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Fermi theory of [S-decay H

— m Neutrondecay n — p + e~ + i, Continuum
spectrum of

electrons
m [Two papers by E. Fermi: (1927)

Prediction of
An attempt of a theory of beta radiation. 1. (In neutrino
German) Z.Phys. 88 (1934) 161-177 (1930, 1934)
DOI: 10.1007/BF01351864

Fermi theory
Trends to a Theory of beta Radiation. (In (1934)

ltalian) Nuovo Cim. 11 (1934) 1-19
DOI: 10.1007/BF02959820 Universality of

Fermi |
m Fermi 4-fermion theory: '(qtgiagf):tlons
Cromi = — 2L () (@) e v () 1)
ermi \/i n

0His’[ory of B-decay (see [hep-ph/0001283], Sec. 1,1); Cheng & Li, Chap. 11, Sec. 11.1)
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Neutrino—electron scattering

m Fermi Lagrangian includes leptonic and hardronic terms:

G
Lrermi = _71; |:‘]|2pton (z) + J;,radron(x)} ’ [Jlepton (z) + Jnadron(z)| (2)

where current J* has leptonic (e*, =+, v, #) and hadronic (p, n, )
parts

m Fermi theory predicts lepton-only weak interactions, such as e +
v, — € + U, scattering

4G

»Cl/e — \/§ (é’VAVe)(De’VAe) (3)

m Matrix element for e + v, — e + v, scattering

> MP | GREL,, (4)

spins
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Massive intermediate particle

Unitarity means that for any process the matrix element should be
bounded from above: | M| < const

m The matrix element for e+, — e+ v, scattering grows with energy,
IM|? o< GLEL,, .

m Therefore, the Fermi theory would predict meaningless answers for
scattering at energies E. ,,. = vGr ~ 300 GeV

m Promote point-like 4-fermion Fermi interaction to interaction,
mediated by a new massive particle :

w . GF/\/E?-:é'Z/MfF

m IV — massive particles with My,
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Massive intermediate particle

m For /s < My —looks like a point, 4-fermion interaction

m For /s > My, —behaves as s—1

m What is the spin of this particle? It should couple to current so it is

a vector field:

The currents JF
made of electron
mand v, (or muon
carries

and v,)
charge +1.

Lint —

2v/2

(Wi + Jowr)

g — new coupling constant responsible for weak interactions

(9)

()

(b)
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Theory of massive vector boson

m Free massive vector boson obeys Proka equation:

O, ("W — Y WH) = M2, W* (6)

m Taking 9, derivative of (4) =M3,0,W* =0
m Eq. (6) can be rewritten as a set of Klein-Gordon equations

OWH = Mz WH (7)

m Three independent plane wave solution (because now W° £ 0):

kroe) =0, i=1,2,3

W, =¢)/e where {k“'kuzMVQV

i

e!’) are 3 vectors of polarizations
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Theory of massive vector boson

m Consider W boson at rest

m The three polarization vectors are just three unit vectors along the

axes z, y, and z

m Now, make boost along z axis.

(£,0,0,k)

W-bosons 4-momentum k# =

m Three polarization vectors are

2\

et (k) = (0,1,0,0)
eg(m = (0,0,1,0)
en (k) —MLW(/CZ,O,O,E)

m Consider W boson with energy £ > My, then k* = (E,0,0,k,) ~

E(1,0,0,1) when E

%kz > MW
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Theory of massive vector boson

m The third polarization vector: () = (k= 0,0, B) ~ 37-(1,0,0,1)

B There is a subtle difference here! k* is time-like vector and ¢, is a space-

like vector. In the relativistic limits they both approach light-cone, but from two
different sides

m Longitudinally polarized W, in the limit £ > My looks like a
derivative of a scalar function W}’ ~ 17-9"¢

m Interaction with currents:

— i+ Iongitudinal\ (9,,qu - g _
gJMWM /gMWJ“ = M—W qﬁ(@“JM)

m ...this looks like a new dimensionful coupling constant
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Massive vector field and Stuckelberg field

m Introduce new scalar field, 6. It interacts with a gauge field W,
satisfying Maxwell’s equation:

8, (WY — §*WH) = 0 (8)

m Under gauge transformation W, — W, + 9, the field 6 shifts as
0— 00—\

m Equation of motion for 6 (D0 = 0,0 + W,,):
Ou(D"0) = 0,(0"0 + W*) = 0 (9)
m The full equation for W becomes:

0, (MW" — 9"WH) = M2, DHf (10)

m Gauge condition # = 0 reduces these two equations for W and 6 to
the old Proka equation
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Vector boson vs. photon

m Show that if €/ are 3 polarization vectors than 37| (el = (—mw + %)

m Define a propagator of massive Klein-Gordon equation with
additional condition 9, W* = 0:

Wule W@ = [ e e S Gl

polarizations

PuPv

4 v
:/ : L eip(x—ml)nu My
(2m) p* — My

(11)

m Try to put My — 0. Will you recover photon-like propagator? No!
Trouble with the term in the numerator
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Scattering ev — ev

m The relevant part of the interaction Lagrangian is

AL = gW+7V€fy“PL6 -+ gW_Tefy“’PLye (12)

Py = %(1 — ~5) — projector of the 4-component spinor on the left
chirality.

m The relevant matrix element is given by

ig 2 ) ) . gw/_?]n\lzgwy ~ y
M= (22) falkr* Pratpa)] (-9 3 | ey Prao)

(13)

m After average over polarization of the colliding electron and
summation over polarizations of other particles we obtain:

1y 9452 B 5 14
ME =g oy 5Tt r) 14)
%74
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Scattering ev — ev

m At low energies, when s,r < MG, but nevertheless s,r > mZ, we
get the result of the Fermi theory | M2 = 16G%s?, provided that we

identify
V2g?

