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Ideas based on constitutional supercooling suggest that the periodic steady state cellular patterns seen in the directional
solidification of systems with small partition coefficient may be unstable if the impurity concentration in the melt just in front of the
tips falls into the two phase (miscibility gap) region of the phase diagram. This gives a simple stability criterion relating the position
of the tips of the cells to the pulling velocity that is in good qualitative agreement with the limited experimental data available in the
cellular regime. Implications of this criterion for a particular class of steady state solutions derived using asymptotic matching
methods are explored. These solutions arise from a generalization to finite Péclet number for systems with small partition coefficient
of the ideas of Dombre and Hakim relating directional solidification patterns to viscous (Saffman-Taylor) fingers. Families of steady
state solutions yielding both small amplitude interface patterns as well as fingerlike solutions with narrow deep grooves are accurately
described by the methods discussed herein. A systematic expansion method provides corrections to the classical Scheil shapes for the
grooves. However, the stability criterion, as well as other considerations, suggest that the entire class of narrow grooved solutions
found by the matching methods may be unstable. Comparison with other numerical work suggests that other branches of narrow
grooved solutions exist and are relevant to experiments. Several experimental and numerical tests of these ideas are proposed.

1. Introduction quite complex (and difficult to study experimen-
tally), at somewhat larger pulling speeds typically
one encounters finite amplitude steady state pat-

terns like that shown in fig. 1a, or fingerlike cells

A variety of interesting patterns can form dur-
ing the directional solidification of a binary mix-

ture [1-3]. In this technologically important pro-
cess, solidification occurs when a thin sample of
melt is pulled through a fixed temperature gradi-
ent. As the pulling speed V' is increased, the initial
planar solid-liquid interface becomes unstable.
While the detailed behavior very near threshold is
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with deep grooves as in fig. 1b. These figures are
taken from theoretical work by Ungar and Brown
[4], but experimental examples of both kinds of
patterns have been observed by Trivedi [5] in the
succinonitrile-acetone system and, more recently,
by de Cheveigné and coworkers [6] in the CBr,—Br,
system. An example of cells with grooves observed
in experiments of Cladis et al. [7] is shown in
fig. 2.

A convenient way to display the experimental
results is to plot the wavelength A of cellular
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Fig. 1. Examples of the cell profiles calculated numerically by

Ungar and Brown [{4,73]. The thin solid lines show the iso-con-

centration lines. (a) A finite amplitude cell at Péclet number

p=AV/2D =04, v=1.2, o = 0.026. (b) Half of a cell with a

groove at Péclet number p=AV/2D =04, v=1.33 and o=
0.016. The parameter o is defined in eq. (9.1).

patterns versus the pulling velocity V, and com-
pare this scale to the length scales associated with
a linear stability analysis of the planar interface.
Such a plot is reproduced in fig. 3 from the work
of de Cheveigné et al. [8]. In this figure, the
wavelength of perturbations about the planar in-
terface that are neutrally stable (i.e. neither grow
nor decay) is indicated by a solid line. (Note that
the neutrally stable modes represent valid steady
state solutions of infinitesimal amplitude). Curves
for two different temperature gradients are shown.
The minimum threshold velocity V¥, at which the
planar interface first goes unstable is denoted by
the square symbol at the bottom of the curves.
Perturbations about the planar interface with
wavelengths in the wide band between these two
solid lines are linearly unstable; we therefore refer
to this region as the planar instability band. The
selected cells for a given pulling velocity in the
experiments of de Cheveigné et al. [8] have wave-
lengths that lie within the planar instability band
in the narrow dashed region whose wavelength is a
factor 3-5 larger than the smallest neutral stabil-
ity value. This is what is typically observed [9].

Most theoretical studies of these patterns have
concentrated on a steady state analysis. Recent
work, both numerical and analytic, has established
that the steady state equations describing direc-
tional solidification (DS) admit a continuous family
of periodic solutions of varying wavelengths for a
given set of experimental conditions. Dombre and
Hakim [10] carried out a particularly elegant ana-
lytic demonstration of this fact for a simplified
model of DS with a partition coefficient of unity
in the limit that the Péclet number p tended
towards zero. (The Péclet number p compares the
scale of the pattern to the range of the diffusion

Fig. 2. Example of some experimental cell patterns at three
different moments in time, showing the periodic release of
bubbles from the bottom of a groove. The initial profile is the
one on the bottom, and these pictures were taken while the
cellular region was expanding into the planar region on the
left. In this photo, the spatial variation of the contrast has been
enhanced using computer image processing, so that the inter-
faces show up as white lines (photo courtesy of P.E. Cladis).
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Fig. 3. Plot of the growth velocity versus wavelength for the
experiments of de Cheveigné et al. [8]. The solid line marks the
neutral stability wavelength as a function of the growth veloc-
ity for two values of the thermal gradient G. Experiments for
(a2) G=120°C/cm (®) and (b) G=70°C/cm (0O) lie in the
narrow shaded band. The dashed line indicates the minimum
deep cell wavelength calculated in this paper, and the arrows
illustrate that the matched asymptotic expansion employed in
this paper is an expansion towards larger wavelength. See text.

field in front of the pattern. See section 2 for
precise definitions.) In this limit a formal analogy
with the equations describing viscous fingering in
a Hele-Shaw cell [10,11] (the well-studied Saff-
man-Taylor problem) can be made. (See section
10 for details and comments on the limitations of
this analogy.) Indeed Pelcé and Pumir [12] had
already noted this connection, and there have
been several attempts to analyze experimental data
using the analogy to Saffman-Taylor fingers [13].
As shown later in this paper, for materials with
small partition coefficients, we can extend the
approach of Dombre and Hakim [10] to the ex-
perimentally relevant regime with Péclet numbers
of order unity. Our approach reduces to theirs as
p — 0, where the restriction to small k& is then not
required, and we will therefore often refer to this
particular branch of solutions we calculate as the
Saffman-Taylor-like branch.

However, a steady state analysis alone can give
no information about the stability of these solu-
tions, and hence their relevance to real experi-
ments. In fact there are strong indications that the
wavelengths of experimentally selected patterns lie
in a much narrower band than the width of the

band for which a family (or families!) exists
according to a simple steady state analysis.

Very near threshold, one typically expects [14]
that the band of stable periodic nonlinear solu-
tions lies within the planar instability band (near a
supercritical (forward) bifurcation, this follows
from the Eckhaus instability results for the ampli-
tude equations [15]). Unfortunately, however, for
directional solidification, the amplitude expan-
sions [16] and bifurcation analysis [17] on which
these conclusions are based are valid only ex-
tremely close to threshold, when (V — V) /V, < 1.
This is because the bottom of the neutral stability
curve illustrated in fig. 3 is extremely flat in most
cases, so expansion methods quickly break down
as the velocity is increased. (The important excep-
tion [18] is the regime where the partition coeffi-
cient k is close to 1, as is the case for liquid
crystals [19].) However, recent results by Brattkus
and Misbah [20] on the stability boundary of
strongly nonlinear solutions confirm that for their
particular model the band of stable nonlinear
solutions lies within, but is significantly narrower
than, the planar instability band. The mechanism
that governs the wavelength selection within the
stable band they find still remains an unsolved
problem.

We concentrate in this paper on the strongly
nonlinear cellular patterns seen above threshold,
avoiding both the initial planar instability and the
flat region of the neutral stability curve just above
threshold, as well as the dendritic regime seen at
much higher pulling velocities. We have two main
objectives. The first is to present a very simple
stability criterion, based on ideas from the theory
of constitutional supercooling (CS) that relates the
stability of the tips of strongly nonlinear patterns
to their position in the cell relative to that of the
stable planar interface [21]. This predicted rela-
tionship can easily be tested experimentally, and is
useful theoretically in determining whether a given
steady state solution is likely to be stable. We
expect it to be accurate for systems with small
partition coefficients in the experimentally rele-
vant case where curvature corrections to the con-
centration at the tip from the Gibbs—Thomson
equation are small, so that one can think of the tip
region as locally planar.
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The basic idea is extremely simple. According
to the theory of constitutional supercooling, the
planar interface is stable provided that the impur-
ity concentration in the melt just in front of the
interface (determined from boundary conditions
fixing both the concentration and the concentra-
tion gradient ar the interface) does not fall into
the (unstable) two-phase region as given by the
phase diagram. At larger pulling velocities, the
gradient at the planar interface increases. Eventu-
ally this causes the concentration just in front of
the interface to fail in the two phase region, where,
according to the CS picture, the planar interface
goes unstable. In many experimentally relevant
cases, the system restabilizes into nonlinear finger-
like patterns where the curvature corrections at
the tips from the Gibbs—-Thomson equation are
very small. In this case it seems plausible that we
can again apply the CS stability requirement /o-
cally in the tip region. This implies that the tip
positions of stable non-linear patterns should move
up relative to the steady state position of the plane
(towards higher temperature, where less impurity
1s rejected at the interface) until the impurity
concentration just in front of these nearly planar
tips once again falls in the stable single phase
region.

A quantitative treatment of this idea is given in
section 3. There we introduce a dimensionless
parameter {, which provides a direct measure of
the local constitutional supercooling (LCS) condi-
tion at the tip in terms of the tip position z,,
linearly related to {,. To avoid supercooling, we
need { <0. It is natural to conjecture that the
operating point in real experiments is close to the
region that requires the least forward motion, i.e.,
where §, = 0. We refer to this proposed selection
criterion as the LCS criterion. Equations similar to
the LCS criterion have in fact been used before,
particularly in the dendritic regime found at still
higher pulling velocity, or smaller temperature
gradient [2,22-25]. However, the earlier deriva-
tions relied on somewhat ad-hoc matching argu-
ments, and they attempted to predict a unique
pattern spacing for a given set of experimental
conditions, rather than determine which members
of a family of solutions might be stable. To our
knowledge, the derivation and interpretation of

the LCS criterion in terms of stability concepts,
and its particular relevance in the cellular regime
has not been realized before. In appendix A we
briefly discuss some of the earlier approaches.

There are immediate experimental and theoreti-
cal implications of this idea. On the experimental
side, the predicted tip positions can easily be
tested explicitly. From the very limited amount of
data on the tip position in the cellular regime
available in the literature, there 1s in fact some
indication that a relation of this kind holds true to
a reasonable approximation [21]. See section 10
for further discussion.

The theoretical implications of the LCS idea
for cellular patterns can best be seen in connec-
tion with the second main objective of this paper.
That is to present a detailed theory for a particu-
lar class of steady state solutions - both finite
amplitude cells and cells with deep grooves — for
which a very simple (and, in some limits, exact)
analysis can be carried out [26].

The finite amplitude shapes are solutions re-
sembling those in fig. 1a, but where the concentra-
tion field remains essentially one-dimensional and
dominated by the simple exponential fall-off found
at the planar interface, even though the interface
itself is far from planar. The theoretical analysis
becomes exact in the limit that the partition coef-
ficient k — 0%, where the solid rejects almost all
impurities, but we will provide evidence that this
branch can be accurately calculated perturbatively
for small but realistic values of k, say k < 0.15. A
wide range of other parameters can be studied,
including, in particular, Péclet numbers of order
unity.

We also analyze a branch of solutions with
deep grooves, resembling the ones in fig. 1b or fig.
2, using what is essentially a modern and more
rigorous version of a classical approach long
studied by material scientists [2,3]. The idea is to
approximate the fingerlike solutions in two differ-
ent regions — in the tip region and in the deep
grooves, and then somehow join these descriptions
together in an intermediate ‘“matching region”
below the tip.

To carry out this program, of which a brief
description appeared in ref. [26], we first examine
the interface shape in the grooves. Away from the
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tip we can exploit the straightness and narrowness
of the grooves to give a systematic perturbation
treatment of the interface shape. These results can
be directly compared to experiment. When curva-
ture effects can be neglected, the solution we find
reduces to the classical Scheil shapes [2,3,27,28).
However, we derive new terms [26,29] involving
the curvature that are essential to describe how
the interface bends away from the nearly straight
Scheil shapes and thus can smoothly join some tip
solution. Our (lowest order) description of the
groove region should be quite accurate in many
cases, and can be improved systematically.

Our treatment of the other two aspects of the
matching approach turns out to be less generally
valid, though it does accurately describe a particu-
lar branch of steady state solutions. In essence, we
use the upper portion of the finite amplitude
solutions discussed above to describe the region
close to the tip. Then, in the experimentally rele-
vant case where the grooves remain narrow even
rather near the tip, it seems very plausible, follow-
ing Dombre and Hakim [10], to assume there
exists just below the tip a single “matching region”
where both the tip and tail solutions can be con-
nected together, thus producing a globally accep-
table solution [30]. Dombre and Hakim [10] intro-
duced a systematic asymptotic matching procedure
that yields a perturbation expansion whose small
parameter, e, equals the width of the grooves in
the matching region relative to the pattern wave-
length. As € — 0, the matching method gives an
essentially exact treatment of this branch of solu-
tions with deep grooves.

The solutions this method produces illustrate in
a very clear way two central themes that recent
work in DS has established: (i) the critical impor-
tance of the surface tension terms in the interface
boundary condition in setting the overall scale of
interface patterns and (ii) the existence of a family
of steady state solutions with varying wavelengths.
Although some numerical work is required, com-
putations are sufficiently fast and simple that the
effects of varying a wide range of experimental
parameters can easily be studied.

