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EARLY UNIVERSE
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Thermal history of the Universe

Today you all got used to pictures like this
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History

HOW DID WE LEARN ALL THAT?

Alexey Boyarsky PPEU



Cosmological model of Einstein

m Einstein applys GR to the whole Universe assuming spatial 1917 - early
homogeneity and isotropy (for isotropy there were observational evidence, for 1920s
homogeneity — it was a bold extrapolation, due to Hubble’s observations of fainter and fainter

“nebulae’)

m The metric is given by

ds® = —dt* + ﬁQ(dX2 + sin® ydf? + sin® y sin” Hdngl

3—sBﬁere

— static cylinder

m Closed Universe — finite total volume V = 272 R3
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Cosmological model of Einstein

m Plug this metric into the

Einstein’s equation: <—_>

1
RMV - ig‘“/R - Agl“/ — 87TGTILLV .\#),’;L = ‘
. I 3 e |3
T,uu — dlag(p7 —P, —D, _p)
| | e i
m The solution exists if
cosmological constant and
sul T
matter are related as <] =
<~
1 2 Shace

A:— —
r2 P 7 81GR2

m Total mass of the Universe M = p - 372R?> = I&

m Everything is a function of density that can be measured
experimentally =-full solution of the Universe constructed?
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Cosmological model continued

m de Sitter (1917) finds a different solution

ds® = —R? cos? ydt* + ﬁ2(dx2 + sin? yd#? + sin? y sin® 9d¢22

3-sBﬁere
m To satisfy GR equations this requires
3
A= ﬁa P = 0

— curved Universe without matter??
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Cosmological model continued

1922

m Friedmann write the general ansatz for homogeneous and
isotropic metric

d 2
%+X2d92—l—x2sin29d(b2 : k=—1,0,1

ds* = —dt*+a*(t
S +a*(t) T rix

m Three homogeneous and isotropic spaces (x — sign of curvature)
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Cosmological model continued

m Plug this metric into the Einstein’s equation, using the general form
of the stress-energy tensor being

T, = diag(p, —p, —p, —p)

m The Eistein’s equations relate “matter” (some functions p(¢) and
p(t)) with the dynamics of the scale factor — Friedmann equation:

a*(t) 8rGG K
= H?>(t) = —p— —
a’(t) (t) 3 a?
m Second Friedmann equation:
a e
o= —T(P + 3p)

1922-1924
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Cosmological model continued

m Energy conservation:

dp

a
5 = “SH(p+p)=-3_(p+p)

m Lemaitre rediscovers these equations

m Main predictions: the Universe is expanding. Static Universe would
require very specific equations of state (p = —xz2-RZ, and p =
—3p). Such a solution will be nevertheless unstable

Problems 1a-1c
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Cosmology in a couple of words

m Matter-dominated Universe: p = 0 and 22 = —3Hp or pa® = const
and a o t2/3

= Radiation-dominated Universe: p = 1p and %2 = —4Hp or pa* =
const and a o< t1/?

m Temperature T o< a—!. In radiation-dominated epoch p = g—;gEFFT"‘
m Einstein’s A-term: p(t) = —p(t) = const, a = eVt

m Hubble equation — interplay between kinetic energy E; = %2 and
potential energy E, = —%:
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Hubble expansion

m Slipher discovers redshifts of the spectral lines in the nearby
galaxies . De Sitter speculates for the first time that this can be 1912-1913
due to cosmological expansion in his model

m Hubble discovers that “spiral nebulae” are far from us (M31, M33) 1925

m Hubble estimates the distance to the nearby galaxies and
establishes redshift-distance relation 1926

cz = Hyr
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Hubble constant history
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https://www.cfa.harvard.edu/~dfabricant/huchra/hubble
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https://www.cfa.harvard.edu/~dfabricant/huchra/hubble

Expansion of the Universe — the first pillar of
cosmology
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Reminder: redshift

Universe stretches: Doppler effect:
a galaxy is receding

14 5= Aobserved _ a(tobs)

Aemitted a(temit) Aobserved 14+v/c
1+2= =\ T
Aemitted l1—-v/c

where Hubble velocity
v = Hy X distance

Copyright @ Addison Weslay
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The initial state of the Universe

The initial state of the Universe remained a problem

m If Universe is filled with cosmological constant — its energy
density does not change

m If Universe is filled with anything with non-negative pressure: the
density decreases as the Universe expands

In the past the Universe was becoming denser and denser, p x =,

— ultradense cold state of the initial Universe?