G —
P eME,

(15)

m In the general case

4

- 2
M2 = J

2 2 S
( Rl r = (p2—Fki1) ——5(1+COS(9) (16)
14+ cosO + W)

S

m The unitarity requirement M) < 1 then leads to

s < M3, [exp (f—j) — 1] (17)

For the known value ay = ¢g2/47 ~ 1/30, we get /s < 1028GeV.
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Lagrangian of W boson

m Recall that the Lagrangian of the massive vector field B,, would
have the form (Proka Lagrangian):

1 1
Lproka = —Z(aMBV —0,B,)* + §mQBB“BM (18)

m However W-boson is charged! Under the gauge transformation:

W;t — ejm’o‘I/V;,IE (19)

Therefore, we should change 0, — D,, in Eq. (18), where

DW= =(0,+ieA,)WFE

We follow largely the book by J. Horejsi “Introduction to Electroweak
Unification: Standard Model from Tree Unitarity”, Chapters 3 and 4.
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Lagrangian of W boson

m [he Kkinetic term for W-boson is therefore

1 My,

Ly = —§(D3W;—D;W;)(Dgwj—Dgwj)+ijW; (20)

m Show that in addition to (18) Lagrangian (20) also contains terms of the form
WTW ~and WTW ~~~.

(b)

m Write down explicit form of the W W~ and W W ~~ interactions
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Voo — WTW ™ scattering

v w’
. >
‘ " The amplitude of the process:
ey a=r-| i id (i
iM = v(p1) (%7“3:) q%/ (%’YVPL> u(p2)e,, (k1)e, (k2)
-1 ‘ r
v W

m Take s > m? (so that mass of electron was neglected in the fermion
propagator).

M2 =" |IM|? = (21)

2

y ki,.k koo k
=2 T [#m“dv 1/2’qu/’YA] <_9u>\+ = 1/\> <—9up+ - 2p>

4q2q? M3, M3,

m In the high-energy approximation s,¢> > My, dominates
longitudinal part, coming from k; o /My (i.e. one can neglect g,,,, term in
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Voo — WTW ™ scattering

the numerator)
925
4
My,

M2 =

grows as a fourth power of energy.

m Therefore, the considered process still violates unitarity.

m Similarly the process ee™ — WTIW ™~ violates unitarity

(22)

Can this be amended?
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More contributions to ee - WW

e’ W~ e W
R \VaVaVaVaVs
k D k o]
y
v Y
;
—| —1| r
|
- W e’ W

(a) (o)

m We saw that as IW-bosons are charged, there is W W~ interaction
term. Therefore the real process ee — WW is described by the
sum of two diagrams

m Can these two diagrams give rise to the unitary behavior of the
resulting cross-section?

m No! (left diagram is parity violating, right diagram is parity
conserved!)
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New particle is needed

m What could restore the unitarity of etfe™ — W*TW~ and vv —
WW? =new particle

m New vector boson that couples to electrons and to neutrinos in the
parity violating way and that also couples to WW .

m New boson (Z-bosons) interacts with v:

1

Loz = §QDVZD’Y“(1 — ’YS)VZM (23)

m New boson also interacts with W+W— and the vertex WW Z is
similar to the vertex W W~

m As result there are two processes contributing to vv — WHTW -~
scattering
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New particle is needed

v W' V w*
> \NANNS
K . k
7
e A 4
q
— r — |
< AVAVA VA VAN
Y, W~ v W

(a) (b)

2
m As discussed before M, o« g¢? (MLW) +— from longitudinally

polarized final W states

2
m My, x (govz 9zww) (MLW) Can cancel contribution of M, if

_ 1,2
Jovz9zZWw = 39

Alexey Boyarsky PPEU 2015 18



Z-boson contribution to ete” — WTW—

m Similarly, for ete= — WTW~— we would have three contributions to
the matrix element: |M|? = | M, + M, + ./\/lc]2

B W e’ W
I \VAYAVAVAYS
k D ke o]
¥
Lr L J
)
—| —1 r
R "aVAWAVAVAN
e W e’ W
(a) (o) e’ W’

m Interaction with electrons:

Vit = grerYer 2, + grery"erZ, (24)
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New symmetry?

m Neutrino and electron — different charge. Different mass.

m ... but! W-boson converts e — v, or vice versa

m Neutron and proton — different charge. Different mass.

m ... but! W-boson converts e — v, or vice versa

m Wild guess:

Is there a new symmetry, that “rotates” e into v,
(also p into v, p into n, etc.)