In addition to the above, mainly pedagogical,
virtues we now have the opportunity to make
direct comparisons between our finite Péclet num-

ber solutions and the experimental patterns. Un-
fortunately, here the limitations in the matching
methods become apparent. We had expected that
our steady state analysis would produce a band of
permitted solutions, of which only some narrow
region would be experimentally stable. However,
it turns out that a// the solutions that we can
calculate perturbatively have wavelengths much
smaller than experiment, by about an order of
magnitude.

One might be inclined to attribute much of this
discrepancy to lack of knowledge of precise values
for experimental parameters or oversimplifications
in the theoretical model (e.g., a purely two-dimen-
sional model is assumed, while de Cheveigné et al.
[8] have shown there is a significant dependence in
the experimental threshold velocity on cell thick-
ness).

However, the matching approach is based on
an expansion for fixed velocity V' away from the
e =0 fingerlike solution with vanishingly small
grooves width, i.e., that solution with the smallest
possible wavelength. This is indicated in fig. 3,
where the dashed line corresponds to these mini-
mum wavelength solutions as a function of V. The
small € solutions accessible with this expansion,
indicated by arrows, are seen to fall outside the
planar instability band calculated using the same
(theoretical) parameter values. Thus our previous
discussion strongly suggests that the solutions
found with this expansion can all be expected to
be unstable. The longer wavelength solutions
selected 1n experiment lie well within the planar
instability band.

Indeed, the experimentally selected solutions
have sufficiently long wavelengths A that curva-
ture corrections from the Gibbs-Thomson equa-
tion are very small near the tips. (The curvature is
roughly proportional to A ™! in the cellular regime.)
In such a case, we expect our LCS stability crite-
rion ¢, =0 should apply as a good approximation
to them. In contrast, the small e solutions ob-
tained by the matching method have {, of O(1)
and much smaller wavelengths A, and for them,
curvature effects are much more important.

The simplest interpretation of all these facts is
that the matching theory describes a branch of
steady state solutions that is different from the
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experimentally relevant one. We argue below that
this is the case, and identify the critical step-in the
matching theory that may lead us to find (only)
the unstable branch. This appears to be an un-
avoidable consequence of the basic assumption
that there exists a single matching region, con-
trolled by the groove width €, which can be made
arbitrarily small. As a result, the predicted values
of {, for small € are O(1), whereas LCS leads us to
expect that { = 0! Thus if experimental tips do
have { = 0, then they will be inaccessible by the
present matching approach. Unfortunately, it is
also not easy to see how the matching methods
can be modified to apply in the case {, = 0.

The fact that the cell shapes we can calculate
perturbatively have wavelength much smaller than
the selected ones also bears directly on other theo-
retical results. As mentioned above, a number of
studies [11-13,29,31] have exploited the fact that
in the small Péclet number limit, the directional
solidification problems can be formally mapped
onto the viscous fingering problem, for which
shape selection is well understood. Wide viscous
fingers (i.e. those with narrow “grooves™) are cor-
rectly described by the perturbative methods de-
veloped by Dombre and Hakim [10], and they
correspond, loosely speaking, to the large surface
tension limit. On the other hand, while most ex-
perimentally observed solidification cells typically
do have narrow grooves, at the same time they
have small enough tip curvature that surface ten-
sion effects can be viewed as a small correction.
This seems to contradict the simple mapping
[12,10,29,31] onto the viscous fingering problem,
which associates narrow grooves with large surface
tension effects. Therefore, even in the small Péclet
number limit, we believe that experimental fingers
may well belong to a different branch, and one to
which the formal analogy to the viscous fingering
problem does rnot apply. This will be discussed in
detail in section 10.

It is interesting to note that a similar situation
has been argued to occur for dendritic growth in a
channel [32], which may be viewed as the limit of
vanishing temperature gradient in DS. Here, two
branches of steady state solutions are believed to
exist [33], a Saffman-Taylor like branch and a
different one that for wide channels reduces to free

dendrite-like behavior. In this case, the Saffman—
Taylor branch contradicts physical intuition in
that cells at small undercoolings are thin and cells
at large undercooling wide, and there are several
indications that the experimentally relevant branch
1s the dendrite-like one. See section 10 for further
details.

Thus, despite the fact that our matching theory
does not seem to describe real experimental pat-
terns, it is not without interest. The theory does
accurately describe a branch of highly nonlinear
steady state solutions. It clearly focuses attention
on a number of unresolved issues that so far have
remained largely unnoticed. And it was through
examination of the experimental shortcomings of
the matching predictions that we were first led to
the simple LCS stability criterion, which we ex-
pect to apply reasonably well to experimental
cellular patterns. If this is borne out, the LCS
criterion will also be a useful guide in assessing
the relevance of theoretical cell shapes to experi-
ments.

Before turning to the detailed calculations, let
us summarize our main results and conclusions for
the matching solutions.

(1) For systems with small k, we can calculate
the properties of a particular continuous branch of
steady state solutions describing cellular profiles
with deep narrow grooves. The Péclet number
dependence of these solutions is weak, and for
p — 0 they reduce to the Saffman-Taylor-like
solutions found earlier by Dombre and Hakim
[10]. The variation in wavelength of this branch is
parametrized in the matching theory by the rela-
tive groove width e near the tip, or, more conveni-
ent to experiment, by the dimensionless LCS
parameter {, giving the tip position (see sections 9
and 10, and fig. 13).

(2) A fundamental assumption self-consistently
satisfied by these solutions is the existence of a
single matching region controlled by the small
parameter € where deep narrow grooves can be
matched to a particular class of finite amplitude
cellular solutions describing the fingertip region.
These finite amplitude solutions have wavelength
lying outside the planar instability band and evolve
from the (infinitesimal amplitude) neutrally stable
modes forming the short wavelength side of the
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planar instability band (i.e. the left hand solid
curve in fig. 3). These solutions have a regular
expansion in powers of k. The fingerlike solutions
with narrow grooves (small €) resulting from the
matching also have wavelengths lying outside the
planar instability band and have values of { of
order unity (see sections 9 and 10).

(3) Most numerical studies, using the same
two-dimensional model we consider here, find
narrow-grooved fingerlike patterns, but with wave-
length lying inside the planar instability band.
These solutions are found well above threshold
and evolve from small amplitude cells with wave-
lengths lying inside the planar instability band,
presumably related for small & to the cells studied
by Sivashinsky [16] and others. The latter bifur-
cate off from the center of the planar instability
band (indicated by the square in fig. 3), and do
not have a regular k& expansion. The contrast with
the matching solutions discussed in (1) is evident
(see section 10).

(4) Most experimental patterns also have nar-
row grooves, but with wavelength lying inside the
planar instability band. In the few cases where
experimental data on the tip position is available,
small values of {, are found, in qualitative agree-
ment with the LCS stability criterion ¢, = 0. This
implies that the tips of experimentally selected
patterns have moved up substantially in the tem-
perature gradient relative to the planar position
(see section 10 and fig. 13).

(5) In contrast, the matching solutions for small
¢ have {, of order unity, i.e. their tips remain close
to the planar position. More detailed experimental
measurements of {, would be extremely useful to
determine the accuracy of the LCS ideas (see
section 10).

(6) The analysis of Brener et al. [33] for crystal
growth in a channel, as well as arguments by
Ungar and Brown [4], again suggest the existence
of a branch of steady state solutions in DS other
than the ST branch. The analytic mapping of the
p = 0 DS equations to the ST problem breaks
down near the LCS line {, = 0. Thus we argue that
the matching solutions lie on a different, and
physically irrelevant, branch of steady state solu-
tions for DS (see section 10).

While the matching ideas used in this paper

makes systematic many of the earlier approaches
used by material scientists [2,3], the mathematical
techniques (asymptotic matching [30]) as well as
the results and their implications do not appear to
be widely known in this community. We will thus
attempt to give a pedagogical and rather detailed
account of them here, which also will focus on
thetr limitations. We also give some details about
preliminary steps involving the introduction of
dimensionless units and other notational matters,
since different conventions adopted by various
authors have caused some confusion in the litera-
ture. Readers who are familiar with the problem
and who are only interested in the main results
and their implications can proceed directly to
sections 3, 6, 7.4, 9 and 10.

The plan of the paper is the following. In
section 2, we review the equations for directional
solidification. We use a simple two-dimensional
model, the one-sided (solutal) model [1], which is
still realistic enough to compare to experiments,
and which has been extensively studied numeri-
cally. In this model, convection in the liquid is
ignored and the imposed temperature gradient is
assumed to be unaffected by the latent heat re-
leased or by changes in the interface shape. These
often are rather accurate approximations. We gen-
erally ignore diffusion in the solid, taking the limit
where the diffusion constant ratio 8 = D*/D tends
to zero. Contrary to the conclusion the casual
reader might get from ref. [34], we argue that the
one-sided model offers an accurate description of
many features of interface patterns seen in realis-
tic systems with 8 small but non-zero. However, a
notable exception where the one-side model must
break down is in the reentrant part of the bubble
closure in fig. 1b. This will be discussed in ap-
pendices B and C.

In section 3, we give a detailed discussion of
the LCS stability criterion, together with its limi-
tations. In section 4, we discuss the various dimen-
sional parameters that characterize a DS experi-
ment, and the fundamental dimensionless ratios
that most theories use. We choose a length scale
essentially equal to the (lower) neutral stability
wavelength A (the left-hand solid line in fig. 3),
and argue that this scaling facilitates comparison
between theory and experiment. In particular, this
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scaling helps us assess the relative importance of
the curvature corrections in the Gibbs—~Thomson
boundary condition at the tips of real experimen-
tal patterns and hence the accuracy of the LCS
condition. In section 5, we derive exact equations
expressing flux conservation which serve as a use-
ful starting point to yield approximations for the
tail (section 6) and for the tip (section 7). After a
discussion of the behavior of the resulting finite
amplitude cellular solution in section 7, we then
turn in section 8 to the asymptotic matching anal-
ysis which yields approximate shape expressions
for cells with deep grooves. The results of this
analysis are presented in section 9, while in section
10 we discuss in detail the implications of our
results and how they compare to experiments and
other theoretical work.

2. Equations for the one-sided model

We consider the typical experimental setup
where a thin ampoule initially filled with a binary
melt with impurity concentration ¢ 1s pulled
through a temperature gradient established by
fixed hot and cold contacts. The gradient is large
enough that solidification must occur as the melt
is pulled from the hot to the cold region of the
cell. The impurity concentration ¢ in the melt
obeys the diffusion equation

3{* =DV2C~ (21)
where ¢ tends to ¢, far in front of the interface.
In principle, there is a similar equation in the solid
involving D*, the diffusion constant in the solid.
However, for most metallic or plastic crystal solid-
ification systems the diffusion constant ratio 8=
D*/D is of order of or smaller than 1072, and in
many expressions it 1s a good approximation to
ignore diffusion in the solid entirely, thus arriving
at the one-sided model, with D* = 0. The one-sided
model 1s much simpler to treat analytically, and
we find that it offers an accurate description of
many features of interface patterns seen in realis-
tic systems with B8 small but non-zero. In ap-
pendices B and C we discuss cases such as that of

a multiple-valued or reentrant interface where this
approximation must break down.

Most systems with small 8 also have relatively
small values of the partition coefficient k, since
impurities that do not diffuse well in the solid
tend to be rejected on solidification. Thus the
limit of small 8 and k analyzed here is relevant to
many experiments. The main exception concerns
liquid crystals, where both 8 and k are of order
unity [19]. Here the deep grooved patterns of
primary interest to us in this paper are usually not
found.

At the interface we assume local thermody-
namic equilibrium as given by the Gibbs—Thom-
son equation, so that the temperature at an inter-
face with impurity concentration ¢, and curvature
k (taken positive when the solid bulges into the
liquid) is
T.(c,. k) =T (c,)(1 - dx) (2.2)

= Ty — mc, — Tydx. (2.3)

Here T\ (c,) is the (liquidus) temperature for a
planar interface with impurity concentration ¢, as
given by the phase diagram. (The subscript i will
in general denote a quantity evaluated at the inter-
face; we use a superscript s to denote the solid
phase.) In (2.3) we have assumed a simple linear
phase diagram as in fig. 4a, appropriate for dilute
solutions, and expanded about the pure solvent at

ta) (b)

Fig. 4. (a) Phase diagram illustrating the various temperature
and concentration parameters defined in the text. (b) Phase
diagram in terms of the dimensionless concentration variable
u. Along the vertical axis, the temperature has been eliminated
in favor of the height variable z with the aid of (2.6). The
position z =/ is the point where T=T7; in (a), and z=0
denotes the steady state planar interface position where ¢, =
kcy.
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Fig. 5. Illustration of our coordinate conventions.

Ty to first order in ¢ and «, with [36] m, =
[T, /de].

Strictly speaking, if crystal growth is to occur,
there must be some kinetic undercooling [1], but
this s usually very small for growth in the cellular
regime. The local equilibrium assumption (2.3)
generally produces little quantitative error and is
standard for the theoretical model studied herein.
See, however, section 10 for some remarks about
the possible importance of interface kinetics in
certain limiting cases.