High density baryonic matter — a Universe-size neutron star?
Neutrons cannot decay anymore (n — p + e + v,) as there
are no available Fermi levels for fermions. The state is stable
and remains such until cosmological singularity (p oc 1/t")

Problems 1c,2a,5a
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The Universe in the past

The origin of elements (Hydrogen, Helium, metals) remained a
challenging problem 1920s-1930s
3 See e.g.
Ultradense (p,, ~ 1g/cm?) neutron star would mean that no hydrogeryiew by
Is left (as soon as density has dropped to allow neutron decay n — p + e+ ,, 4€ldovich,
: Section 13
each proton is bombarded by many neutronssothatp +n — d+~v,d +n —

t + ’y) Zel'dovich in
Wikipedia
or

here

pn )
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http://lorentz.leidenuniv.nl/~iakubovskyi/Zeldovitch63.pdf
http://lorentz.leidenuniv.nl/~iakubovskyi/Zeldovitch63.pdf
http://lorentz.leidenuniv.nl/~iakubovskyi/Zeldovitch63.pdf
http://lorentz.leidenuniv.nl/~iakubovskyi/Zeldovitch63.pdf
http://en.wikipedia.org/wiki/Yakov_Borisovich_Zel'dovich
http://en.wikipedia.org/wiki/Yakov_Borisovich_Zel'dovich
http://xray.sai.msu.ru/~mystery/html/Z/z.engl.html
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Nucleosynthesis

m If (as people thought) the density of plasma, needed for nuclear
reactions to take place was p ~ 107 g/cm?® =-very rapid expansion
of the Universe (age ~ 10~?sec). Not enough to establish thermal
equilibrium? Paper by
Gamow (1946
m Gamow suggested nuclear reactions take place because the paperiy
Universe is hot rather than “ultradense” Gamow (1948

m Consider the plasma temperature T,; ~ 10° K (~ 100 keV) (order
of the binding energy of nuclei)

m He computed the total energy density of radiation as

7 \4
prad = osgT* = 8.4 g/cm? (109 K)

m Gamow then assumed that the energy density of the Universe is
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http://prola.aps.org/abstract/PR/v70/i7-8/p572_2
http://prola.aps.org/abstract/PR/v70/i7-8/p572_2
http://prola.aps.org/pdf/PR/v74/i4/p505_2
http://prola.aps.org/pdf/PR/v74/i4/p505_2

Nucleosynthesis

dominated by radiation and estimated its age as

3 1 1

sz O T~ ey

Prad =

m The age of the Universe at 7T,; = 10° K is equal to t; ~ 102 sec

m Gamow estimates the density of matter by demanding that the time
between collisions is equal to the age of the Universe t;:

EU b Optn—sdvy) J
time between p-ncollisions

~ tq

m Gamow knew that the cross-section o ~ 1072Y cm?, and computed
thermal velocity v ~ \/% =-one gets n,(f) ~ 101® cm ™3 and therefore

o)~ 1075g/em3 < 8.4g/cm® =>the Universe was radiation
dominated!
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Nucleosynthesis

m Cross-section is the effective area that each incoming particle "sees” — the
probability of some scattering event.

m At this temperature, T,; ~ 10° K the number of photons is given by

3
Ny = QC(B)TC? ~ 10 cm ™ ( o ) (1)

2 10°K

m Prediction of the Gamow’s theory:

Ny

Baryon-to-photon ratio ng = 2 ~ 10~ ]
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Relic radiation

m Second prediction: the Universe today should have a bath of
thermal photons, left from that time

m Baryon-to-photon ratio ng is constant with time. Indeed, na® ~
const and T'a = const (indeed, for radiation p o« T* and p o a™*)

m What is the temperature of radiation bath today? All matter today was

considered to be baryonic. So H2 = 821G, = 871Gy, 0.0 !”). Hubble constant

estimates were higher than today (~ 100km/sec/Mpc). The matter density

_ 3H{ ~ 10-29 3 0 . 10-5 cpn—3
was then pys sway ~ 10 g/cm” =n, 107" cm
m Therefore TV ~ 10°K (%) ~ 20K
n
b

m In reality the number density of baryons today is n\”) ~ 10~7 cm~* which would
give T.,., ~ 5 Kbased on the above estimates

m —the Univese today should be filled with radiation whose

_ 2.9mm-K
spectrum peaks at A = ===
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Formation of structures

m The Universe was hot (radiation-dominated at epoch of
nucleosynthesis. But the density of radiation dropped faster than

the density of matter:
Prad - 1

Pb a
=-matter-radiation equality (at 7" ~ 10° K!)