Alexey Boyarsky
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Introduction to isospin

m Let we now have 2 different fermion fields (1) and (®) which are
physically equivalent for some interaction (good historical example
is n and p for strong interactions).

m The Dirac equations are

(i7"0, — m) ) + Vigy (V) =0 (25)
(i7"0,, — m) P + Vine () =0 (26)

S 1)
m We can compose two-component field ¥ = (@D ) and rewrite the

¢(2>

Dirac equations using ¥ as

(i7" 0 — m) U + Viy (¥) = 0 (27)
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Introduction to isospin

m Probability

p_ / Py [w“)v%“) +¢(2)v%(2>] _ / B G

and Dirac equation (27) is invariant under global transformations:

U(z) — U'(z) = UD(z) (28)

that leaves the ‘“length” of the two-dimensional isovector U
invariant.

m Such transformation is called unitary transformation and the
matrix U in Eq. is 2 x 2 complex matrix which obeys conditions
UTU =1and det(U) = 1.
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Yang—-Mills: 1isospin <> vector field

PHYSICAL REVIEW VOLUME 96,

NUMBER 1 OCTOBER

Conservation of Isotopic Spin and Isotopic Gauge Invariance™

C. N. Yanec f axp R. L. M1LLs
Byookhaven National Laboratory, Upton, New York

(Received June 28, 1954)

It is pointed out that the usual principle of invariance under isotopic spin rotation is not consistant with
the concept of localized fields. The possibility is explored of having invariance under local isotopic spin
rotations. This leads to formulating a principle of isotopic gauge invariance and the existence of a b field
which has the same relation to the isotopic spin that the electromagnetic field has to the electric charge. The
b field satisfies nonlinear differential equations. The quanta of the b field are particles with spin unity,

isotopic spin unity, and electric charge ==e or zero.

INTRODUCTION

HE conservation of isotopic spin is a much dis-
cussed concept in recent years. Historically an
isotopic spin parameter was first introduced by Heisen-
berg! in 1932 to describe the two charge states (namely
neutron and proton) of a nucleon. The idea that the

Predictions:

m [so-spin symmetry

stable even nuclei contain equal numbers of tI
in 1937 Breit, Condon, and Present pointe
approximate equality of p—p and n—p intes
the 1S state.? It seemed natural to assume
equality holds also in the other states availat
the n—p and p—p systems. Under such an a

= new vector particles

m Charged (W¥) and neutral (Z°)

m New types of interactions between W=, Z (and photon)

Alexey Boyarsky PPEU

2015
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Local gauge transformations

m Make a local gauge transformation in Eq. (06):

(in"0, + g¥* B, —m) U(x)

¥ =
=U(x (w“@ + yH (gU+B’U+zU+5( ))—m)ll_} (29)

m To obtain the initial expression with B,

B,=UTB.U + éU*@M(U) (30)

B, =UB,U" — éaﬂ(U)zﬁ (31)
m Law of gauge transformation of long derivative D, = 9,, — igB,:

D, — D, =U(x)D, U™ (x) (32)

Alexey Boyarsky PPEU 2015
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F,, for B, field

m For electrodynamics we had:

€
Fus ~ [Dys D) = =i=(9,4, — 9,A,) (33)

m In analogy let’s calculate [D,,, D, |:

(D, D)) = [0, — igB,, 0, — igB,] =
= —ig (8B, — 0,B, — ig|B,, B,]) (34)

So we can define

F., = 0,B, — 8,B, — ig|B,, B,]

m In terms of initial fields B this is

F) = 0,B{) = 0,B) + 2gein BY' B, i,k =1,2,3 (35)

Alexey Boyarsky PPEU 2015 25



Kinetic term for Bu field

m From transformation law of long derivative D, — D, =
U(x)D,UT(x), so:

F.,—F, = U(z)F,,U"(x) (36)

m Notice the difference with electrodynamics. There F,, was gauge
invariant (electric and magnetic fields did not change when A, was gauge
transformed)

m Let us try to make a gauge-invariant term out of (36).

Tr(U(x)FWU+(:c) U(@FWW(@) — Ty (FWFW) (37)

Recall that if you have any 3 matrices X,Y,~Z, then Tr( XY Z) =
Tr(Y ZX)=Tr(ZXY)

Alexey Boyarsky PPEU 2015 26



Equations of motion

m Equations of motion for the field B,, can be constructed as Euler-
Lagrange equation for the action, starting from the gauge-invariant

Lagrangian 5

1 1 N
_ _ = vy — (2) (@), pv
L=~ Te(Fu F™) = — ;_1: P s (38)
m In terms of initial fields BY"” we can define:

F{) = 0,B" — 9,B{) + 2ge;;,B{) B (39)

Using this definition we can write F),, = 2F,§j§>ti and:

From full Lagrangian we have:
5MF(@'),/W — g _ gggijkBELj)F(k),W (40)
where J(# = ig\fffy“ti\f!.

m We see, that even in the absence of matter fields Bff) are self-
interacting.
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New types of interactions

m Charged nature of the W-bosons leads to two new interaction
vertices involving photon

(0)

m We deduced some of them from (D, W, — D, W,)? kinetic term

m Yang-Mills theory predicts another gauge invariant terms,
containing 2 W-bosons plus 1 photon or Z boson:

Lnon-minimal = GRFMVW:W; (41)

where k is a dimensionless constant.
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New types of interactions

notice that the diagram (a) depends both minimal term e that has the structure of
eW OW A and non-minimal term of the form ek WW O A

m The interaction vertex W W~ has the following form (for the choice of
momentum as shown in Fig. (a) above)

Viauw(k,p,q) =e (k = p)unux + (0 — Oanw + (¢ — k) unu,

~

=V, (k.p,q) (42)

+ 6(1 — K') (QAnw/ — anuA)

m The interaction vertex W W ~~ has the structure independent on k,
but proportional on ¢ rather than e.