Surface tension corrections show up in the term
dr in (2.3). For cubic crystals, we assume the
specific form y(8) = v,(1 + a, cos 48) for the an-
gular dependent surface free energy, but our re-
sults can easily be generalized to arbitrary y(8).
Here 8 is the angle between the interface normal
and the z axis, which is taken along the pulling
direction. See fig. 5. The quantity d(9) appearing
in (2.2) and (2.3) is proportional to y + d®y/d#?,
and can be written [37)

d(8)=d,(1 —a, cos 46). (2.4)

Here ciOEy()/L is the intrinsic capillary length,
with L the latent heat per unit volume and a, =
15a, for the specific form of y(8) assumed above.
In most materials cfU i1s of the order of atomic
dimensions, and hence much smaller than the
radius of curvature of typical interface patterns.
Nevertheless, the curvature correction in (2.3) will
turn out to play an important role in establishing
the overall scale of patterns found in a DS experi-
ment. Although the anisotropy a, in the surface
tension is generally rather small (of the order of a
few percent or less), we see that the anisotropy a,

n cf(&) 1s much larger. However, unlike what is
believed to be the case for free dendritic growth
[37], anisotropy is not an essential feature for the
existence of steady state patterns in DS. Thus, for
notational simplicity in the equations that follow,
we consider the case a, = 0 or d = d,,, although we
will also report some results of calculations with
a, nonzero.

A second boundary condition expresses local
conservation of impurities:

V. Ac,= —D{A vc),. (2.5)

Here V, is the normal component of the interface
velocity, Ac,=c, — ¢ the “impurity surplus” re-
jected into the liquid as the interface advances,
and (/- vc), the normal component of the con-
centration gradient at the interface. Eq. (2.5)
equates the rate at which impurities are rejected at
the interface to the diffusion flux into the liquid.
Again we have assumed that the one-sided model
1s accurate, and ignored any diffusion flux into the
solid.

We assume that the contacts set up a linear
temperature gradient, thus neglecting the generally
small corrections due to latent heat generated at
the interface. Then the temperature field in a
frame where the contacts are at rest is simply

T=T,+ Gz, (2.6)

where 7T; is a reference temperature (chosen later
to equal that of the steady state planar interface)
and G the imposed temperature gradient. Evaluat-
ing (2.6) in the liquid at the interface and combin-
ing with (2.3) gives an equation describing the
variation of the impurity concentration as a func-
tion of interface position and curvature,

CIZCO*(G/W’L)Z,_(a?()TM/mL)"» (2-7)

where ¢, is the liquidus concentration at tempera-
ture 7;. In the same way, we can derive an equa-
tion for the concentration ¢} in the solid at the
interface. Using (2.7), the result can be written

o = ke,, (2.8)

where, for the simple linear phase diagram of fig.
4, the partition coefficient k is a constant,

k=m /myq. (2.9)
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Graphically, k is the ratio of the liquidus to the
solidus slopes.

We are interested in steady state solutions of
(2.1), (2.5) and (2.7) and note that the patterns are
stationary in a frame where the contacts are at
rest, i.e., a frame moving at velocity V' in the +:z
direction with respect to matter in the sample. We
use this moving frame in all that follows. For such
stationary patterns V, = V cos 8 (see fig. 5), and
the left-hand side of (2.1) evaluated in the moving
frame becomes — V 9¢/0z.

The simplest solution of the steady state equa-
tions describes a planar interface, for which the
concentration field satisfies

(2.10)

c=(co—c e ot .

Here we have chosen z =0 as the location of the
planar interface, where by definition ¢, = ¢, and
T =T, and defined the diffusion length

l,=D/V. (2.11)

To determine ¢, in terms of experimental parame-
ters, we use eq. (2.5) and find

(2.12)

Thus the planar interface is located at that point
in the cell where the impurity concentration incor-
porated into the solid, k¢,, equals the limiting
impurity concentration ¢_. This global conserva-
tion condition is required for steady state planar
growth. See fig. 4.

We use the planar solution to help define a
dimensionless concentration field, u, scaled so that
typical variations are of order unity:

u=l(c—c_)/Ac,

where, using (2.12). Ac, = ¢y — ¢) = ¢y — €y
Clearly u,=1 and u;=0 from (2.12), and in
general u =0 far in front of the interface. See fig.
4b, where the phase diagram is replotted in terms
of the variable v and the position z in the cell,
using (2.6).

Egs. (2.1), (2.3) and (2.5) in the steady state can
then be put into the reduced form [1,26]

1 du

S J— e —
€y =key=c..

(2.13)

Viuk -G =0, (2.14)
u,=1—2z,/l1—dyk. (2.15)
Au, cos 0= —1I,[A-vul,. (2.16)

Here
Au,=u,—uw=u,—k(u,—1)

=1—-(1—=k)(z,/l+—dyk),

(2.17a)
(2.17b)

is the dimensionless “impurity surplus” and we
have used (2.12), (2.13) and (2.15) to arrive at
(2.17b). Eq. (2.15) follows directly from (2.7) and
introduces two fundamental lengths [38]: the ther-
mal length,

I =m Acy /G, (2.18)
and the chemical capillary length,
dy= Ci()TM/mLAC()' (2.19)

The chemical capillary length d, is normally
much larger than cfo. From (2.15) and (2.13) we
see that the temperature 7; at z =/ is such that
the liquidus concentration equals ¢, while from
(2.12) the temperature 7, and the location z =0 is
fixed by the requirement that the solidus con-
centration equals ¢ . See fig. 4a. Note from (2.15)
that the equation for the liquidus line in the
modified phase diagram in fig. 4b is

u (zy=1-z/1,.

Since the curvature k, is greater than zero at the
tip of a solidification pattern, and we expect no
“concentration deficits” with ¥ <0 in front of a
steady state pattern, eq. (2.15) shows that the tip
position z, of any such pattern is such that z, < /..
In the next section we discuss the LCS stability
criterion that sets an approximate bound on the
position z, of many experimental patterns.

When diffusion in the solid can be ignored, we
can relate the concentration field in the sohid to
that “frozen in” at the interface above. In the
steady state, egs. (2.8) and (2.13) then imply

wx, z)=klu(x, z,(x)) — 1],

where u(x, z,(x)) =u, gives the concentration in
the melt at interface position z;(x). As a result,
we need explicitly consider only the field u in the
liquid and at the interface, as in egs. (2.14)—(2.16).
Clearly, however (2.21) must break down if we
have a multiple valued or reentrant interface,
where for a given x there are two or more values

(2.20)

(2.21)
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of z,(x). This is discussed in appendices B and C,
but for now we will assume the patterns are such
that there exists a single-values interface for which
the one-sided model with D®=0 remains accu-
rate.

3. Interface stability and constitutional supercool-
ing

The first successful stability criterion for a
planar interface in DS was based on the idea of
constitutional supercooling [1-3]. As suggested in
the introduction, we can argue as follows. The
phase diagram (see fig. 4a) applies to stationary
planar interfaces and delineates the two phase
region between the liquidus and solidus curves
where a stable (one-phase) liquid at a particular 7'
and ¢ cannot exist. The basic idea of constitu-
tional supercooling (CS) i1s [1-3] that in the steady
state we can assume local equilibrium and apply
these same thermodynamic concepts to the moving
planar interface and to the melt just in front of the
interface. This idea was implicit in rewriting the
phase diagram as a function of z in fig. 4b.

In general, we assume local thermodynamic
equilibrium az the interface by using the Gibbs—
Thomson boundary condition (2.15). Constitu-
tional supercooling makes the very plausible asser-
tion that the moving planar interface remains sta-
ble as long as the melt just in front of the interface
also satisfies the thermodynamic requirement for
single phase stability: the concentration there
should not fall into the two phase region of the
phase diagram.

Since the concentration at the interface is on
the liquidus line from (2.15), the CS condition for
stability of the liquid just in front of the interface
reduces to the following requirement. The (dy-
namical) gradient |du/dz|,= Au,/!l,, determined
from the boundary condition (2.16) must not ex-
ceed the liquidus slope |du, /dz|=1/[; given in
fig. 4b or eq. (2.20), where the temperature depen-
dence of the phase diagram in fig. 4a is reex-
pressed as a function of position z in the cell. This
criterion can be reexpressed as

v(Au,) <1. (3.1)

where we define a basic dimensionless control
parameter »:

v=1l./ly=Vm Ac,/GD. (3.2)

Note that » is directly proportional to the velocity
V. The usual CS criterion for instability of the
plane follows from (3.1) where we note that global
conservation requirements force the plane to be
located at z, = 0, where Au, = 1. (See fig. 4b or eq.
(2.17b) and the discussion after eq. (2.12).) Thus,
as V' is increased the planar interface at z =0 is
predicted to be stable until a critical value of V' is
reached such that

pS=1. (3.3)

This criterion 1s surprisingly accurate, given the
simplicity of the CS argument. For materials with
small 4, the fundamental linear stability analysis
[1] predicts only small changes in the critical value
of ».ie., v =1. At the very least, the CS theory
provides a very useful “rule of thumb” for esti-
mating planar interface stability [1].

However, the arguments leading to (3.1) seem
nearly as plausible as before when applied /locally
to the melt in front of the tip of many (non-planar)
patterns, provided that the curvature corrections
in (2.15) are small. In particular, we need to use
only the boundary conditions (2.15) and (2.16) and
the local symmetry in the tip region (nearly planar,
with 8, = 0) to arrive at (3.1) with Au, = Au,, the
impurity surplus at the tip. When curvature cor-
rections to Au, in (2.17b) are small, eq. (3.1) can
be reexpressed as

(=r—1) =1 —k)z/1l;,<0. (3.4)

Eq. (3.4) predicts that the tip position z, of
stable patterns with » > 1 must move up in the
cell, relative to the planar position at z = 0, until
the smaller impurity surplus Au, allows (3.1) or
(3.4) to hold true. It is natural to conjecture that
the operating point in real experiments should be
close to the one that requires the least forward
motion, i.e., the region where {, = 0. We refer to
this condition as the LCS criterion.

Note also that just as the Mullins—-Sekerka
instability of the plane is a finite wavenumber
instability [1], we expect that the instability of



J.D. Weeks et al. / Stability and shapes of cellular profiles in directional solidification 255

cells predicted by LCS for §{ = 0 actually corre-
sponds to a finite wavenumber instability [39].
This is indeed confirmed by a more careful analy-
sis [21], which also shows that the LCS criterion
{, = 0 gives an upper bound to the distance z, that
the tips of patterns have to move up to regain
stability. For a periodic array of cells with {, =0,
we envision that the instability in practice corre-
sponds to a mode in which some of the cells move
up slightly, while others stay behind and subse-
quently get pinched off.

Ref. [21] also shows that curvature corrections
neglected in LCS become more important at larger
v. Indeed corrections to the LCS picture must
surely be taken into account at large v>1/k
(usually in the dendritic regime), since (3.4) com-
bined with (2.15) would then predict z, >/, thus
implying an unphysical “concentration deficit” at
the tip with u, < 0. However, for small £ and » in
the cellular regime, corrections to LCS appear to
be small.

Of course, these arguments are only suggestive.
The LCS condition (3.4) is not exact, even for the
plane at z=0. However, in that case we can
compare its predictions to those of an exact linear
stability analysis. For materials with small parti-
tion coefficient and small 8= D_/D it does give a
very accurate estimate. Similarly, we expect that
the linear stability analysis of the fingertip region
of many nonlinear patterns would agree rather
well with the predictions of (3.4). We hope this
will be investigated in the future. Measurements of
the tip temperature similar to those by Esaka and
Kurz [40] yield all the necessary information to
determine {, (see section 10 for a more detailed
discussion of these experiments).

As shown in appendix D, one can define a
measure of constitutional supercooling for a gen-
eral point near the interface of a fingerlike pat-
tern, although the analogy to the planar case is
less compelling when 6, is non-zero. Using this, we
can establish the general validity of the frequently
made assumption [2.25,28] that the constitutional
supercooling in the grooves is small. However, this
fact places no constraints on the absolute location
of the pattern in the experimental cell. In contrast,
the requirement of small supercooling near the 7ip
with { = 0 does approximately fix z,.

As we will see in the rest of this paper, the
condition {, = 0 will also have important implica-
tions for the validity of various matching theories
for DS. To analyze these questions in more detail,
we first discuss in the next section a choice of
length scale in the theory that renders eqs. (2.14)—
(2.16) dimensionless. Our choice will be particu-
larly useful in helping to determine the relative
importance of the curvature terms in (2.15) and
hence the applicability of the LCS criterion.

4. Experiments and theoretical parameters

There are many parameters that can be varied
in a directional solidification experiment. The
choice of the solvent and impurity system fixes the
material parameters k,. T, cfo, D and m . In
principle, one can still vary the limiting impurity
concentration in the melt ¢, the temperature
gradient G, and the pulling velocity V, to produce
a variety of patterns, whose properties can be
characterized in terms of the parameters /;,, I/
and d, given in egs. (2.14)-(2.16). We consider
here the usual experimental set up where ¢ and
G are fixed and V is increased above the threshold
velocity V. to produce instabilities in the planar
interface.

In such an experiment, the choice of ¢, fixes ¢,
and the location z = 0 from egs. (2.11) and (2.12),
as well as the chemical capillary length 4, from
eq. (2.19). Choosing G then determines the ther-
mal length /1 from eq. (2.18). As V is increased,
the diffusion length /, = D/V decreases at fixed
d, and /;. We are interested in properties of the
periodic cellular patterns that emerge, in particu-
lar their wavelength A and parameters that char-
acterize their shape such as the tip position and
the groove width.