m The growth of Jeans instabilities did not start until that matter-
dominated epoch (see below)

m Gamow estimates the size of the instability as Paper by
Gamow (1948
ks Tog ~ GNPrr;tterRS

Putting in the T,, ~ 10° K one gets R ~ 1 kpc similar to a typical
galaxy size(!)
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Hot Big Bang theory was born

Alexey Boyarsky
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Predictions of Hot Big Bang model

m CMB
m Baryon-to-photon ratio from BBN and CMB (independently)

m Primordial abundance of light elements. Most notably, “*He

Alexey Boyarsky PPEU
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Challenges to Hot Big Bang

In 1950s this was not so obvious!

m [ here was no relict radiation from recombination

m You should get about 30% of Helium (which was considered to be wrong,
as its abundance was measured ~ 10%)

m In low density hot matter you cannot produce heavy nuclei (A = 5
and A = 8) in this way. With Hubble constant at that time Hy ~
500km/sec/Mpc the age of the Universe =~ the age of the Earth
—-heavy elements could not be produced in stars, should be in the
Universe “from the very beginning”.

Problems 5c¢ for Hy = 500 km/sec/Mpc

It was concluded by many that “Hot Big Bang” is ruled out sceeq.

Zel'dovich
UFN 1963
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Nuclear network

m To produce chemical elements one needs to pass through
“deuterium bottleneck” p +n — D 4~

"He ‘Be
Dp /
DD1
p.n
p,n | = | D
Dy

DD2
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Deuterium bottleneck

m Deuterium is the first element to produced. Reactionp+n — D+~
m We saw that for each baryon there were ~ 10!° photons.
m Binding energy of deuteriumis Ep = 2.2 MeV (or Tp = 2.5x 1010 K).

m AtT = Ep 85% of all photons have E > T, =-any deuterim nucleus
will be quickly photo-disassociatedvia D +~v — p+n

m Production of deuterium becomes efficient when temperature drops
so that the number of photons with £ > Ep will be ~ 10~1Y

nW(E > ED)

n’Ytot

eIBBN ~ ] (2)

3

2.5T 2 _Ep

(25T
mp

M7
TNy ~ 70keV and IBBN = 2Pl ~ 120s
2TBBN

Alexey Boyarsky PPEU
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Neutron/proton ratio

m How many neutrons and protons are there (so far we did not distinguish
between them)

m At high temperatures chemical equilibrium between protons and
neutrons is maintained by weak interactions n + v = p + e,
n+et Sp+o,nSpte +1,

m Description of these processes is given by Fermi 4-fermion theory:

Gr

Lrermi = — \@[ﬁ(w)’m(l —ps)n(z)]le()y (1 —ys)v(z)]  (3)

Fermi coupling constant Gr ~ 107° GeV 2

B Problem: demonstrate the dimensionality of the Fermi coupling constant
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The content of MeV plasma

m If temperatures was at least few MeV, we expect plasma to contain
electron-positron pairs in equilibrium amounts (v +~ S e™ + e~ for
T Z me)

m We also know that the plasma contained some number of protons
and neutrons (their origin will be discussed later)

m Weak reactions were in equilibrium until 7" ~ 1 MeV

Many weak reactions that produce neutrinos (v.) are responsible for
keeping p and n in thermal equilibrium

pt+te  Sn+v,. ntet Sp+i
n=Sp+te + 1,
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Cross—section, reaction rates

m Cross-section (in units length?) in 2 — 2 reactions is defined as

dk K 2 ¢4
o / (2Ep)(27r)3(2Ek,)(27T>3|M| 0 (%:p — ) k)

out

where | M|? is a matrix element — probability of scattering — for a particular
choice of incoming and outgoing momenta p;,, and k.

m cross-section can depend only on Lorentz invariant quantities
— masses of particles
— coupling constants
— 3 Lorentz-invariant combinations of incoming and outgoing
momenta, Mandelstam variables:
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Cross—section, reaction rates

m If all incoming particles are relativistic, £ > m, we expect that total
cross-section is a function of center-of-mass energy only

m Example: QED

&2

O~ —
EZn
. . 2
the real answer e.g. fore™ + e~ — ~ 4+ ~visgivenby o = 27;5 up to some
log(E /m.) corrections

m Example: Fermi theory. Coupling constant Gx has dimension
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Cross—section, reaction rates