Viwpe = — e’ (20N po — NupMlve — MuoMvp) (43)

m Show that vertex V) (k, p, q) is symmetric with respect to cyclic change k& —

p — g with the simultaneous A\ — u — v.
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WW — ~vv scattering

m The process W+ + W~ — ~ + v has contribution from both W/~
and WW~~:

W~ 0% W~ 0%

K‘
ko)
©

(b) (c)

where the first two terms come from the W W~ vertex and the last one from
W W .

m ...keep in mind that the vertex WWW~ depends on yet unknown
coefficient «, entering Eqgs. (41) and (42) (for example, « = 0, i.e.
“minimal coupling only” is allowed)

m Let us evaluate the high energy behavior of this process. One
can expect that the largest contribution to the diagram comes from
the term ?\Zéjcﬁ_lngv in the propagator of the virtual WW-boson in

diagrams (a) and (b).
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WW — ~vv scattering

m Working out the details (see Horejshi, Egs. 4.20-4.23 and the text around
them) one can see that

The process WW — ~~ violates unitarity at high energies
unless x =1

m The same is true for the process v+ W —~+ W

m This special value of x = 1 is exactly the one, predicted by the
SU(2) gauge invariance!
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Degrees of freedom and mass term

m For 3 massless fields BEP we have 12 components, 3 independent
gauge transformations and 3 Gauss laws. So we have 6 degrees of
freedom. We will associate those fields with W= and Z bosons.

m But every massless field we have to see at low energies. So our
fields have to be massive:

M2BY B@x

i (44)

3
1 7 1),V
LB:_Z;FL(W)F()’M _

m Mass term breaks gauge invariance and gives 3 new longitudinal
degrees of freedom.
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Problems of mass term

m In formalism of Stlckelberg field we can rewrite longitudinal
degrees of freedom at high energies (£ > M;) using derivatives
of scalar field 6:

Z. 1
B M,(‘M (45)

As we have B* term in Lagrangian this means, that at high energies
we obtain dimensionful coupling constant and theory become non
renormalizable.

m May be, as in electrodynamics, those degrees of freedom can’t be
excited? No! This field interact non only with conserved current
made of fermions (where longitudinal degree of freedom can not
be excited, as JO#BT = JO#3r0,0 = 0,150 = 0
and 0,J%-* = 0), but also with gauge field contribution to current
(self interaction), which is not conserved and, therefore, longitudinal
component will be excited! It can not be avoided.

m What to do? How to describe massive vector fields then?

Alexey Boyarsky PPEU 2015 33



Massive vector bosons and gauge theories

m Electro-magnetic interactions of fermions are "minimal” interaction
l.e. they are required by local (space-time dependent) symmetry —
gauge symmetry.

m Previously we have see that a self-content theory of weak
interactions can by made if these interactions are mediated by 3
massive vector bosons, two charged (W= and one neutral (2).

m Is there a symmetry which requires the existence of W+ and Z?

m Triplet of intermediate bosons reminds the triplet B,, of Y-M SU(2)
fields that we discussed last time.

m However, our fields are massive and, therefore, gauge invariance
would be broken. Moreover, the theory of interacting massive
vector fields is ill-defined, as longitudinal polarisation effectively has
dimension-full coupling constant and causes problems.
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Spontaneous symmetry breaking
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Spontaneous symmetry breaking

m Let’'s look at the model of complex scalar field with Lagrangian:
L=0,0"0"¢— V() (46)
where V(¢) = m?¢*¢ + sA(¢*¢)? and we denote |¢|” = ¢*¢.

m This theory is invariant under global U(1) transformation

b= ¢ =€

m You can think about complex ¢ as a 2-dimensional vector

b = (i;) transforms as ¢’ = (—C(;isn&a ig;i) @;)

1 = Reo¢ and ¢ = Im ¢
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Spontaneous symmetry breaking

m The energy density of this scalar field is

: : 1
El¢] =[]” + Vo[ + V() = [¢]” + [VoI” +m?|¢]” + SAlg|*

u2>0,k>0 u2<0,k>0
=

V(o)
V

—v +v

® \/\/¢

If m? > 0 this is just a scalar If m? < 0 the point ¢ = 0 is

field with the mass m and self- the maximum of the potential,

interaction A representing an unstable
equilibrium.

Alexey Boyarsky PPEU 2015 37



Spontaneous symmetry breaking

V‘

Re ¢

There is a true minimum of this
potential at ¢ # 0.