We can choose one of the four lengths d,, /5,
/p, and A (or some combination thereof) as a unit
of length and thus characterize the results of an
experiment in terms of fundamental dimensionless
ratios. The following choices are often made.

One basic control parameter v describes how
far the system is from the instability threshold; it
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has already been mentioned in section 3, where we
defined

v=ly/ly=Vm; dc,/GD. (4.1)

Since the constitutional supercooling instability
criterion ». =1 is usually very accurate, we can
think of » as the ratio of the pulling velocity V' to
the threshold velocity V.. The cellular regime of
interest to us in this paper is found at larger »
with » —1 of O(1); at still larger pulling speeds
v > 10 a dendritic regime is usually found. We will
not consider the latter regime in this paper.

The resulting patterns are often characterized
by the Péclet number p, where

A AV

23D (4.2)

P

relates the scale of the pattern (the half wave-
length) to /,, the typical range of the diffusion
field in front of the tips. Experimental cells can
have Péclet numbers as large as O(1).

These ratios [38] arise naturally in the resulting
dimensionless equations when / 1s chosen as the
unit of length. Another common choice in theoret-
ical work 1s A itself. However both of these choices,
while perfectly consistent and offering some theo-
retical advantages, can cause some inconvenience
when comparing theory and experiment. Thus the
choice /|, gives a scale that is not obviously the
size of a typical pattern.

On the other hand, the choice A gives a length
scale that by definition i1s the size of a pattern.
However, conceptually this is somewhat dissatisfy-
ing since that scale is not fixed in advance: the
prediction of A is actually a goal of the analysis.
With this choice it becomes natural to report
theoretical results in terms of a dimensionless
parameter ¢ relating the surface tension to the
pattern wavelength. See eq. (9.1) below. Using
this, it is possible to extract the actual (dimen-
sional) value of A.

We make here another choice of length scale
which avoids some of these problems. As il-
lustrated by fig. 3, most experimental cellular pat-
terns have wavelengths A that are some small
multiple of the (lower) neutral stability wavelength
A, evaluated at the appropriate pulling velocity.

Except for the very flat part of the curve in fig. 3
extremely near threshold, which we do not con-
sider henceforth, A, is essentially independent of
the value of the partition coefficient & (at least for
small k) and is accurately approximated by A (k
= 0)= X’ where [41]

(4.3)

v—1

A = 2,”(%)1/2_

(This result arises [1] when one considers a small
interface perturbation of the form exp(igx + wi);
by definition ¢, = 27 /A satisfies w(g,) = 0.) Thus
a scale related to A° seems appropriate. In the
following, we take the half wavelength X’ /2 as the
unit of length. Measured in these units, the dimen-
sionless half wavelength a = (A/2)/(X/2) of the
experimental patterns of de Cheveigné et al. [8] is
some small multiple of unity. We expect this result
to be true for most experiments, where we assume
that the selected patterns have wavelengths falling
within the planar instability band towards the
left-hand side. Note from (4.3) the well-known
result that the experimental patterns are found on
a length scale that is intermediate between the
(usually small) scale d, set by surface tension
forces and a macroscopic scale /1 or /.

Our basic equations (2.14)—(2.16), written with
A’/2 as unit of length, then have the dimension-
less form

. 9
VUt p e =0, (4.4)
p(Au,)cos 0= —(A-vu), (4.5)
u,zl—&(, - K), (4.6)

)4 a“

where we have defined
p.=X/2,. (4.7)

in analogy to the usual Péclet number p, in eq.
(4.2). In general we use the subscript s to denote
guantities associated with the stability length. It
should not be confused with the superscript s
denoting the solid. Note that p = p.a. (To obtain
the corresponding equations used in our earlier
work [21,26] with the half wavelength A /2 taken
as unit of length, replace in the above equations p,
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by p and 7 >=o0, by o, as defined in eq. (9.1)
below.)

For simplicity in notation, we do not indicate
by a special symbol in egs. (4.4)-(4.7) and those
that follow that the coordinates x and z are now
dimensionless, with A /2 as unit of length. The
presence of other dimensional (e.g., /, and /) or
dimensionless (e.g., p,, ¥) parameters in the equa-
tions themselves will indicate the proper dimen-
sions to assign to the coordinates. Note also that
throughout this paper, A and X, will always de-
note the dimensional wavelengths, whereas a de-
notes the dimensionless half wavelength of a pat-
tern.

Finally note that in experiments where the
selected wavelengths fall inside the planar instabil-
ity band, we have a > 1. The curvature at the tip
of these patterns is very roughly given by a™'.
(This estimate is exact for fingers of vanishing
groove width whose tips are semicircles.) The
curvature correction term in (4.6) is thus ap-
proximately given by (v —1)p,/(vm’a). In the
cellular case we have v —1 of O(1), and usually
p, <1, so curvature effects are numerically small
in (4.6), unless the tips have moved so high that u,
is very near zero.

5. Flux conservation

A study of the impurity flux provides a power-
ful means of analyzing eqs. (4.4)-(4.6). The (di-
mensional) impurity flux in the moving frame at
any point in the fluid 1s given by

J=—Dvc— Vez, (5.1)

where the first term is the usual diffusion flux, and
the second is the “convective” flux of impurities
in our moving reference frame induced by the
constant pulling velocity ¥ in the —z direction. In
the solid phase, by assumption D®=0, so that
only the second term remains.

For a spatially periodic steady state pattern, it
is clear that the impurity flux in the —z direction
(i.e., —J-z) integrated over any horizontal line
segment extending from the center of a groove to
the center of the pattern must be constant, inde-

pendent of the position of the segment, since no
net flux can escape through the vertical lines of
symmetry. See fig. 5.

Using the notation of (4.4)-(4.6), a dimension-
less measure of this integrated flux in the melt for
z > z,, with z_the tip position of a pattern, is

F(z)=/:dx(u+pf‘%g), (5.2)

where z denotes the segment position, a 1s, as
before, the dimensionless half wavelength, and we
have noted that vu-Z=0u/dz. Far in front of
the interface we know that u = du/9dz = 0, so con-
servation of impurities in the steady state requires
that F(z)= 0 everywhere. If we consider an arbi-
trary line segment whose vertical position z satis-
fies z < z, we have similarly

F(z) =O=‘/:'dx(u+p;1%)

+kfudx[u(x, 2y —1]. (5.3)

where we have used eq. (2.21) to rewrite the im-
purity concentration in the solid in terms of that
found at the fluid interface directly above. Here
x;=x;(z) and z,=z,(x) give the interface posi-
tion as functions of z and x, respectively. Dif-
ferentiating (5.3) with respect to z gives the exact
result [26]

dx, _( Ou X, du _,d%u
E[lﬁ*‘[ﬂ 1(-6;)’} +j;) dx(m‘ + p. 1822)

dx;
_kdz (u,—1)=0. (5.4)

Eq. (5.4) is the basis for the tail analysis carried
out in this paper. It is equivalent to eq. (4.5), as
shown in appendix B, which also discusses the
more general case with 8=D"/D > 0. Our
strategy is to reexpress quantities involving the
diffusion field in (5.4) in terms of quantities in-
volving the interface shape. This generates an ap-
proximate differential equation for the interface
shape. Below, we will use (5.4) to derive such an
equation for the shape of the grooves of cellular
patterns.
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6. Tail approximation

Eq. (5.4) has terms involving the interface shape
x,;(z). This is a convenient representation for the
interface shape deep in a groove since here the
slope dx,/dz =cot 8 (see fig. 5) is small. Using
this fact and the narrowness of the groove will
allow us to approximate eq. (5.4) for deep grooves.
The method is very general and can be improved
systematically. However, we expect the lowest
order results given here to be sufficiently accurate
to describe the groove region seen in many experi-
ments.

The terms involving u, in (5.4) can immediately
be reexpressed in terms of the interface shape
using the Gibbs-Thomson equation (4.6). More-
over, terms involving field derivatives like (du/9dz),
can also be approximated accurately by differenti-
ating (4.8) since

u,(z)zu(x,(z),z)=l—%[z+7fz(v—1)x],
(6.1)
so that, by the chain rule,
du, du du [dx;
a5+ (7] (5 (6.2)
__P v—1dk
__7(1— = dz). (6.3)

For small dx,/dz we have from (6.2) that
(du/0z),=~du,/dz, and similarly, using also the
narrowness of the grooves, (3%u/9z%), = d*u,/dz>.
Finally, for narrow grooves we can approximate
the terms under the integral in (5.4) by their
values at the interface. In this way we find from
(5.4) our basic groove equation [26]

dx, _ _ dk
- -Rpa 2 -Dx-r20- DG
d?k _ dk
—x,»fz(l'—l)@—ﬁsx,” -1y
= p.X;. (6.4)
Here
§=(-1)-(-k)p: (6.5)

is the same quantity that evaluated at the tip in eq.

(3.4) gives the LCS stability criterion. (Note that
in (3.4), z, was written in dimensional units.) For
our purposes here, { gives information about the
width of the planar two phase region Au,(z), and
can also be thought of as a dimensionless measure
of vertical distance. As we will see, { appears
repeatedly in the rest of this paper; this is why the
ideas of LCS turn out to be of relevance to the
matching theories. The tail equation (6.4) has also
been derived independently by Mashaal et al. [29]

All the approximations leading to (6.4) can be
improved systematically, but the lowest order re-
sult will prove sufficiently accurate for our pur-
poses here. Deep in the grooves, terms involving
the curvature become negligibly small and (6.4)
reduces to

{dx,/dz=p.x,, (6.6)
which has the solution
x,(z) =480, (6.7)

with A, an integration constant.

Thus as {— o0 (i.e., z— —o0), grooves are
predicted to close as a power law x,~ |z|
where the exponent 7=1/(1 — k) depends only
on k and is near unity for small k. This limiting
result has been known for some time now, and is
usually attributed to Scheil and Hunt [2,27,28].

For a real physical system with 8= D*/D small
but non-zero, (6.7) must eventually become inac-
curate sufficiently deep in the grooves because of
the effects of diffusion in the solid ignored in the
one-sided model. (Of course, our assumption of a
linear phase diagram as in fig. 4 must also become
inaccurate, e.g., at a eutectic point, but we do not
analyze this possibility here.) In appendices B and
C we discuss how the results of this section are
modified when B is small but non-zero and derive
an upper bound to the breakdown distance ¢
beyond which (6.7) cannot be trusted. We also
make some more general remarks about both the
utility and the limitations of the predictions of the
one-sided model.

Eq. (6.4) is much more general than the limiting
Scheil result (6.7). The terms involving the curva-
ture in (6.4) are essential to describe the transition
region below the tip of a pattern where the nearly
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vertical Scheil shapes must somehow “bend over”
smoothly and join to tips with larger curvature.
They also play a role near the closure region of
finite depth grooves.

Eq. (6.4) is a nonlinear fourth order differential
equation for the interface shape x,(z), as is easily
seen by writing the curvature as

k= —(d*,/dz2)[1 + (dx,zdz)Y]

(6.8)
After requiring that all solutions reduce to (6.7)
deep in the grooves as { — oo, there are still two
integration constants left free to vary [42]. Rea-
sonable choices for these constants produce solu-
tions that indeed bend over and resemble the
beginnings of a cell tip [43]. It would be interest-
ing to compare the solutions of (6.4) to experimen-
tal groove shapes, since we typically find that the
limiting Scheil shapes are accurate only for rather
large §.

In order to determine the integration constants
explicitly, it is necessary to examine the region
closer to the finger tip where the approximations
leading to (6.7) become inaccurate. This occurs
because the width of the groove increases and the
slope dx;/dz becomes very large.

This cell tip region is the subject of the follow-
ing sections 7 and 8. Once an accurate description
of the tip region has been found, we still have the
problem of combining the tip and tail approxima-
tions to obtain a globally acceptable solution. As
shown in section 8, for a class of solutions with
narrow grooves this can be carried out systemati-
cally by using the asymptotic matching procedure
introduced by Dombre and Hakim [10].

7. Finite amplitude solutions and tip approxima-
tions

The derivation of our tail equation (6.4) was
rather general, exploiting only the steepness and
narrowness of the groove, and holds for all values
of the partition coefficient k. However, in order to
find an equation that holds in the tip region, we
will further assume that k is small, which is the
usual experimental limit. Small k produces an
important simplification because there is a class of

finite amplitude solutions (i.e., solutions without
deep grooves) for which the diffusion field is
nearly one dimensional, i.e., u= u(z) only, even
though the interface shape is far from planar. We
can provide a simple treatment of such solutions.
In the following, z_ represents the minimum value
of z; for these solutions.

7.1. The k = 0% limit

It can be easily seen by direct substitution that
in the limit & — 0™, the one-dimensional field

u(x, z)=ug(z) =B, e " (7.1)

provides an exact solution both for the diffusion
equation (4.4) and the conservation condition (4.5),
independent of the shape of the interface [44].
Given this asymptotic solution to the diffusion
field, one can then integrate the Gibbs—Thomson
equation (4.6) in the form

B, ef”*:'=1_%[2i+'”72(”"1)"] (7.2)

to derive a variety of interface shapes consistent
with this field and hence with all the DS steady
state equations. Our goal is to explore this particu-
lar class of tip solutions for which u(x, z) reduces
to (7.1) in the limit X = 0™. To do so, we will first
analyze the finite amplitude k — 0% patterns given
by eq. (7.2) and then discuss how these solutions
are modified for k small but finite. The use of
these solutions to construct the tip shape of cells
with deep grooves is discussed in the next section.

