they did not observe the asymptotic wave-
length behind the front, but the local wavenumber in
the leading edge of the front. Indeed it is in general
difficult to test the theory by studying the asymptotic
pattern wavelength and the convergence to the asymp-
totic value experimentally.

2. Summary of theoretical predictions

2.1. Asymptotic speed and power law convergence

Just above the onset of a transition to stationary fi-
nite wavelength patterns, for small dimensionless con-
trol parametersε the slow dynamics on length scales
larger than the wavelength of the pattern can be de-
scribed by the Ginzburg–Landau amplitude equation
[11,12]:

τ0∂tA = εA + ξ2
0∂

2
xA − g|A|2A. (1)

The time scaleτ0 and length scaleξ0 as well as the
nonlinear saturation parameterg depend on the par-
ticular system under study.

The asymptotic spreading speedv∗ of linear pertur-
bations around the unstable state is in general obtained
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from the linear dispersion relationω(k) of a Fourier
mode e−iωt+ikx through

∂Imω

∂Im k

∣∣∣∣
k∗

− v∗ = 0,
∂Imω

∂Rek

∣∣∣∣
k∗

= 0,

Imω(k∗)
Im k

= v∗. (2)

This yields for the Ginzburg–Landau equation

v∗ = 2ε1/2ξ0τ
−1
0 (3)

and

µ∗ ≡ Im k∗ =
√
ε

ξ0
, (4)

D ≡ 1

2

∂2Imω

(∂Im k)2
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k∗

= ξ2
0

τ0
. (5)

In the experiments with which we will compare, the
scaled velocity

ṽ = v
τ0

ξ0
√
ε

(6)

is often used. According to(3), for a pulled front the
asymptotic valuẽvas = 2.

The above results were known in the 1980s, at the
time when the experiments were done. The crucial in-
sight of the last few years is the finding that the con-
vergence or relaxation towards the asymptotic velocity
v∗ of pulled fronts isalways extremely slow: the gen-
eral expression for the time-dependent velocityv(t)

emerging from steep initial conditions (i.e., decaying
faster than e−µ∗x) is given by2 [7]

v(t) = v∗ − 3

2µ∗t
+ 3

2µ∗2t3/2

√
π

D
+O(t−2). (7)

2 The subject of power law relaxation of fronts propagating into
an unstable state has a long history. For the nonlinear diffusion (or
KPP) equation, Bramson[13] rigorously derived the 1/t power
law relaxation term already in 1983. A few years later, the gener-
alization to more general (higher order) equations was proposed
in [6]. For the nonlinear diffusion equation, the 1/t term has
been rederived by various methods by several authors; of these
the method of Brunet and Derrida[14] is most closely related to
the one used in[7] to derive this term and the 1/t3/2 term for
a much larger class of equations. We note again that the power
law behavior(7) is only obtained for sufficiently steep initial con-
ditions. For example for power law initial conditions there is no
finite asymptotic front speed[15].

For the case of the Ginzburg–Landau amplitude equa-
tion, we then have

ṽ(t) = 2 − 3

2εt/τ0
+ 3

√
π

2(εt/τ0)3/2
+ · · · . (8)

It is important to stress that the above expression for
v(t) is exact but asymptotic—this is illustrated by the
fact that at timeεt/τ0 = π the subdominantt−3/2 term
is equal to the first correction term of ordert−1 in ab-
solute value, but of opposite sign. Thus, although for
any sufficiently long timet , the above expression will
always become accurate, at any finite time, however,
the expression might only yield a good estimate. In
fact, in practice one usually has to go to dimensionless
times εt/τ0 of order 10 or larger for the asymptotic
expression to become accurate, while for dimension-
less timesεt/τ0 in the range 3–10 the first correction
term yields a reasonable order-of-magnitude estimate
[7]. As we shall see below, in the Rayleigh–Bénard ex-
periments[9] the maximum dimensionless timeεt/τ0

that can be probed is about 3–4. In comparing with
experiments and in making order of magnitude esti-
mates, we will therefore only use the first correction
term. Finally it is important to realize that after how
long a time these expressions become really accurate,
depends also on the initial conditions.