[Gr] = GeV 2, cross-section [o] = GeV ™~

o ~ G%Egm

m [0 check whether these reactions are in equilibrium, compared
scattering rate due to Fermi interaction with the Hubble expansion
rate:

I ~on, =G%E T3 ~ G317

(as E.,, ~ T for particles in thermal equilibrium)

m For reactions with neutrons and protons one should also take into
account that they are not relativistic and their number density is
given by Boltzmann distribution.

m These reactions go out of equilibrium at 7T, ~ 1 MeV
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Cross—section, reaction rates

m The difference of concentrations of n and p at that time is

N, < my, — mp> 1
Ny T, §

my, —m, = 1.2 MeV

m Almost all neutrons will end up in *He. The mass abundance of

Helium is
dnge  A(nn/2)  2(nn/np)

Y, = —
P+, npt+n,  1+mn,/n,

m If ng ~ 1, Helium abundance would be 1i/13/6 ~ (.28

m However, as we saw due to ng < 1 formation of deuterium
(preceeding formation of Helium) does not happen until 7' ~ 70 keV

m Therefore there is a time-delay between freeze-out of weak reaction
and time of Helium formation. The unstable neutrons (lifetime
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Cross—section, reaction rates

7, ~ 900 sec decay and therefore by the time of Helium formation
nn./n, ~ 1/7, which gives Y,, ~ 25%

m —*He is the second most abundant element in the Universe (after
hydrogen)

m The Helium abundance is known with a precision of a few% (e.g.
Y, = 0.2565+£0.0010(stat.) £0.0050(syst,)) and is indeed very close Izotov &
to 25% Thuan (2010)
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Cosmic Microwave background

Accidentally discovered by Arno Penzias and Robert Wilson: 1965
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COBE

COBE il

Cosmic Background Explorer

Data from COBE (1989 — 1996) showed a perfect fit between the black
body curve and that observed in the microwave background.
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CMB spectrum

Cosmic microwave background radiation is almost perfect blackbody

Cosmic MICROWAVE BACKGROUND SPECTRUM FrROM COBE

THEORY AND OBSERVATION AGREE
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Waves /[ centimeter

CMB temperature T' = 2.725 K
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Properties of CMB

m Temperature of CMB T = 2.725 K

m CMB contribution to the total energy density of the Universe:
Q, ~ 4.5 x 107°

m Spectrum peaks in the microwave range at a frequency of
160.2 GHz, corresponding to a wavelength of 1.9 mm.

m 410 photons per cubic centimeter
m Almost perfect blackbody spectrum (§7/T < 10™%)

m COBE has detected anisotropies at the level 6T /T ~ 10~°

Go to CMB anisotropies section
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CMB

m As temperature of the Universe drops, all protons will recombine
with electrons to form neutral hydrogen: e + p — H + ~. Binding
energy EFy = 13.6 eV

mlfng < 1atT ~ 13.6 eV for each hydrogen atom there are many
lonizing photons.

m As in the case of BBN and deuterium production, the temperature
should drop significantly so that the number of energetic photons is
small

m To find the number of “fast” photon, we describe high-energy tail
of Bose-Einstein distribution as f(k) ~ 1/(27) exp[—k/T] and find
the temperature when

nV(E > EH)

n’y,tot

~ 1B (4)
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CMB

m This gives the solution Ty.. ~ Er /23 ~ 0.6 eV

m Again, knowing Ty.. and T, today (1., = 2.725 K), one can
independently determine the baryon-to-photon ratio and confirm
the BBN prediction

Alexey Boyarsky PPEU
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BBN predictions confirmed

1 'II'III| T ||rr|1|] T I[Ilrl'll' T T
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m Curves — theoretical
predictions of Big Bang
nucleosynthesis

m Horizontal stripes —
values that follow from
observations.

m Golden stripe — measured
value of n from CMB
observations!
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BBN and particle physics

Nowadays BBN has become a tool to determine properties
(bounds) on light particles/decaying particles/evolution of fundamental
constants

m The Helium abundance is known with a precision of a few% (e.g.