Although the one-dimensional field satisfies
both eq. (4.4) and eq. (4.5) in the limit Xk = 0", in
order that the solutions of (7.2) connect smoothly
with those at small but finite kK we need to impose
an additional global conservation condition. The
requirement that the roral amount of impurities
left behind in the solid is the same as the amount
entering through the liquid implies for the one-
sided model that all single-value interface shapes
obey a simple and exact condition that is easily
derived from the general flux equation (5.3).
Evaluating (5.3) in the solid for z <z, and using
(4.6), we have for any k> 0 (thus including the
limit kK > 0")

j:z,(x) dx = —W_Z(V—l)foaic(x) dx. (7.3)



260 J.D. Weeks et al. / Stability and shapes of cellular profiles in directional solidification
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Fig. 6. Examples of finite amplitude solutions for p, = 0.15 and
v =1.5. The horizontal lines indicate the location of the plane
z=0.

The latter integral can be evaluated exactly:

/Oax(x) dx=-/; 3? ifd

=sin §,, — sin 6, (7.4)

-/AY(%(sin #) ds

m

where we note from fig. 5 that dx/ds = —cos §.
Here s is the arc-length and we have used the
fundamental definition « = df/ds. For the
single-values cellular solutions like those in fig. 1a,
6.,=6,=0, and (7.3) reduces to [45]

“ o dx
[)z,(x) dx=j; z,(s)d—sds=O, (7.5a)
or
A(s)= = [2(s) cos 6 ds =0 (7.5b)

s m

We will refer to this condition as the equal area
rule, since it shows that for finite amplitude cells
the areas above and below the line z = 0 are equal.
See figs. 6 and 7 for examples. Note that with the
sign conventions of fig. 5, s, > s, in (7.5).

It is useful both conceptually and for practical
numerical calculations to rewrite (7.2) as a system

of first order equations parameterized by the arc-
length s:

%: —sin 6, (7.6)
%?= —cos 4, (7.7)
3—? ,,7121 (i(] _Boeip\:')—z,.)q (7.8)
%—f = —z cos 0. (7.9)

Eqgs. (7.6) and (7.7) express exact geometric prop-
erties of a curve (see fig. 5) and (7.8) reexpresses
the original equation (7.2). Finally, 4 in (7.9) is
(7.5b) evaluated at an arbitrary upper Limit s.

It 1s most convenient to think of solving these
equations by an iterative process. First pick an
initial guess for B,. For fixed B,, we can solve
(7.6)-(7.9) as a simple initial value problem, start-
ing at the minimum and integrating upward. By
definition, the initial conditions are x,, =0, 8 =
and A4, = 0 at the minimum, but we can pick any
z., < 0. We then integrate [46] forward to the tip
(maximum) of the solution where again §, = 0, and
immediately find z,, x, and x, = a. For fixed By,
if z,, becomes too negative the solutions do not
remain single-valued, and we reject them. Further-
more, even the single-valued solutions will in gen-
eral not satisfy the equal area rule (7.5). Hence B,

finite '/mrnplliihmdp cells

. 7 %L,/Fz[\rf %7@

B it i S

lj/"é — T — —
0 2 4 8
X
Fig. 7. Examples of finite amplitude solutions for p,=4 and
v=1.5.
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must be varied and the integration process re-
peated until (7.5) is also satisfied. Thus, we can
think of B, as being fixed by the global conserva-
tion requirement A(s,) =0. See figs. 6 and 7 for
examples.

7.2. Finite amplitude shapes for k = 0~

As the discussion above demonstrates, egs. (7.2)
and (7.5) admit a continuous family of finite ampli-
tude cellular solutions, whose half wavelength a is
a continuous function of a single parameter [47]
z,,. However, once these solutions have been
found, properties of the family can be reexpressed
in other terms, e.g., in terms of the dependence of
the wavelength on the total amplitude, z, — z, or
on the curvature at the tip, x,. We now discuss
these finite amplitude solutions in some detail.
Figs. 6 and 7 shows some examples for fixed p,
and ». Thus, the profiles in each figure are all
members of the same family obtained by varying
z,. One immediately notices that the profiles
shown in fig. 6 for p, = 0.15 are almost symmetric.
This i1s easy to understand since the equal area
rule (7.5) shows that the average value of z,
vanishes. As a result, for smail p;, B, =1 and the
exponential factor exp(—p,z) in (7.2) can be lin-
earized, exp(—p.z) =1 — p.z. Since the equation
for the shape of the resulting profiles then only
contains terms odd in z, the profiles are reflection
symmetric about the line z = 0. Clearly, for in-
creasing p, the nonlinear behavior of the exponen-
tial exp(—p,z) becomes more important, and the
bottom part of the finite amplitude cellular pro-
files narrows, as shown in fig. 7. This is illustrated
quantitatively in fig. 8, where we plot the ratio
w/a of finite amplitude cells whose maximum
angle 1s 90 °, as illustrated by the upper profiles in
fig. 7. Here w 1s the width of the bottom region
measured at the point where 8 = +£90°, so that
for reflection symmetric cell shapes, w/a=1/2.
As fig. 8 shows, the ratio w/a becomes signifi-
cantly smaller than 1/2 only for Péclet number
ps = 1, as expected. Moreover, by comparing the
data points for profiles with (triangles, a, = 0.3 in
eq. (2.4)) and without (circles, a, = 0) anisotropy,
the ratio is essentially independent of the strength
of fourfold crystalline anisotropy.

GROOVE WITH W/X

PECLET NUMBER Pg

Fig. 8. Relative groove width w/a of cellular patterns with
0 2x = £90° for a, =0 (O, ®) and «, = 0.3 (a, a). Solid sym-
bols denote data for » =1.5, open symbols data for » = 4.5.

It is also of interest to analyze the wavelength
of these profiles. In the limit of small amplitude,
we expect that the wavelength of these cellular
shapes reduces to A, the neutral stability wave-
length in the & — 0" limit given in eq. (4.3), since
this represents a valid steady state solution of
infinitesimal amplitude. It is easy to check that
this is indeed the case: upon linearizing eqs. (7.2)
and (7.5), we find that the solution 1s z,=
C cos mx, By =1, and since our unit of length is
X} /2, we see that the small amplitude wavelength
indeed reduces to A%,

Figs. 6 and 7 already illustrate that the wave-
lengths of these cell profiles decrease with increas-
ing amplitude, and fig. 9 shows that this is true
both with and without crystalline anisotropy.
These results therefore imply that for small k this
particular branch of solutions lies outside the
planar instability band. As discussed in the Intro-
duction, we therefore expect these solutions in
general to be unstable.

7.3. Results for k small but nonzero

In order to compare the previous kK — 07" re-
sults to cell shapes for realistic parameters, we
now estimate the correction to this branch when k&
is small but finite. In the general case of a periodic
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Fig. 9. Total amplitude z, — z,, versus wavelength A /A2 of the
family of cellular solutions given by egs. (6.5)-(6.9) for two
values of the Péclet number. The solid line corresponds to the
case of isotropic surface tension and the dashed line of an
anisotropic surface tension given by (2.4) with a, = 0.3.

pattern, we can expand the diffusion field in the
liquid ahead of a finite amplitude cellular solution
in a Fourier series according to

u(x, z)= Y, B, cos(q,x) e P77 %),

n=0

(7.10)

where, in order that u satisfies the diffusion equa-
tion (4.4), the coefficients ¢, and p, are given by

q,=mn/a, (7.11)
Pa=3p.+ 3Pl +44q;, (7.12a)
Do =Ds- (7.12b)

In appendix E, we show that the conservation
boundary condition can be used to derive the
following set of equations for the Fourier coeffi-
cients B,

Y M,B,=N, (7.13)

nz=0

with
a
N, = k]o dx cos(g,x) e (PPoXz ) (7.14)
M, =f0 dx[cos(qjx) cos(gq,x) C,,
+4,q, sin(g,x) sin(q,x)]
e (2 Pr=PoNz~20m)
, (7.15)

Po(Pn+PJ —Po)

C,,=kpo(p,+p,—po) + (P, —p)(P,—po).
(7.16)

We show in appendix E that eq. (7.13) for j=0is
equivalent to the conservation condition (5.3) from
which the equal area rule (7.5) was derived. Note
also that although (7.13) has the form of a set of
linear equations for the Bj’s, the equations are
really nonlinear, since both M and N depend on
the interface profile z,(x), which in turn depends
on the Bl.’s. Nevertheless, since all the Nj’s are
proportional to k, it is not surprising that the
k — 0" branch considered before has a regular &
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Fig. 10. Illustration of the k-dependence of the family of finite

amplitude solutions whose & — 0™ limit is given by egs. (6.5)—

(6.9). Results shown are for p=y2, »=1.5 and k=0, 0.075
and 0.15.
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expansion [48] with all B, of O(k) for j=>1.
Indeed, we have checked this numerically in the
case that eq. (7.13) is truncated to a few modes.
This is easily done [49] by treating the variables B,
in much the same way as the variable B, was
treated in the computer program described in sec-
tion 7.2. Fig. 10 shows a representative example of
an amplitude versus wavelength plot in the case
p.=V2, v=1.5. The figure clearly illustrates that
the k-dependence of this branch of solutions is
rather smooth [50], and that the &k - 07" results
remain fairly accurate for k small but nonzero,
especially so for the large amplitude solutions that
are important for the matching to cells with deep
grooves. In fact, we already know from the work
of Hakim et al. {10,29] that the k-dependence can
be accounted for trivially in the p,— 0 limit
through a reparametrization of the equation (see
also ref. [31]). The present results show that the
k-dependence of this branch of finite amplitude
cellular solutions remains weak even for p, of
o(1).

7.4. Discussion

Although some of the shortcomings of the finite
amplitude solutions analyzed in this section will
reemerge later in the discussion of the matching
analysis of cells with grooves, it is useful to men-
tion some of them here. As we have seen the
cellular shapes which can be obtained perturba-
tively in the limit & — 0% (but p, finite), all have
wavelength A smaller than A . Thus, they lie out-
side the planar instability band, and we expect
them to be unstable.

In a calculation for the symmetric model, Lan-
ger [S1] found finite amplitude cellular solutions
within the planar instability band. Although we do
not find this kind of solution from our expansion,
such finite amplitude solutions almost certainly
exist in the one-sided model. The question of
whether even the solutions within the planar insta-
bility band are stable, is, however, still a matter of
debate. A few years ago, Caroli et al. [52] con-
cluded that the Mullins—Sekerka instability in di-
rectional solidification corresponds to a subcritical
(inverted) bifurcation for £ < 0.45 and to a super-
critical (forward) bifurcation for k > 0.45. If the

bifurcation is supercritical, one expects to find
stable small amplitude cellular patterns very close
to threshold, while if the bifurcation is subcritical
such stable cells would not exist. Instead, just
above threshold one expects the perturbation to
evolve into large amplitude cell patterns, possibly
cells with grooves. The picture of Caroli et al. [52]
seems to be qualitatively consistent with most of
the experimental observations, since small ampli-
tude cells are normally seen [19] in liquid crystal
(k =0(1)), while cells with grooves are found in
most plastic crystals with & about 0.1-0.2. Never-
theless, both de Cheveigné et al. [6] and Trivedi [5]
have seen apparently stable finite amplitude cells
for materials with relatively small k values. More-
over, the conclusion of Caroli et al. [52] has re-
cently been challenged [53] on theoretical grounds,
and the issue appears to be unresolved at present.
See section 10 for some remarks on this point.

8. Asymptotic matching of top and tail solutions
8.1. Inner and outer matching

We have not succeeded in finding a well-justi-
fied approximation that yields a single differential
equation for the shape that is capable of accu-
rately describing both the tip and tail regions of
typical finger-like steady state DS patterns. How-
ever both in many experiments, and in the
numerical studies of Ungar and Brown [4] the
grooves remain narrow even near the tip. In this
case, the work of Dombre and Hakim [10]} sug-
gests that there might be a “matching region” a
distance of O(1) behind the tip where the narrow
groove approximations leading to the ‘“inner”
equation (6.4) remain valid, while at the same time
we are close enough to the tip that the “outer”
equation (7.2) also is accurate. If this is the case,
one can use the method of asymptotic matching to
in effect join the tip and tail solutions, thus yield-
ing a globally acceptable branch of solutions. As
we will discuss in detail later, the small parameter
¢ in the matching scheme can be thought of as the
width of the groove just below the matching re-
gion [54]. This important idea was first introduced
by Dombre and Hakim [10] in their study of a
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simplified model of DS with k=1 and p — 0. If
differs from wusual applications of asymptotic
matching methods [30] in that the small parameter
¢ does not appear explicitly in the problem, but
rather is determined self-consistently as a property
of the matched solutions.

There have been many attempts [2,3,27] in the
past to “patch” the Scheil solutions (6.7) to some
smooth tip shape (say a semicircle), but the patch-
ing procedure was arbitrary, as was the form of
the tip solution, and the results were rather sensi-
tive to the particular patching method used. The
use of (6.4), together with eq. (7.2) for the inter-
face shape near the tip and method of asymptotic
matching allows us to avoid these problems. As we
shall see, however, the straightforward matching
procedure yields a branch of cellular solutions
with a { that is positive and finite, rather than
cells that are close to the LCS criterion {, = 0.