0°V (¢)
52

2
mm
|Olmin = 7 0

w:O and

0o

Im¢ Let us also denote the combination

v? = —2m?/X\. This is called

vacuum expectation value of the
field (or VEV in short)

2

If m? < 0 the potential has the whole circle of minima with |¢]2. =

v2 /2. Any solution of the form | ¢ = %ew is the minimum .
PPEU 2015 38
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Spontaneous symmetry breaking

m Potential is invariant under U(1) transformation ¢ — ¢’ = e*“¢

m [ his transformation rotates one vacuum solution into another

V2 V2

m Choosing a particular solution (for example, ¢min = 7 — real and positive
configuration) breaks the symmetry (it is not possible anymore apply
¢’ = e'¢ transformation)

m However, does not change if instead we choose ¢min = or

_ v
V2
1 T
2

¢min — %6

m The presence of the spontaneously broken symmetry in the system
manifests itself in a special way — as a massless particle.
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Goldstone boson

m Let us compute energy for the configuration ¢(z) = <€), This
IS not a vacuum, as # depends on z!

S

4

m The potential V (¢) depends only on |¢|, so V (%ei‘)(@) = -0 —
independent on #(x). Therefore

E [qﬁ(az) = %ew(m)] = %2 (92 + (V9)2> — g&—;\i

— energy of a free massless field with equation of motion (16 = 0
m This excitation is called Goldstone boson

m The massless field # describes motion along the circle of minima in
the “Mexican hat potential”
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Goldstone theorem

m Displace our solution from the minimum in the direction orthogonal
to the circle:

_ YU s _ b
O(x) = e +30(z) = ﬁ(wp(x)) (47)
m [he energy now has the form:
1 2 4
Elp] = 50 + (Vp) 5 UAPS sUAp® + 2pt — 2
mass term for p self-interactions of p

m Oscillations in the direction perpendicular to the circle of vacua are
described by the massive real scalar field with the mass m, = vv/A
and equation of motion (O + m?)p = 0
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Spontaneous symmetry breaking

m The same result can be seen in a different way.

m Choose one particular minimum, say the one where field value is
real and positive (¢ = v/v/2).

m The symmetry is now spontaneously broken — all minima are
equivalent and you have chosen a particular one

m expanding about that point:

¢ = \%(v + 1 + ip2) (48)

where ; are two real scalar fields.
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Spontaneous symmetry breaking

m [hen one find:

L= [@up) + Oup?] - Vipren) (49

1
At + 93)°

1
V(p1,p2) = ~ Lyt + M P71+ A’vsm(sol +p3) + 3
(50)

8

m The first term here is merely an unimportant constant.

m The ¢, is the real massive scalar field with the mass v/ Av (the blue
term)

m There is no term quadratic in ¢3! =y Is a massless field, a
Goldstone boson.
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Higgs paper

BROKEN SYMMETRIES AND THE MASSES OF GAUGE BOSONS

Peter W. Higgs
Tait Institute of Mathematical Physics, University of Edinburgh, Edinburgh, Scotland
{Received 31 August 1964)

In a recent note! it was shown that the Gold-
stone theorem,? that Lorentz-covariant field
theories in which spontaneous breakdown of
symmetry under an internal Lie group occurs
contain zero-mass particles, fails if and only if
the conserved currents associated with the in-
ternal group are coupled to gauge fields. The
purpose of the present note is to report that,
as a consequence of this coupling, the spin-one
quanta of some of the gauge fields acquire mass;
the longitudinal degrees of freedom of these par-
ticles (which would be absent if their mass were
zero) go over into the Goldstone bosons when the
coupling tends to zero. This phenomenon is just
the relativistic analog of the plasmon phenome-
non to which Anderson® has drawn attention:
that the scalar zero-mass excitations of a super-
conducting neutral Fermi gas become longitudi-
nal plasmon modes of finite mass when the gas
is charged.

The simplest theory which exhibits this be-
havior is a gauge-invariant version of a model
used by Goldstone® himself: Two real® scalar
fields ¢,, ¢, and a real vector field A i interact
through the Lagrangian density

2 2
L=-3ve,) -3(vVe,)

2 2 iy
. v -1
lit;*l @, .,F#UF . (1)
where

=8 -
"7"“{.01 ,u"‘”1 eA#wz,

about the “vacuum® solution ¢,{x} =0, @u(x) =g,

=4 -
Y {ap{aqull-eqpﬂAM}—D, (2a)
{87 =4 * V' (@2 Hag,) =0, (2b)
BUF‘U'U =e¢ﬂ{ap{ag}1}—ewo‘4ﬁ}. (2c)

Equation (2b) describes waves whose quanta have
(bare) mass 2¢,{V""(¢*)}''%; Eqs. (2a) and (2¢)
may be transformed, by the introduction of new
variables

B =A -—le “la (Aw.),
M p{tpﬁl u{wl

G =8 B -8B =F |, (3)
[Ty uoroovou Ly

into the form

T pe 2 2 p
B#B =0, BUG +e ch BT =0. (4)
Equation (4) describes vector waves whose quanta
have (bare) mass eg,. In the absence of the gauge
field coupling (e =0} the situation is quite differ-
ent: Equations (2a) and (2¢) describe zero-mass
scalar and vector bosons, respectively. In pass-
ing, we note that the right-hand side of (2e¢) is
just the linear approximation to the conserved
current: It is linear in the vector potential,
gauge invariance being maintained by the pres-
ence of the gradient term.®

When one considers theoretical models in
which spontaneous breakdown of symmetry under
a semisimple group occurs, one encounters a
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Higgs vs. Stuckelberg models

m Models are similar to each other. Both have scalar field that
generate longitudinal components for vector fields and give them
their masses.