Y, = 0.2565 = 0.0010(stat.) & 0.0050(syst,)) [zotov &
Thuan (2010)

m Neutron lifetime provides a “cosmic chronometer”, measuring the
time between T, (temperature of freeze-out of weak reactions) and Ty
(temperature of deuteron production):

zs 429

e—t/’Tn

Nplr, MplT,

m This time depends on the temperature T; and number of relativistic
species at that time
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Effective number of relativistic d.o.f.

m Total energy density at radiation dominated epoch (i.e. the Hubble
expansion rate/lifetime of the Universe) depends on the effective
number of relativistic degrees of freedom:

3 2
837G N Prad 309

where the number of relativistic degrees of freedom is given by

ge= > gﬂrg > g

boson species fermion species

where relativistic species (having (p) 2 m) count

Problems 6b, 6d
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BBN and particle physics

The primordial Helium abundance may change if

m There are more than 3 neutrino species (Roughly: one extra neutrino or
a particle with similar energy density is allowed at about 20 level)

m There was any other particle with the mass <« MeV and lifetime of
the order of seconds or more that was contributing to g, at BBN
epoch (1 second - lifetime of the Universe at T ~ 1 MeV)

m There were heavy particles with lifetime in the range 0.01 — few
seconds (that were decaying around BBN epoch)

m Newton’'s constant (entering Friedmann equation) changed between
BBN epoch and later times (e.g. CMB or today)
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NEUTRINO IN THE EARLY
UNIVERSE

Alexey Boyarsky PPEU
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Neutrino properties

m there are 3 neutrinos (for each generation): v,, v, v,
m neutrinos are stable
m neutrinos are electrically neutral

m neutrinos have tiny masses (much smaller than mass of the
electron)

m neutrinos participate in weak interactions

How neutrinos are produced in the early Universe?
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Neutrinos in primordial plasma

Neutrino reaction rates?

m Recall: weak interaction strength is Fermi coupling constant
Gp~ 1075 GeV?

m In the processes like e + e~ — v, + 7, the interaction rate
F6€—>1/17 — ne(T) X OWeak
where

What is the typical energy of electrons in this reaction?
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m |f in the expanding Universe particles that are in thermal equilibrium
have either Fermi-Dirac or Bose-Einstein distributions

m At temperatures T' > m electron distribution function is

ﬁﬂﬁz{/f% :

2m)3er/T 41

m Number density of the electrons

d>p 1
(T) = 4 T3
n ( ) /(27.‘.)36p/T_|_ 1 X

m Average energy of the electron E. = ¢ x (p) i.e

4 d>p P
E, = ~T
ne(T) / (2m)3er/T + 1

Alexey Boyarsky PPEU
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m Asaresult E. ~ T

m Reactionrate I'o. ;.5 ~ G517

m Compare the characteristic interaction time '}, _ with the age of

the Universe tyny = 1/H(T). To establish equilibrium we need
F_l < tUniv or Fee—)uD > H(T)

ee—vr

At what temperatures neutrinos are in equilibrium?

m One can see that temperature when

87TGN
3

[ ~GiT® = TQ\/ g+(T)

Is roughly Tyec ~ 1 MeV
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g, in Standard Model

The Friedmanns equation for RD epoch can be written as:

537T(;]V' 7T2
H? (T> — 3 Gx (T)%Tél
Prad

where g, — effective number of relativistic degrees of freedom.

As a result, 2 < g, < 110 for Standard Model:

200 | | MSSM__ |
100 = -
SM
50 BBN QCD EW

ee— transition transition
>0 | annihilation

1072 10° 10° 10* 10°
T [MeV]
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Neutrino in the early Universe: summary

We saw that

m Neutrinos are produced in the early Universe and are in thermal
equilibrium in plasma at ' 2 Tgec ~ 1 MeV

m As all equilibrium ultra-relativistic particles their average energy is
(E,) ~ T, their number density is ~ T

m Their interaction rate with other particles ', ~ G517

What happens below Tye.?
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Freeze—out

m [f " < H particle go out of thermal equilibrium — freeze-out.

m After the freeze-out, the comoving number density is conserved
(particles are no longer produced or destroyed):

nco(T > Tdec) — nCO(TdeC) X Tgec

m The average momentum of decoupled particles changes with time
(redshifts). Average momentum at the time of decoupling was ~
1 MeV. Average momentum today is ~ 1073 eV

m As a result today in the Universe there are lots (about 100 cm™3)
neutrinos (exercise: reproduce this number)

m Their energy density today:

va
94 eV

Py = Zm,, x nor numerically Q,h?~
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