Far below the matching region the curvature of
the grooves as described by (6.4) is very small,
while near the tip the curvature as given by (7.2) is
O(1). The requirement that these different behav-
iors join smoothly in the matching region pro-
duces consistency conditions that are asymptoti-
cally exact in the limit of narrow grooves with
€ —» 0. These conditions in effect determine the
boundary conditions needed to specify the solu-
tion of (7.2), which will now describe the tip of a
finger comsistent with deep grooves in the tails.
This leads to a continuous family of fingerlike
solutions, whose wavelength 2a is parametrized
by the matching parameter e¢. This behavior is
analogous to that of the finite amplitude solutions
discussed in section 7, where the wavelength is a
function of a single parameter, e.g., the amplitude.

To begin the matching, let z, = z°(x = 0) where
zP(x) is the (at present unknown) solution to the
outer equation (7.2) that obeys the matching con-
ditions derived below. In this section, the sub-
script m stands for “matching region” rather than
for “minimum” as it did in section 7, but the idea
is much the same. Now consider the inner equa-
tion (6.4). In the matching region near z_, the
solution x,(z) to (6.4) is by definition O(e), and
its curvature is small. Introducing the rescaled
function X, by the relation

X, = €ax,, (8.1)

we look for a scaling of the variable z such that
eq. (6.4) to lowest order in € in the region near z
can be written in parameter-free form. This de-
termines the limiting scaling behavior of x,(z) and
its derivatives as € — 0. The only consistent scal-
ing is

g

Z—ZzZ,= , (8.2)

ea(v—1) .
77.2§n\

where {_ is given by (6.5) evaluated at z_,. Note
that since we want € to be the only small length
scale in the problem, we have to assume that {  is
positive and finite. Eq. (6.4) to lowest order (at
O(¢€)*/?) thus becomes

dx, d%, | _ d%%,
R L AP (83)
or
T 3~
d . d°x,
E[xi(1~8?”=0. (84)

Corrections to (8.3) are higher order in € and thus

vanish as € — 0. Note that 7 is a “rapid” variable
in that a fixed (unscaled) distance Az above (or

below) z,, implies that Z — oo (or —o0) as € — 0.
A first integral of (8.4) is

d’z, 1

45 =1—§, (8.5)

where the integration constant was fixed by re-
quiring %, > 1 as 7 > — oo where d*%/d ¥ —> 0, so
that in unscaled variables the width of the groove
is €a just below the matching region. (Thus e is
the relative width of the groove in this region.) Eq.
(8.5) is identical to that found by Dombre and
Hakim [10].

We now examine the behavior of (8.5) as 7 —
0. In unscaled distances, this probes the region
just above z_, where the curvature terms in (8.4)
first become important. This is the critical region
that allows a smooth joining of tip and tail solu-
tions.

It is clear from (8.5) that %, diverges like 7°/6
as Z — o0. Direct substitution gives the leading
behavior in this limit

$(25)=2/6+B7*/2+ v+ 8—3In(%)
+0(z7). (8.6)



J.D. Weeks et al. / Stability and shapes of cellular profiles in directional solidification 265

Note that the coefficient of the logarithmic term
in (8.6) is determined by the requirement that it
balance the highest order correction due to the
%! term on the right-hand side of (8.5). The
coefficients B, v, and 8 of the other terms in (8.6)
can be determined numerically by integrating (8.5).
Each of these constants depends on the choice of
origin of (i.e., on z,,), but translationally invariant
combinations can be determined by considering
the changes in each coefficient induced by an
infinitesimal translation 7 — Z+ AZ in (8.6). This
yields

A (F)=%(F+A2)—%(%)
AZ(Z2/2+BE+y—-3/7+...). (8.7)

Thus changes in the coefficients in (8.6) due to
this translation are

dB = Az, (8.8a)
dy = BAZ, (8.8b)
dé =vyA:Z. (8.8¢)

From (8.8a) and (8.8b) we have dy/dB =8, or
,82—2YZC|* (8.9)

where C, is a constant that must be determined
numerically from (8.6). Similarly from (8.8a),
(8.8¢), and (8.9) we have

§—3B(v—-C) =0,

where C, is another constant. Thus we have two
relations involving the three quantities 8, vy, and 8
that are independent of the choice of origin. These
invariant combinations can be determined more
accurately from a numerical integration of (8.5)
than can the individual values of 8, v, and 6. To
carry out the matching procedure to lowest order
it turns out that we need only determine C,. We
find numerically that {55] C, = —6.38 4+ 0.02.

The basic idea of the asymptotic matching
method is to match the large 7 asymptotics of the
inner solution X,(Z) in (8.6) to the Taylor series
expansion of the outer (tip) solution about z =z __,
when expressed as a function of z. We write this
outer solution as x,(’(z). This is an example of the
asymptotic matching principle discussed by Van
Dyke [30], where boundary conditions for the

(8.10)

outer solution are fixed by the requirement that
the inner expansion of the outer solution equals
the outer expansion of the inner solution. Letting
6 and «_ be the angle and curvature of the
desired solution to (7.2) at z, (i.e., at x = 0), then
we have by exact geometric properties of a curve

(see fig. 5):

dx!
dz’ =cot 8, (8.11)
d2 0
dxz' — k. /sin’Y, (8.12)
d} 0 2 :

Yo demeosy 1 de (8.13)
dz,, sin’d sin’g, dzy,

Egs. (8.12) and (8.13) follow from differentiating
the definition (8.11). Egs. (8.11)—(8.13) give the
first few coefficients b, in the Taylor series expan-
sion about z_, of the outer solution:

()= b (z—2z,)"/n". (8.14)

To carry out the matching [10,26,29], we rewrite
(8.14) in inner variables, using (8.1) and (8.2):
FNEY=xX(z)fea= Y b, 7" /n!, (8.15)
and then directly identify the 5, with the coeffi-
cients from the inner solution (8.6). We find from
(8.14) and (8.15) that

. n/3

B,,=ﬂ(fﬁ(”,—_1—)) (8.16)

€a W—g‘m

and that to lowest order as ¢ — 0, the contribu-

tions from powers #> 3 in (8.14) vanish when
expressed in inner variables as in (8.15).

Comparing the linear term (n = 1) in (8.15) (see
(8.11)) to that in (8.6), we see that cot 8, is very
small, of O(€*/%), as € — 0, i.e., that 8, is close to
7 /2. This is physically very reasonable in order to
match onto the nearly vertical solution of the
inner equation (6.4) in this limit.

The matching for n = 2 implies to lowest order
that «_ = B(ea)? [¢,72/(v — )] As one
would expect for matching to the narrow grooves,
this shows that the curvature in the matching
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region also has to be small. The value of 8 is not
fixed at this order, however. The discussion after
eqgs. (8.8) shows that a change in the value of B
corresponds to a vertical translation of the inner
(groove) profile by an amount of order unity in
the inner variable, i.e. by a distance of order €'/
At this order of the matching, this distance is not
determined [56], and we are free to take 8 =0 so
that

Kk, =0. (8.17)

m

Using =0 in (8.9) then fixes y=v* =319 +
0.02 from our numerical determination of C,. Car-
ring out the matching of the linear n =1 terms
then yields

(8.18)

/3
2
77 §111
y—1

cot 8, = y*(ca)2/3(

for the n =1 matching condition. Thus #,/2 — 6,
is indeed very small for € — 0, as previously men-
tioned.

As we have stressed before, our narrow groove
results are valid for any k. Therefore, the match-
ing conditions (8.17) and (8.18) would also be the
proper boundary conditions if we would have an
expression for the outer (tip) shape at arbitrary 4.
The status of the matching for n =3 1s slightly
different, however. From (8.13), (8.15) and (8.16),
we get to lowest order in € the matching condition

5
dk Wﬁgm

dz ~—»r—1"

m

(8.19)

The curvature appearing here on the left hand side
is the curvature of the outer profile. Upon expan-
ding this as k = k" + kx' + O(k?) with k” as given
by (7.2), and using the definition of { given in
(6.5), this condition can be written in the form

1 2
K kpszm

v—1

o kI ok - (8.20)
P

m dz

m

This result clearly shows that this matching condi-
tion involves higher order terms in the k-expan-
sion of the outer profile as well. Note, however,
that in the limit £ —> 07, eq. (8.20) is consistent
with the condition (8.17) found above. Moreover,
we do not need to use eq. (8.20), since as we have

seen in section 7, the outer boundary conditions
(8.17) and (8.18) are sufficient to integrate the tip
equations (7.6)—(7.8) for a given constant B,.

8.2. Conservation requirements

With (8.17) and (8.18) as initial conditions, we
can integrate the outer equations (7.6)—(7.8) that
describe the fingertip region, using the same pro-
gram as before in section 7. For fixed B, in (8.8),
the condition «,, =0 in (8.17) fixes z,, and (8.18)
gives [57] the initial angle 6 . We can now in-
tegrate (7.6)—(7.8) to the tip, determined by the
condition 8, =0, and read off the dimensionless
wavelength 2a.

Just as was the case for the finite amplitude
solutions discussed in section 7, the appropriate
value of B, i1s determined by a global conservation
requirement. In this case of cells with grooves, we
use the fundamental conservation condition (5.3),
applied to a line in the matching region. Making
the usual narrow groove approximations, still valid
in the matching region, we have from (5.3)
du )

m

. -1
'xm(um +p\ dZ

kp, 4 ) v—1
= /; dx(z,(.x)-k e :c(x)’.

m N

(8.21)

| L X

€a 2a

Fig. 11. DMustration of the area A4, and A, used In egs.
(8.24)—(8.26). A, is the cross-hatched area and 4 is the sum
of the two hatched areas.

o
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Here x,, = x,(z,,) and u_ =u,(z,). We evaluate
to lowest order in e the left hand side of (8.21)
using the inner solution and the right hand using
the outer solution.

The first term on the right then gives A, the
net area bounded by the tip profile, and the lines
x =ea and x = a, measured relative to the line
z=10. See fig. 11. The second term, as in (7.4),
yields 77 (v — 1) sin 6.

To evaluate the left hand side in the matching
region we note that to lowest order

-1 dum
Xn1(um+ps d7 )

= V‘]xm(u— 1 —p§[2+w72(v— 1)I€]

—w*z(u—l)%) (8.22)

3

d
= lem(f— (v — 1)77”2 d;’

ipskz »

m

(8.23)

since Kk, =0 in the matching region. Using (8.5)
rewritten in unscaled variables, the right-hand side
of (8.23) reduces to v~ ea({,, — p.kz,,).

With these approximations, the conservation
requirement (8.21) can be written as

L . ea($, — pkzy)
Ay=—a"*(v—1)sin b + — ok

(8.24)

The condition (8.24) then determines the ap-
propriate value for B, in (7.8).

We note that an analysis similar in spint to the
one given here has been given independently by
Mashaal et al. [29] in the limit p — 0. However,
they arrive at their result analogous to (8.24) by
assuming an infinitely deep groove and using the
Scheil shape to integrate the groove area [58]. In
this approach, the e/k behavior of the rightmost
term in (8.24) reflects the fact that the area of the
grooves diverges as 1/k for k - 0" due to the
asymptotic Scheil behavior (6.7). Our derivation
above relies only on the validity of the inner
equation (6.4) in the matching region, and there-
fore shows more clearly that (8.24) holds both for

cells with infinite grooves [59] and for cells with
finite depth but narrow grooves. As before, how-
ever, the analysis is only valid as long as {
remains positive.

The conservation condition (8.24) can be used
to obtain a simple estimate for the position z,, or
the parameter {,. To see this, note that to the
relevant order in ¢, sin §, =1, and that 4, = a(l
—€)z,+ Ay, where A, is the area above the
matching line (the cross-hatched region of fig. 11).
To get an order of magnitude estimate, assume the
tip 1s a semicircle. We then find

A, =ma’/4. (8.25)

tip
In general, with A, =a(l —e€)z,,+4,, and the
definition (6.5) of {_. we get from (8.24) for the
vertical position z, the result

PsZm _ 1
v—1 k+(1-k)e

pik -2
X(e-‘(y—_l—)g[,‘i“p+'ﬂ (V—l)])
(8.26)

Thus, for e=0, z_ is always negative. However,
for increasing €, z_ rapidly increases, since

m

1 (1—k
(V_Hps( )
kp a

dzm}
de | _

e=0

S

x[Alip+w*2(u—1)]). (8.27)
The significance of these results is the following.
As we have seen earlier in this section, for the
matching method to be consistent, {, needs to be
positive and finite. We see that this is indeed the
case for the branch of solutions considered here,
since (8.26) can be rewritten as

v—1

$m = 1T+ (1—k)e/k

X(l + U_”—SI)Z[A“.ﬁw*Z(y- 1)]).
(8.28)

Thus, according to this lowest order estimate for
z,, as a function of €, {, is positive and O(1) for

m
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small € < k, and so the matched asymptotic ex-
pansion is indeed self-consistent.

At the same time, however, (8.28) illustrates the
problems associated with the branch of solutions
that can be analyzed with the matching method,
assuming only a single matching region exists. The
results to lowest order in e suggest that it leads to
a branch of solutions that is incompatible with the
¢, = 0 behavior that we expect for physically rele-
vant solutions on the basis of the LCS criterion.
Apparently, this method can only be used con-
sistently to probe a physically irrelevant branch of
solutions.