2.2. Dependence on initial conditions

In order to illustrate how accurate these expres-
sions are in practice, we numerically integrate the real
Ginzburg–Landau equation starting with an exponen-
tially decaying initial condition with steepness3 µ:
A(x, t = 0) = a e−µx . The result is shown inFig. 1
for various values ofµ. We see that initially the veloc-
ity falls off quickly and then approaches the asymp-
totic velocity from below, and that the asymptotic ex-
pression(8) in practice does yield a reasonable esti-
mate of the time-dependent velocity for values of the
scaled time of order 3 and larger.

We also note that the theoretical analysis shows that
for initial profiles falling off exponentially with steep-
nessµ < µ∗, the asymptotic velocity lies abovev∗

3 In [7] the steepness is denoted byλ instead ofµ, but we prefer
to useλ here for the wavelength of the pattern.
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Fig. 1. Velocity of fronts propagating into the unstable stateA = 0
of the real Ginzburg–Landau equation with exponentially decaying
initial conditions A = √

ε/g e−µx . The velocity is obtained by
tracing the position of the point whereA reaches half its asymptotic
value. Sinceε andξ0 just set the length and time scale,ṽ(t) plotted
as a function of the scaled timeεt/τ0 is parameter-independent.
Different initial conditions or tracing a different value ofA to
determine the velocity yield different transient behavior, but for
sufficiently steep initial conditions, all curves converge to the
analytic formula for late times.

and is given byvas(µ) = µ + (1/µ). The dotted line
in Fig. 1 shows an example of a case withµ slightly
less thanµ∗, for which ṽas = 2.05. In this case, the
time-dependent scaled velocity is approximately equal
to 2 at times of order 3–4.

In the experiments, the typical protocol was to si-
multaneously increase the heat flux from an initial
state atεi < 0 (with a typical value ofεi = −0.015)
to a supercritical valueεf , and switching on the end
heater. The fact that the state before the heat flux was
changed corresponds with a negative value ofεi im-
plies an initial condition which falls off at least ex-
ponentially fast, as exp(−µx) with µ = √|εi |/ξ0. A
rapid convergence to the asymptotic velocity due to
special initial conditions withµ ≈ λ∗ would there-
fore have required settingεi ≈ −εf for all εf and
would probably also have required switching on the
end heater before the value ofε was changed, so that
effectively at the end a convection pattern was pre-
pared whose amplitude decayed exponentially into the
bulk. Thus, it is theoretically possible to select special
initial conditions so as to get a scaled velocity around
2 at some finite time, but the finetuning necessary to do

so is so sensitive that we consider it very unlikely that
experimental observations done over a range of values
of ε are due to initial condition effects. As stressed
before, only new experiments can completely rule out
this possibility, however.

3. Reexamination of the Rayleigh–Bénard
fronts

In the long quasi-one-dimensional Rayleigh–Bénard
cell of FS[9], the front propagation was initiated by
simultaneously increasing the heat flux to a supercrit-
ical valueε > 0 (ε = (�T/�Tc)− 1)) and switching
on a heater at the ends of the long cell. A vortex
front is induced near the this heated end-wall and the
propagation of this front into the unstable conductive
state is then studied. Thin fins were attached to the
long sides of the cell to avoid both induction of long
rolls and pinning. Both because of the fact that the
initial perturbation was caused by heating at the end
and because the state before bringing the temperature
difference beyond its critical value was unrelated to
the final value ofε, there is every reason to believe
that the experimental protocol did not create any
special initial conditions that cannot be considered
sufficiently steep or localized.