m The main difference is that Higgs model has 2 fields and one of
them stays massive. In general, we can write:

¢ = \%(’v + o1 +ip2) = pe'? (51)

Here p will be a massive field and ¢ is the full analogue of the
Stuckelberg field.
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WW — WW scattering

W~ e e w-
m Now let us analyze tree-level * P k P
ww - WW  scattering, 7R v

occurring via virtual photon:

-

(o) (b)

m It can be demonstrated (see Horejshi, Chapter 4.2 (4.25 and till the end of
the chapter) that no choice of « allows to have | M| = const

m However inclusion of Z-boson and of additional W W -W+W —

W~ W~

(o) (b) (c)

makes the growth of amplitudes with energy milder
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Higgs and Unitarity
. >wwﬁw o MW
g Z°
et v et v
The divergence is in reality not suppressed completely, only in the
leading order

E? 1%
—  Instead of PN —
e ME T

’M‘Q ~ 2
This happens only for a special choice of Z couplings.

What is the reason? Is there some hidden symmetry behind the
choice?
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Higgs and Unitarity

Introduction of a new scalar particle cancels all the residual
divergences

- -

W

This particle is called the Higgs boson

Higgs boson is also required to make unitary WW — WW, ee — ZZ
and WW — ZZ

Finally, the theory is self-consistent!
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Steven Weinbergt

(Received 17 October 1967)

Leptons interact only with photons, and with
the intermediate bosons that presumably me-
diate weak interactions. What could be more
natural than to unite' these spin-one bosons
into a multiplet of gauge fields ? Standing in
the way of this synthesis are the obvious dif-
ferences in the masses of the photon and inter-
mediate meson, and in their couplings. We
might hope to understand these differences
by imagining that the symmetries relating the
weak and electromagnetic interactions are ex-
act symmetries of the Lagrangian but are bro-
ken by the vacuum. However, this raises the

specter of unwanted massless Goldstone bosons.

This note will describe a model in which the
symmetry between the electromagnetic and
weak interactions is spontaneously broken,

but in which the Goldstone bosons are avoided
by introducing the photon and the intermediate-
boson fields as gauge fields.® The model may
be renormalizable.

Laboratory for Nuclear Science and Physics Department,
Massachusetts Institute of Technology, Cambridge, Massachusetts

2
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m Let us consider for simplicity only the theory containing the
e, v. (as well v and intermediate bosons W=, 7 representing
electromagnetic and weak interactions).

m The symmetry that will be "gauged” ( i.e. made space-time
dependent) can then be a unitary transformation mixing wave
functions of e and v..

m Such a symmetry is U(2) symmetry, contacting 4 generators ( 3 for
the SU(2) part and one common phase for both fermions). This
seems to be about right, as we need 4 vector bosons.

m However, ¢ and v, have different massed and different electric
charges! The same is true for W= and Z. Also left and right leptons
have different charges under weak interactions

m Therefore, the symmetry should be broken. This would also help to
make vector bosons massive.
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A MODEL OF LEPTONS*

Steven Weinbergt
Laboratory for Nuclear Science and Physics Department,
Massachusetts Institute of Technology, Cambridge, Massachusetts
({Received 17 Octobher 1967)

Leptons interact only with photons, and with
the intermediate bosons that presumably me-
diate weak interactions. What could be more
natural than to unite' these spin-one bosons
into a multiplet of gauge fields ? Standing in
the way of this synthesis are the obvious dif-
ferences in the masses of the photon and inter-
mediate meson, and in their couplings. We
might hope to understand these differences
by imagining that the symmetries relating the
weak and electromagnetic interactions are ex-
act symmetries of the Lagrangian but are bro-
ken by the vacuum. However, this raises the
specter of unwanted massless Goldstone bosons.?
This note will describe a model in which the
symmetry between the electromagnetic and
weak interactions is spontaneously broken,
but in which the Goldstone bosons are avoided
by introducing the photon and the intermediate-
boson fields as gauge fields.® The model may
be renormalizable.

We will restrict our attention to symmetry
groups that connect the observed electron-type
leptons only with each other, i.e., not with
muon-type leptons or other unobserved leptons
or hadrons. The symmetries then act on a left-
handed doublet

L=[3(1 +75}IJ(1:§) (1)

and on a right-handed singlet

R=[3(1-y;)le. (2)

The largest group that leaves invariant the kine-
matic terms —LyH8, L-RyH8,R of the Lagrang-
ian consists of the electronic isospin T acting
on L, plus the numbers Ny, Np of left- and
right-handed electron-type leptons. As far
as we know, two of these symmetries are en-
tirely unbroken: the charge @ =Tg-Np-3Ny,
and the electron number N=Np + Ny. But the
gauge field corresponding to an unbroken sym-
metry will have zero mass," and there is no
massless particle coupled to N,* so we must
form _our gauge group out of the electronic iso-
spin T and the electronic hyperchange ¥=Np
+3N 1.