This conclusion is forced upon us even more
strongly in the small Péclet number limit. For
p, — 0. Mashaal et al. [29] and Karma and Pelcé
[31] have found that the lowest order estimate
(8.26) remains accurate for the Saffman-Taylor-
like branch over the whole interval 0 <e<1/2.
Moreover, in this limit. we can take {, = {, and
neglect the second term between square brackets
in (8.28). This equation then shows, however, that
{, = ¢, can only be made small (for » — 1= O(1))
by taking e/k large. For realistic values of X and
v — 1 of O(1), only cells with wide grooves (€ > k)
can be reasonably close to the LCS criterion {, = 0.
In section 10, we will compare this prediction in
more detail with the LCS criterion and with the
experimental measurements.

9. Cells with grooves: results

The discussion in the last section shows that the
solutions for the cell shapes with grooves can be
obtained by integrating the same finite amplitude
equations as described in section 7, but with the
boundary conditions (8.17), (8.18) and (8.24) in-
stead of the ones used there. In the case of the
finite amplitude cellular solutions, a unique solu-
tion was found for some particular choice of the
minimum z,, and a given set of experimental
parameters. However, the value of -, was not
prescribed by the equations, and so a family of
solutions was obtained. Here, again, the boundary
conditions (8.17), (8.18) and (8.24) completely de-
termine the solution for fixed p, v and ¢. How-
ever, € is only a parameter that characterizes the

solution in the matching region. Slnce € is not
fixed, we again obtain a one-parameter family of
periodic fingerlike cellular solutions, in this case
parameterized by e.

The simplest test of the theory is given by a
comparison of experimental and theoretical cellu-
lar wavelengths in a diagram like fig. 3. Both for
ease of comparison in such a diagram and with
other approaches where the half wavelength A /2
is taken as unit of length [21,26], and because this
ratio plays an important role in the small Péclet
number limit [10.29,31], we will denote the quan-
tity (7a) * by o:

e NL 2
0:(%) =(W>\), (9.1a)
_ 4_”d<)ln (9.1b)
N(v—1)° '

In view of the form (9.1b), o can be thought of as
a dimensionless surface tension parameter, but we
will stress here [60] its fundamental importance as
a ratio measuring the (dimensional) wavelength of
a periodic cell pattern relative to the neutral sta-
bility length A°.

We now discuss our results for cells with deep
grooves like those of figs. 2 and 1b. Fig. 12 shows
the typical behavior of o as a function of the
relative groove width e for several values of the
parameters. The maximum value of o is of order
unity and o increases with increasing Péclet num-
ber. This implies that the minimum cell wave-
length for cells with narrow grooves as € — 0 1s of
order A!/3 or smaller. Thus, as indicated by the
dashed line in fig. 3, the minimum cell width of
the branch calculated perturbatively always lies
well outside the planar instability band. This is
true for essentially all parameters.

This result could of course already have been
anticipated from the results described in section 7:
the finite amplitude solutions whose maximum
angle is around 90° have a wavelength roughly a
factor 2 smaller than A’. Since we use only part of
these finite amplitude solutions to match to the
groove shapes, the minimum wavelength of cells
with grooves is again smaller by about another
factor of 2, hence o, = 1.

Max ~
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Fig. 12. The ratio o = (X% /7A)* as a function of the relative
groove width €. (a) Results for p,=0.05 and & =0.075 and
k = 0.15 (full lines). The dotted lines indicate the results based
on the p — 0 mapping onto viscous fingering for these two
values of k. obtained with the aid of the interpolation formula
(10.5). In the p — 0 limit, the o versus € curves have no »
dependence, as can be seen from (10.11). Note that our results
based on the first nontrivial term in the € expansion follow the
exact results quite well throughout the range 0 < e < 0.09. (b)
For p,=1.5 and » =1.5 (full line) and » = 4 (dashed line) for
the same two values of k as in (a). Figs. (a) and (b) illustrate
that for small €, o increases with p,.

Cells with wider grooves (larger ¢) have a larger
wavelength, since o is a decreasing function of e.
For this reason, we have schematically indicated
the ¢ expansion in fig. 3 by the arrows in the
direction of increasing cell wavelength.

Fig. 12 shows that as k& becomes smaller, the
ratio o decreases faster as a function of €. This is
mainly a result of the ¢/k term in the conserva-
tion condition (8.24). However, for small but re-
alistic values of &, say k=0.1-0.2, ¢ remains
substantially larger than 1 /7> = 0.1 over the range
of € values where the first term in the matched
asymptotic expansion used here can be considered
accurate. In other words, for realistic values of the
parameters, our expansion results are only accu-
rate over a range of wavelengths roughly of the
size of the arrows in fig. 3. Since they do not
extent into the planar instability band, we expect
the cell patterns computed here to be unstable (see
section 1). As mentioned earlier, we in fact believe
that all solutions of this branch are unstable, even
those that lie within the planar instability band,
since their value of {, is always positive and never
close to the LCS value {, = 0.

In the above, we used small but realistic values
of k, even though our outer (tip) profiles were
computed with the simple exponential profile (7.2),
which is exact only in the k — 0" limit. Neverthe-
less, the results for the k dependence of the branch
of finite amplitude solutions reported in fig. 9
indicate that the small k corrections to the tip
profile will not change our conclusion drastically.
We have verified this explicitly by taking higher
Fourier modes into account as described earlier in
section 7.3. We have also analyzed the effect of a
cubic anisotropy (2.4) in the surface tension. As
one might have anticipated from figs. 8 and 9, the
presence of anisotropy does not change the above
results qualitatively for «, < 0.3.

10. General implications of results and comparison
with the LCS criterion

We now wish to show that the above results
have a number of important implications that
warrant further theoretical and experimental study.

The ratio o introduced in (9.1) measures the
wavelength of the periodic cell pattern relative to
A’ defined in (4.3), which under most cir-
cumstances is a good measure of the neutral sta-
bility wavelength. The narrow grooved patterns we
have calculated perturbatively all have values of o
of order unity.

On the other hand, as mentioned already in the
Introduction, in experiments one usually observes
wavelengths that are about an order of magnitude
larger than the minimum cell wavelength indicated
by a dashed line in fig. 3. Thus, typical experimen-
tal cells have o < 10 2. For example, for the data
of the Cheveigné et al. [8] shown in fig. 3 one finds
[61.62]
o=6x10".

03<p<l12. (10.1)

Moreover, these and other experimentally ob-
served cells typically seem to have narrow grooves
(we estimate € = 0.13 for the cell shapes shown in
fig. IV.11 of Kurowski [63]) but with small o.
However, all the analytical results based on
asymptotic matching using a single matching re-
gion — those found by us as well as those based
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[29,31] on the p — 0 mapping onto viscous finger-
ing — predict that small o cellular shapes should
have wide grooves, with € > 0.4. We believe this 1s
a serious discrepancy.

Of course, direct comparison with experiment
is generally hampered by the fact that the theory
does not take into account effects relating to the
cell shape in the third dimension. However, Mis-
bah et al. [64] have shown numerically that without
adjustable parameters, the two-dimensional one-
sided model used herein does have narrow grooved
solutions that fit the experimental shapes of de
Cheveigné et al. [8] very well. It would be interest-
ing to check numerically whether this agreement
between the theoretical model and experiment
continues to hold at small p. These small o solu-
tions with narrow grooves are incompatible with
the perturbative results obtained here for the same
model.

We can analyze this question in more detail for
the case of the mapping onto viscous fingering.
Let us first recall that the steady state equations
describing Saffman-Taylor (ST) fingering [10,11]
can be written as

vt =0, (10.2)
(A-ve¢’T),=cos 8, (10.3)
¢ =0Tk, (10.4)

where ¢ = —h*(P — P))/(12puVW) and o°" =
b2y /12uVW?. Here b is the plate spacing, p the
viscosity, V' the finger velocity, P the pressure
field, P, the pressure inside the finger, y the
surface tension, and W the cell half width (taken
as the unit of length).

Using the matching method on which our anal-
ysis in this paper is based. Dombre and Hakim
[10] show that for “fat” viscous fingers whose
width approaches the cell width 2W, ¢°" as de-
fined here [65] approaches the maximum value
1.393. They also derive the limiting behavior for
small € of ¢°T(e), where € is the relative groove
width at the base of the finger. One finds that
viscous fingers with narrow grooves arc associated
with values of 6" of order unity, and that e - 1,2
in the small surface tension limit where ¢°' — 0,
so that the maximum groove width is 1,/2. Karma

and Pelcé [31] give a convenient interpolation
formula fitting numerical results for € < 0.4, which
can be written as

USTzLM

1+15.7 (10.5)

Returning now to the DS problem, the analogy
to viscous fingering can be seen most easily if we
temporarily use the half wavelength of the cells as
the unit of length and introduce a modified field
[10,29] ¢ by the equation

u=1—p(z+¢)/v. (10.6a)
or
¢=%(1—§z—u). (10.6b)

The field ¢ measures the difference between the
impurity concentration field » and its dominant
variation in the z-direction along a gently curved
piece of the interface as indicated by the phase
diagram. Substituting ¢ into eqgs. (4.4)-(4.6), we
find exactly the modified DS equations

Vi +pdp/dz= —p, (10.7)

[{I— (1—k)p(v— l)ox] cos 0= (A-ve),,
(10.8)

¢, = (v—1)ok. (10.9)

Here {,=(v—1)— (1 —k)pz, is the usual LCS
parameter (3.4) evaluated at a general position z,
measured in units of the half wavelength.

These equations are valid for any p, but we
now take the limit p — 0 in the following natural
way [29]. We examine the region near the tips,
allowing for the possibility that pz, reaches a
finite limit as p — 0, but make the important
assumption, to be verified later, that {, remains
greater than zero. In the fingertip region, of O(1)
in our present units, we can then ignore the z-vari-
ation of ¢ in (10.8), replacing it by {,. Then
ignoring all other terms proportional to p, we see
the modified DS equations become identical in
form to the ST equations given above if we let

¢/§( = (i)ST and

(» —1)o(p—0) — ST,

—5=70) (10.10)
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As discussed in section 8, for the branch of solu-
tions calculated from a matching analysis, { is
given by (8.28), where we now ignore terms pro-
portional to p. Although this result was derived
here to lowest order in e only, Mashaal et al. [29]
and Karma and Pelcé [31] show that in the small
Péclet number limit, this result is actually accurate
for all 0 <e<1/2. Since for p >0 we can take
$m = §,. (8.28) and (10.10) therefore give

Slp—0) 1

T (-K)e/k
(10.11)

a(p—0)

5T v—1

As we saw above, in the derivation of the
mapping of cellular profiles onto viscous finger
shapes, one explicitly assumes that { remains
finite. According to (10.11), this is indeed the case.
Therefore, this mapping does indeed yield a self-
consistent branch of cellular shapes for the DS
problem in the limit p — 0. We refer to this as the
ST branch of solutions. At the same time, how-
ever, (10.11) unambiguously shows that, except for
unrealistically small values of k., these solutions
are never close to the LCS criterion {, =0, and
that such solutions with small ¢ correspond to
fingerlike shapes with small ¢°', and hence from
(10.5) to shapes with wide grooves. For example,
cellular shapes in this branch with ¢ <1072 have
a relative groove width € > 0.4 for almost all val-
ues of k. Cells with such wide grooves are rarely
seen in experiments, not even in those of Trivedi
and coworkers [66] at Péclet numbers as small as
0.02. (However, it is possible that effects relating
to the third dimension could modify the apparent
groove width.)

This discrepancy can not be attributed to finite
p corrections of the above results, since the calcu-
lations presented in this paper for the extension of
this same branch to & small but p of O(1) show
that these are relatively small. Numerical calcula-
tions by Ben-Amar and Moussallam [67] for gen-
eral values of p and k =1 agree with this conclu-
sion. Fig. 12 shows that the p dependence of o is
small. That the p-dependence of { for this branch
is small can be seen from the following. In order
to obtain §, from our earlier results for { . we
neglect the term (» — 1) /7% in (8.26) and use the

approximation (8.25), A, =7a’/4=a’. We can
then write (8.26) for the dimensional matching
position z_, as

m

zlp) _ e(l=vH A
Ir “k+(l-k)e 2
_z(p—=0) X
ai e T (10.12)

Here, the inequality sign arises both from the fact
that we have neglected the (v — 1)/#> term and
that we have used k/[k + (1 —k)e] < 1. Since z,
=z +A/2, we can rewrite (10.12) as
e(1—»7")

k(1K) (10.13a)
S(p)= ¢ aO)——LlJ {10.13b)
WP)=adp TTF(1—k)e/k” :

2(p) z(p—0)
I, ==

It is important to realize that the above analysis
of the ST branch and the extension thereof to
p = O(1) is based on the (implicit) assumption that
there is just one small parameter, the groove width
¢, and that € can be taken arbitrarily small. With
this assumption, a simple scaling can be per-
formed in the matching region for ¢ - 0. It is
quite possible that other branches of cells with
narrow grooves exist that cannot be analyzed in
terms of this simple scaling. As the discussion of
eqgs. (10.7)-(10.9) for small p shows, the assump-
tion of a single small parameter € breaks down in
particular for solutions for which { is very small,
as one might expect to happen on the basis of the
LCS criterion. We have not attempted to extend
the analysis of (6.4) to this case, since we have no
proper tip profiles with wavelengths in the planar
instability band to match these solutions to.