As FS point out, since the front velocityv∗ grows
as

√
ε, while the growth rate in the bulk grows asε,

fronts can only be observed and in fact dominate the
dynamics for small enoughε. In practice, the pattern
could be distinguished from the bulk noise up to a time
tbg = nτ0ε

−1, where the numerical factorn is of order
3–4. This determines some upper limitε0 on ε for
which the front can advance of the order of(1/m)th
of the cell lengthl before bulk growth takes over:

ε0 =
(
ṽξ0mn

l

)2

. (9)

Let us now estimate, using our analytical estimate(8),
the relative importance of the correction term at the
latest times of ordertbg = nτ0ε

−1 at which measure-
ments can be taken. Substitution gives

ṽ(tbg) ≈ 2

(
1 − 3

4n

)
. (10)
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Thus, for the latest time accessible in the experiment,
we obtain with the empirical experimental valuen =
3–4 a velocity which is of order 20± 5% below the
asymptotic value. Although the asymptotic formula
may not be accurate yet at such early times, the nu-
merical results ofFig. 1 lead one to expect correc-
tions of the same order of magnitude: these times also
correspond to scaled times of ordern in the numer-
ical simulation plots ofFig. 1, and as we have seen,
over this time range, the velocity is also suppressed
by about 15% relative to the asymptotic value. Hence,
by any reasonable estimate, the slow relaxation cannot
be negligible in the experiments.

As stated in the introduction, FS quoted a mea-
sured velocityṽ = 2.01± 0.02 for their experiments,
contrary to our expectation that their scaled velocity
should have been in the neighborhood of 1.7. Accord-
ing to the theoretical results, one should expect to get
to within 1% of the asymptotic velocity only around
a dimensionless time of order 100.

In our view, the most plausible explanation for the
origin of this discrepancy is that the valueξ0 was ac-
tually larger in the experiments than the value used
in the analysis. The value ofτ0 was experimentally
confirmed to be very close to the theoretical value.4

For ξ0, however, the theoretical value was used with-
out independent experimental check[16]. Because of
the special design of the cell with side-fins to create
one-dimensional patterns, a different value ofξ0 might
not be unexpected. In fact, an indication thatξ0 in the
experiments was larger than the theoretical value used
in the analysis, comes from the observation of FS that
the value of the wavelength at onset was 13% larger
than the theoretical value. This might indicate that all
lengths in the experiments are a factor 1.13 larger than
the theoretical values, and this is precisely the factor
needed to reconcile the front data with the theoretical
expectations! One should keep in mind, though, that
ξ0 is determined by the curvature ofε versusk tongue
around the critical wavenumber, and that it is not
guaranteed that both are changed by the same factor;

4 The value of 1/τ0 is given to be 6.90 in[9], but this is a
misprint. The theoretical value is 17.94; it has been explicitly
verified that this value accurately describes the experiments[16].

only independent measurements can fully settle this
issue.

We now show that a reanalysis of the data of FS
actually gives quite convincing evidence for slow con-
vergence effects in the experimental fronts.

FS measured the velocity by comparing the front
with itself at various time intervals, by appropriately
shifting the traces back. This yielded a set of points in
the�x, �t plane which appeared to lie on a straight
line. However, a possible relaxation of the velocity was
masked since points from early and later times will
approximately fall in the same place in the plane, and
because the front shape also has an asymptotic 1/t re-
laxation. We therefore have tried to reanalyze the raw
data ofFig. 2 from the FS paper; this space–time plot
of a propagating from is reproduced in the top panel
of our Fig. 2. We define the position of the front as
the point where the interpolation of the maxima of the
profile equals some fraction of its maximum in the
bulk (we chose 0.4). Our data forṽ(t) obtained this
way are shown in the lower panel ofFig. 2. Whereas
the local velocity initially slightly decreases, an in-
crease for dimensionless times larger than 0.5 is evi-
dent. We stress that this qualitative behavior is inde-
pendent of the choice of the parameters. In order to
compare quantitatively to the predictions for the relax-
ation, we have used the value forτ0 given by FS but
increased the value ofξ0 by 13% on the basis of the
argument given above. Clearly, with this choice, the
data are certainly consistent with the analytical as well
as numerical estimates of the velocity relaxation—in
fact, in a way the data are the first experimental indica-
tions for the universal power law relaxation of pulled
fronts.5