Therefore, we shall construct our Lagrang-
ian out of L and R, plus gauge fields E“ and
By, coupled to T and ¥, plus a spin-zero dou-
blet

()

whose vacuum expectation value will break T
and ¥ and give the electron its mass. The on-
Iy remrmalizable Lagrangian which is invar-
iant under T and ¥ gauge transformations is
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Conservation laws

m Which symmetries are we going to "gauge”? Let us consider the
properties of electric charge in electric + weak interactions.

m Normally, electric charge = number of charged fermions (Nr + Np).
But we also have charged vector bosons! How to account for this?

m In weak interactions Ny and N; does not change, but electric
charge of fermions can, e* — W= + v,.

m The number of such events can be counted one of the su(2)
generators, T;. lts eigen values are equal to the difference between
numbers of left-handed neutrinos and electrons. Therefore

1
Q:T3—NR—§NL:T3—Y (52)

where Y = Ny — %NL is called hypercharge, electric charge in the
fermionic sector (note 1!)
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U(1l) xSU(2) gauge model
m Our model must have U(1) x SU(2) symmetry. Lagrangian is:

1 . , L 1
L=~ (0,4, — 0,4, + gA, x A,)° — 2(0.By — 8,B,)*+

— — — = ]_
+ Riv"(0,, — ig'B,)R + Liv* ((% —igtA, — i9/53u> L—

0, —igtA, + ig,EBu

P60 — oN6°0)°

~~
Higgs potential

1
2

. (53)
B, is U(1) field and A, is three field transformed by SU(2) group.

m Higgs field is SU(2) doublet and also has U(1) symmetry (i.e. ¢1 o
are complex fields): ¢ = <£1>’ where ¢ 2 € C
2
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U(1l) xSU(2) gauge model

m Higgs potential has m? < 0 and therefore there is a spontaneous
symmetry breaking (as in the previous examples)

m The minimum of its potential is given by the condition:

2

01° = |¢1]" + |p2]” = (Re ¢1)” + (Im ¢1)” + (Re ¢2)” + (Im ¢)° = _mT

m By convention the Higgs field vacuum is chosen in the form

= ()

2 . .
where v? = —2% — positive real constant, called Higgs vev

m Only the combination of 75+ Y doesn’t change Higgs field (z‘gt?fu —
ig't B,,). So, there will be 1 massless vector field out of 4
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Physical vector fields

m In our model physical observable will be combinations of B, and

A, fields: 1
+ 1 - A (2

Wi = (A Fia?) (54)

1

_ (3) 4

Z, NI (gAM iy BM) (55)

|
A, = (—g’Agj”) + gBu) (56)

/92 _I_g/2
m Masses of these fields are My, = 2g)\, M4 = 0, Mz = /g2 + g2\

Also we can find electric charge as e = g¢'/+/¢? + ¢’>. The Fermi
constant in this terms is:

GF g2 1
_— —_ — 7
V2 8MZ 2\ (57)

So we know )\ value from Gg. From measuring My, and e we'll
find g and ¢’. So we can predict Mz and make an independent
experimental cross-check.
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Masses of fermions

m Our model has massless fermions at this model. We can’t just write
mass terms because of left/right asymmetry (neutrino masses are
much smaller than for electrons). Solution is Yukawa mechanism.
Let’s introduce term:

AL =—G.(LoR+ R L) (58)

Higgs field is two-component: ¢ = (ZZl). If minimum is in
2

point ¢g = S) then we obtain massless neutrinos and massive

electrons.

m We can measure fermions to Higgs coupling constants G, in two
ways: from measuring fermion masses and from direct experiments
with Higgs particle, finding it's decay widths. Even at lower energy
Higgs particle give measurable loop corrections. So it is a source
of another non-trivial cross-checks of our model.
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Additional information
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Groups and algebras
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Groups

m Let matrices Uy, U, are such that U;"U; = 1 and det(U;) = 1. It’s
easy to see, that matrix U, U has this properties:

(U1U2) T U0WUs = U U UWU, =U5 (UFUL) Uy =US U, =1 (59)
det(UlUQ) :det(Ul) det(Ug) =1 (60)

Besides that, indentity matrix 1 and U ' = U also obey this
properties.

Notice, that for example, U; + U, is in general not a unitary matrix. Also if U has det U = 1,
the matrix @ x U has det(aU) = o™ # 1

m This means that set of such matrices is closed under multiplication
and inversion operations and has unity element. In math such sets
called groups, in particular, this group has it's own name — SU(2)

group.

m The general element of SU(2) group is parametrized by three real

Alexey Boyarsky STRUCTURE OF THE STANDARD MODEL 59



Groups

numbers and has the form

~ (cos(0)e'® —sin(f)e
U= (sin(@)ew cos(f)e™ (61)
where 0, 3, ¢ are three independent angles
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Infinitesimal transformations

m [ransformations that are very close to unity (infinitesimal transformations):
U=1+1T, d K1 (62)

where T is some 2 x 2 matrix

m for example: take 3 = ¢ = 0and § < 1in Eq. (61). Then

U ~ (é _19> + O0°) =1 + 0o,

m [fU € SU(2) then:

1=U"U=1+i(T-T")-8TTT  (63)
1 = det(U) = det(1 + i0T) ~ det(e?T) = ¢ T(T) (64)

In linear order by ¢, conditions on 1" matrices are:

T=T% and Tr(T)=0
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Infinitesimal transformations

[Set of such matrices is called Hermitian]

An example of Hermitian matrices are Pauli matrices (o, o, 02)
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SU(2)
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SU(2) algebra

m Set of 2 x 2 Hermitian matrices is called algebra of SU(2) group.
m Notice that if 77 and T, are Hermitian matrices, then 7775 is not
Hermitian in general.
Indeed, (T1T)" = T,'T;" = TyTy # T1T: (consider o, and o, as examples!)