4. Relaxation of wavelength

FS also studied the problem of the selection of the
wavelengthλ. As we discussed before, the actual value

5 Of course, as mentioned in the introduction the experiments
by Ahlers and Cannell were the first ones to show an appreciable
suppression of the front velocity at finite times. In general terms,
this is the same phenomenon[18] but the Taylor–Couette data do
not probe sufficiently long times to see the 1/t behavior.
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of the wavelengthλc of the patterns is at criticality
about 13% off from the theoretical value; however, we
are not interested here in the absolute value, but in the
relative variation ofλc/λ.

The difficulty of comparing theory and experiment
on the variation of the wavelength is that the only the-
oretically sharply defined quantity is the wavelength

sufficiently far behind the front,λas, and that one has
to go beyond the lowest order Ginzburg–Landau treat-
ment to be able to study the pattern wavelength left
behind. For example, if we use a Swift–Hohenberg
equation for a system with critical wavenumberkc and
bare correlation lengthξ0,

∂tu = − (ξ0kc)
2

4

(
1 + 1

k2
c

∂2

∂x2

)2

u + εu − u3, (11)

then a node counting argument[4,6] yields for the
asymptotic wavelengthλas far behind the front[6]:

λc

λas
=

3

(
3 +

√
1 + 24ε/(k2

cξ
2
0 )

)3/2

8

(
2 +

√
1 + 24ε/(k2

cξ
2
0 )

)

≈ 1 + ε

(2k2
cξ

2
0 )

(ε � 1). (12)

In the Rayleigh–Bénard experiments,kc ≈ 2.75/d,
whered is the cell height; the theoretical value isξ0 =
0.385d, so if our conjecture that the value is some 15%
larger is correct, we getξ0 ≈ 0.44d. This then gives

λc

λas
≈ 1 + 0.34ε. (13)

As we stressed already aboveλas is the wavelength far
behind the front; for a propagating pulled front, there
is another important quantity which one can calculate
analytically, the local wavelengthλ∗ measured in the
leading edge of the front. For the Swift–Hohenberg

�

Fig. 2. Top panel: shadowgraph trace of a propagating front in the
experiments of FS forε = 0.012[16]. The time difference between
successive traces is 0.42tv, wheretv is the vertical diffusion time
in the experiments, and the distances are measured in unitsd

(the cell height) (from[9]). Middle panel: similar data obtained
from numerical integration of the Swift–Hohenberg equation also
at ε = 0.012 starting with a localized initial condition. The time
difference between successive traces corresponds to 0.42tv. Bottom
panel: velocity versus time in the experiment, as obtained by
interpolating the maxima of the traces in the top panel, as explained
in the text. The dashed line shows the analytical result(8) and
the dotted curve the result of the amplitude equation simulation
of Fig. 1 with µ/µ∗ = 1.2. Note that the curves are not fitted,
only the absolute scale is affected by adjustingξ0.
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Fig. 3. The selected wave numberλc/λ as function ofε. The
data points of FS are denoted by circles, our numerical results
on the Swift–Hohenberg by triangles. The dashed lines shows the
prediction for the asymptotic wavelength, the dashed-dotted line
shows the analytic result with relaxation terms att = 6τ0/

√
ε [17]

and the gray line shows the result for the local wavelength in the
leading edge.

equation, one gets for this quantity[6,17]

λc

λ∗ =
√√√√1 + 1

4

(√
1 + 24ε

(k2
cξ

2
0 )

− 1

)

≈ 1 + 3ε

2k2
cξ

2
0

(ε � 1)

≈ 1 + ε, (14)

where in the last line we have used the experimental
values.

Let us now discuss the experimental findings in the
light of these results. InFig. 3, we show both the
experimental values ofλc/λexp as determined experi-
mentally by FS, and results for the Swift–Hohenberg
equation with the value(13) relevant for the experi-
ments.

(i) For smallε, the experimental values are roughly
linear inε, but when a fit is made over the whole
range ofε values studied, a square root behavior,
as proposed by FS, would probably be better.

(ii) The experimental values for the wavelength ratio
deviate about a factor of 3 from the theoretically
expected value for the ratio far behind the front,
λc/λas.

(iii) Just like the front speed converges very slowly
to the asymptotic value, so does the local value

of the wavelength behind the front[17]. The
relaxation of the velocity is plotted with a
dashed-dotted line inFig. 3 for times about
6τ0/

√
ε, which is the time it takes for a front to

propagate to close to the center of a system about
as large as the experimental cell. Clearly, the
wavelength ratio due to slow relaxation lies be-
low the asymptotic value, and hence further away
from the experimental data for smallε. Also, nu-
merical results for the wavelength of the fourth
“roll” measured at the same time (indicated by
the dotted line) lie below the asymptotic curve).

(iv) FS have measured the wavelength for very small
values ofε, down to 4×10−4. However, already
for values as small as 0.01, the coherence length
ξ = ξ0/

√
ε is about 2λc in the experiments. The

total front width is several times this number,
and for even smaller values ofε the front width
is even smaller. Since the total experimental cell
was about 12λc long in the experiments, it is
clear that over much of the smallε range, one
would not expect to see well-developed fronts
in the experiments. In other words, it is very
unlikely that over the experimental range of
ε-values, one has a chance to measureλas of a
well-developed pattern behind a front.

(v) The gray line in the plot shows our analytical
result for the wavelength ratio in the leading
edge of the front. Clearly, this line follows the
data for smallε quite well. In view also of
point (iv) above that it will be hard to obtain
well-developed fronts for smallε, we propose
as a tentative explanation of the data that in the
small ε range, one actually measures the emer-
gent roll pattern associated with the leading edge
of a front. Of course, only new experiments can
decide on the validity of this suggestion.

(vi) We mention that the variation of the wave-
length ratio with ε depends also on the third
order derivative term in the expansion of the
dispersion relation around the critical wavenum-
ber. This term is not modeled correctly in the
Swift–Hohenberg equation, but may have to be
taken into account in a full comparison of theory
and experiment.
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(vii) We finally mention that in the experiments
there was an up–down asymmetry in the rolls.
We have investigated whether this could be a
source of the discrepancy between the asymp-
totic wavelength ratio and the observed one,
by studying a Swift–Hohenberg equation with
a symmetry-breaking quadratic term. However,
with this term, the wavelength ratio appears to
decrease away from the experimental values.

5. Conclusion

It was recently discovered that quite generally
pulled fronts relax very slowly to their asymptotic
velocity. Comparison of the experimental data for the
velocity with numerical simulations and analytical
estimates give, in our view, evidence that these ex-
periments provide clear signs of the presence of such
slow relaxation effects, although the time scales that
can be probed experimentally are too short to test the
general power law relaxation. Theoretically, the only
other viable option to reconcile theory with the in-
terpretation originally proposed[9] is that somehow
special initial conditions created an initial convection
profile with precisely the right spatial decay into the
bulk. As we discussed inSection 3, in our view this is
an unlikely interpretation, but only new experiments
can settle this issue completely.

While measurements of the wavelength of the pat-
tern generated by a front are even more difficult to
interpret than those of the velocity, our analysis in-
dicates that in the smallε regimes a well-developed
front does not fit into the experimental cell, and that
as a result one probes the local wavelength in the lead-
ing edge of the front rather than the well-developed
asymptotic wavelength behind it. The analytical esti-
mates are consistent with this suggestion.

We hope that this work will trigger new experimen-
tal activity to investigate these issues—experiments
along these lines hold the promise of being the first
ones to see the universal power law relaxation of pulled
fronts.
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