Notice, that sum of Hermitian matrices is a Hermitian matrix
m However, if we construct a commutator
?:[Tl, TQ] = ’I,(TlTQ — T2T1) (65)

the result of such an operation on two Hermitian matrices is always
a Hermitian matrix!

([T1, To)) " = —i (TWT2) " — (TxTh) 1) =
= —i (I, T, — T Ty) = i[Th, T») (66)
Tr(i[Tl, TQ]) — ?:Tr(TlTQ_TQTl) — iTI‘(TlTQ)—iTI'(TQTl) =0 (67)
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SU(2) algebra

m Algebra of Hermitian matrices is an linear space: if 77 and 75 are
matrices from algebra, then

OéTl —+ 5T2 (68)
Is also matrix from algebra for any real o and S.

m Algebra of SU(2) group is 3-dimension linear space, so we can find

the basis of this space. Usually this basis is chosen as ¢; = &,
where o; are Pauli matrices:

() a(F) () e

So every element T = & - ¢. This basis has easy commutation
relations:
[ti, tj] = igijktk (70)
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Exponential formula

m Every element of SU(2) group can be present as infinity number of
infinitesimal transformations:

N N
. Z&t Z(SZ_)
U(axaayaaz) = ]\;I_Iil)o (ﬂ + N) = ' (71)
So, knowledge of algebra gives all group elements.

m 2 x 2 unitary matrices is not the only representation for SU (2) group.
The same algebra we obtain for 3-dimension rotations group:

) 0 i 0\ 0 0 —i\ 0 0 0
fi=1—-i 0 0] #H=[(00 o] H=[(0 0o il (72
0 0 0 i 0 0 0 —i 0

For them [t;,,] = ic;;xtx, and we can obtain any element of rotation
group using exponentiation.
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Local SU(2) transformations

m We saw that probability and other observables do not change if we
interchange two fermions (1) and (2.

m Can we make the SU(2) transformation local (i.e. ¥’ — U(z)T)?

m We can write U(x) = e!(@(@)?) and after local transformation ¥ (z) —
U/ (z) = U(z)¥(z) we have:

U(z) (iv"0,, — v, (a(x))t — m) ¥ =0 (73)

m As we have 3 independent functions «;(x) we need at least 3 fields
to make the Equation (73) invariant.

m In analogy to QED we introduce 3 vector fields, BS"”, B and B{Y.
The main innovation is the way in which these fields interact:

Vint = Q‘TWMBS)%‘T’ =

(3) (1) _ p®) (1)
2(¢ (& )’Y <B,(Ll)+iB;g2) —B,(f) ) (74)
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Local SU(2) transformations

m We obtain new Dirac equation

(1v*0, + gy B, —m) ¥ =0 (75)
- NG
where B, is a 2 x 2 matrix B, = > B,’t,.
=1
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Reminder: local symmetries and gauge field
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Reminder: Appearance of EM field

m How A, field appeared in electrodynamics? Let’s look at the Dirac
equation:

(i7" — m) ¢ = 0 (76)

m This equation is invariant under global transformation

P(x) = P (2) = e ().

m All physical observables (such as probability YT or current
YyHep) are invariant for such a transformation

m If we demand local gauge invariance ¢(z) — '(z) = e**@y(x),
the probability, current, etc. still remain invariant.
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Reminder: Appearance of EM field

m However, the Dirac equation changes:

(i7" 0y — m) Y =
= (ivy"0, — m) el (@) —
= ") (in10), — 4" (Bua(x)) —m) ¢ (77)

m How to make this theory gauge invariant?

m Let's introduce a new field. It couldn’t be fermionic field, cause we
can’t take 3-fermion and 4-fermion interaction (3-fermion interaction
doesn’'t even exist and both would be higher than 4-dimension
operators).

m Coupling with one scalar field we also can't organize: minimal
possible interaction term gy 0,,¢ has dimension 5.

m So the last possibility is a coupling with some vector field. The
interaction now becomes V' = yy#9 A, with some constant g. The
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Reminder: Appearance of EM field

Dirac equation is then
(iv"0y — m) Y + gy Ay = (i Dy — m) 9 (78)
where D, = 0,, —igA,.

m Let us along with o(z) — ¢/'(z) = e*@y(z) also make an
(unknown so far) transformation A, — A/

=0 (70 + 7" (94], — Qua(z)) = m) ¢ =
= QE (i’}/”@u + g*y”AM — m) Y (79)
m As we see, for gauge invariance of fermion field we should add

vector field with transformation law A, — A}, = A, + .9,a(z). Here
our fermion field, in particular, obtain physical charge — g.

m This construction is called /(1) gauge invariance, because e'* is
an element of U(1) group.
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Reminder: Appearance of EM field

m If we’'ve measured that vector field is massless, the only possibility
is to write the full theory is QED Lagrangian:

_ 1 .
Laep =¥ (v Dy, —m) ¢ — ZFWF“ (80)
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