Since the quantities z, and {, can be obtained
directly from temperature measurements at the tip
[40], they are in fact much easier to compare with
experimental data or theoretical predictions such
as the LCS prediction {, = 0 than are predictions
involving the groove width €. In fig. 13 we plot
z,/l; as a function of v for k=0.1, the value
quoted for the succinonitrile-acetone mixture
studied by Esaka and Kurz [40]. (As in (10.13), z,
is here the dimensional tip position.) The dashed
line in this figure indicates the line { =0 corre-
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Fig. 13. Plot of the tip position z,//1 versus ». The dashed
line corresponds to the LCS line given by { =0 or z, /I3 =(1
—1/v)/(1—k) for k = 0.1. The full line gives the kx — 0 limit
of the LCS line, z, /Il =1—1/», which is equivalent to eq.
(A.1). The dotted lines are calculated from the p, — 0 limit of
(8.26) for k= 0.1 and various values of ¢. For small p,, these
curves accurately describe the position of the tips of the ST
branch of solutions given in (10.11). The solid circle at » = 4.2
and the solid square at » =8.7 represent two data points of
Esaka and Kurz [40], while the data points for »=1.3 and
v = 4.2 are obtained from ref. [25].

sponding to the LCS criterion, while the solid line
gives the k — 0 limit of the LCS result, obtained
from a different argument by Bower et al. [28b].
See appendix A. The dotted lines show the ST
matching prediction z,( p — 0) for various values
of € as given in (10.13) above. The data point at
v = 4.2 denotes a measurement by Esaka and Kurz
[40] for cells at a Péclet number p=AV/2D of
about 0.08, while those at smaller » are measure-
ments by Esaka [68] reported by Billia et al. [25].
These are the only measurements for cells that we
can find in the literature [69]. The square symbol
gives the tip velocity of the pattern that Esaka and
Kurz [40] refer to as ‘“dendritic cellular: some
perturbations but no sidebranches”. This plot il-
lustrates quite clearly that the ST cellular shapes
with narrow grooves are predicted to move up
much less than what is apparently observed in
experiments.

Although more experimental tests are obviously
called for, we believe that the discrepancy between
prediction and experiment uncovered in fig. 13 is
real. Indeed, the finger-like cells that move up
most and hence come closest to the data point(s),
all have wide grooves and large wavelength, ¢ —
1/2 and A — oco. For these very large wavelength

solutions, a simple Mullins—Sekerka [1] type anal-
ysis [21] confirms in particular the LCS prediction
that the p — 0 ST branch is unstable for ¢ — 1,2,
A — o0,

We now briefly discuss various numerical re-
sults for two-dimensional models and compare
them with the above predictions. As mentioned
above, the two-dimensional one-sided model does
appear to accurately describe the experiments of
de Cheveigné et al. [8], but the values of ¢ given
by the matching solutions are not consistent with
those found for the narrow grooved cells that
Misbah et al. [64] obtain numerically. Ramprasad
et al. [70] have also studied the band of periodic
cellular solution for parameter values relevant to
de Cheveigné’s experiments [8] at finite Péclet
number. According to their calculations, the left
edge of the band that corresponds to the mini-
mum wavelength roughly coincides with the edge
of the neutral stability band. Since the branch of
solution we study unequivocally starts at wave-
lengths about a factor of 3 smaller, these authors
apparently also investigate a different branch of
solutions.

Kessler and Levine [35] also show several cellu-
lar profiles for parameter values & = 0.16, p = 0.56
relevant for de Cheveigné’s experiments, but with
a relatively large value of the diffusivity in the
solid (8= D°/D=1/5). Most of their cells have
[71] a relative groove width ¢ of order 0.16-0.20.
For the parameters in their fig. 1, we estimate
z,/l3=0.61 and » > 8. Since the wavelength asso-
ciated with this data point yields a value for o as
small as [72] 2 X 107*, we believe that the branch
of solutions analyzed by Kessler and Levine [35]
also 1s not the one which we analyze perturba-
tively. Note also that since the data point is well
below the LCS line, this particular steady state
solution may well be unstable.

In their extensive numerical simulations for
k=04, Ungar and Brown [4,73] observe various
shapes with different values of » and z //;. The
cells in their [4] fig. 6a look rather realistic and
have narrow grooves. We estimate that for these
v=133 and z,//; = 0.33, whereas the matching
prediction (10.13a) gives z,//+=0.1 for e=02
and z /= 0.16 for grooves as wide as ¢=04
(the LCS prediction for this rather large value of &
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is z, /11 = 0.42). We therefore believe that they are
not members of the branch that we calculate. On
the other hand, the cells in fig. 5¢ for p = 0.4 have
wide grooves € = (0.35-0.4 and have »=5.7 and
z,/l+ = 0.49. This tip position is indeed quite con-
sistent with our matching estimate z,//; = 0.47
for € = 0.35, but the wide grooved cells they show
in this figure look rather unlike what one sees in
typical experiments. They therefore support our
conclusion that wide grooved cellular solutions do
exist even at large p, but that these solutions are
not the experimentally relevant ones. The more
realistically looking cells in their figs. 10a and 10b
(v=21, z/1:=043, and v=3.2, z /I =0.55)
are both significantly above the estimate (10.13a).
It would therefore be interesting to investigate in
more detail whether they are part of a different
branch, as seems very likely.

In summary, our expansion method describes a
branch of steady state solutions that is the exten-
sion to finite p (but k& small) of the ST branch
that has been analyzed [10,29,31] in detail for
p — 0. Since the grooves of these solutions with
small ¢ are much wider than observed experimen-
tally and in numerical work. and z, is much
smaller than the LCS value, we believe that this
branch is not the physically relevant one, at least
for Péclet numbers in the range (10.1). We pro-
pose the LCS criterion as a useful guide in study-
ing both the stability of cells and the related
“branch-selection” problem. Clearly, more experi-
ments are called for, especially since wetting or
surface preparation effects involving the cell thick-
ness may be of important [6,8].

Finally, we wish to discuss the possible connec-
tion with other work on bifurcations and multi-
plicity of steady state cellular patterns. Our con-
clusions appear to be in line with those of Brener
et al. [33]. These authors studied crystal growth in
a channel, which corresponds to the /; — oo limit
of DS. Not surprisingly, for small p, there is again
a branch of Saffman-Taylor-like solutions. From
the mapping to the ST problem, it follows that
these solutions exist only for dimensionless under-
coolings A > 1/2, and that the velocity 1s a de-
creasing function of A. This is illustrated in fig.
14a. The decrease of V' with increasing undercool-
ing 1s, of course, counter-intuitive, and both ana-
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Fig. 14. (a), (b) Summary of the bifurcation structure for
crystal growth in a channel as determined by Brener et al. [33].
(a) If the cellular profiles are modeled by the ST expression for
the shape, one finds a ST branch for A >1/2. The velocity of
these solutions diverges as 4 —1/2. (b) Brener et al. (33] argue
that if finite Péclet number corrections to the shape are taken
into account, there is a bifurcation point for A close to 1/2.
From this point, both the ST branch and another “dendritic”
branch bifurcate. Solutions on the ST branch are unstable, and
those on the dendritic branch stable. (¢), (d) Possible bifurca-
tion diagram for directional solidification for small p, based
on the analogous conjecture for crystal growth in a channel. (c)
The velocity V diverges as the relative groove width approaches
1/2. (d) In analogy with (b), it is possible that the ST branch
merges with another cellular or dendrite branch near e =1/2
and that solutions on the ST branch are unstable.

lytical [74] and numerical [75] work indicate that
the solutions in this branch are unstable. Note also
that on this ST branch, the velocity ¥ becomes
arbitrarily large as A —»1/2. For fixed channel
width, this means that finite Péclet number correc-
tions to the shape will become more and more
important as A — 1 /2. Motivated by this observa-
tion, Brener et al. [33] argue that in the absence of
surface tension anisotropy [76], the ST branch
ends at a bifurcation point near A =1 /2. See fig.
14b. Another “dendrite-like” branch bifurcates
from this point as well, and it is this second
branch of solutions that is believed to be stable
[76].

Although the results of the simulations of Hunt
[75] give some support for this scenario, we em-
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phasize that the analysis of Brener et al. [33] is
non-rigorous in that it is based on a physically
motivated but ad-hoc ansatz for the finite Péclet
number corrections to the zero surface tension
shape. At present, the arguments of Brener et al.
[33] should therefore be considered somewhat
speculative. The experimental situation is not
completely clear either. Molho et al. [77] observe
that there is a low-velocity small-Péclet number
regime where the crystal shapes fit ST solutions
very well and where the relative cell width 1 —
e(=4) is a decreasing function of ¥V, as in fig.
14a. On the other hand, these shapes may be
weakly unstable as expected theoretically [74,32].
Indeed, at higher growth rates a a crossover to a
different high velocity regime is observed.
Returning now to the DS problem, numerical
and analytical work has shown that multiple
branches of solutions exist at finite Péclet num-
bers. We are not aware of any systematic study of
the multiplicity of solutions in the limit p — 0.
However, the work of Brener et al. [33] illustrates
that the behavior in this limit may be quite subtle.
Indeed, in analogy to crystal growth in a chan-
nel, let us consider the DS problem for a fixed set
of experimental parameters. For fixed wavelength,
the ST branch of solutions gives a relation be-
tween the growth velocity V" and the relative groove
width € whose behavior is illustrated in fig. 14c.
As in fig. 14a, the velocity diverges as € = 1/2,
where o tends to zero. (For fixed A, eq. (9.1b)
shows that the vanishing of ¢ implies V — o0.)
However, based on the similarity of crystal growth
in a channel and the DS problem, we speculate
that if the velocity dependence of the shape would
be taken into account properly, one would like-
wise find that the ST branch merges with another
cellular branch at a bifurcation point near e =1/2
and that solutions on the ST branch are all unsta-
ble. Compare figs. 14b and 14d. The small e
solutions are almost certainly unstable since they
lie outside the planar stability band, and both the
analogy to crystal growth in a channel and our
(LCS) stability argument suggest that all members
of this branch are unstable (Karma and Pelce [31]
argue that the ST branch is stable for an inter-
mediate range of V). Note also that the pos-
tulated non-ST branch corresponds to much larger

velocities at small € than the ST branch. For fixed
wavelength A, (9.1b) shows that this conjectured
branch is likely to have small groove width € and
small o — precisely the characteristics that dis-
tinguish experimental cells form those on the ST
branch! We hope that future analysis of the ideas
of Brener et al. [33] will establish whether this
scenario is correct.

There is another way to argue in favor of the
existence of a bifurcation point analogous to the
one predicted by Brener et al. [33]. Ungar and
Brown [4,73] have also shown evidence for multi-
pole solutions as a result of bifurcations with
wavelength A/2 off solutions with wavelength A.
This happens essentially when, upon increasing
the velocity ¥V, the tip region of wavelength A
undergoes a Mullins—-Sekerka instability. For small
p, our LCS criterion (and its refinements [21])
show precisely that the tips of the ST-like solu-
tions will become Mullins—Sekerka unstable as
€ = 1/2. Thus, according to Ungar and Brown
[4,73], there is reason to expect the existence of a
bifurcation point for € close to 1 /2, which leads to
an upper branch of higher velocity solutions anal-
ogous to fig. 14b.

Figs. 9 and 10 and the discussion of the finite
amplitude cellular solutions in section 7 showed
that at small e our fingerlike patterns arise from
matching grooves to cellular profiles that them-
selves are probably physically irrelevant, since they
lie outside the planar instability band. Moreover,
as i1s also clear from the mapping to the ST
problem as p — 0, they exist for any value of »
above the threshold »,, rather than a finite dis-
tance above threshold [78]. We believe that other
possible branches of cells with grooves could be
thought of as arising from joining up grooves to
finite amplitude cells that lie within the planar
instability band, even though the idea of a single
matching region need not necessarily hold true.
Evidence for the latter type of finite amplitude
cells is given by the analytical work of Langer
[1,51], Sivashinsky [16] and Kurtze [79] as well as
by the numerical work of Ungar and Brown [4,73].
Note in this regard that in contrast to the solu-
tions our matching method finds, the cellular pro-
files discussed by Sivashinsky [17] and Kurtze {79]
for small k bifurcate off from the center of the
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planer instability band (indicated by the square in
fig. 3) and do ror have a regular k& expansion.
Presumably some members of this latter finite
amplitude branch of solutions develop deep
grooves as v is increased. Indeed, to our knowl-
edge most numerical calculations [64,73,35] find
deep cells by evolving continuously from small
amplitude cells near the center of the planar insta-
bility band (near the square in fig. 3). These may
correspond to the solutions indicated by the
dashed line in fig. 14d.

If one accepts our conclusion that at least some
of the numerical results are likely to correspond to
solutions that are not on the extension of the ST
branch to finite Péclet numbers, one may envision
two different scenarios for how these various
branches could be related:

(1) The ST branch 1s not connected to the experi-
mental results and to the numerical results of refs.
[4,35,65,73].

(i) The ST branch is connected to the other
branch(es) by some bifurcation(s).

Although there is at present insufficient infor-
mation to convincingly decide between these two
possibilities, the arguments of Brener et al. {33] for
crystal growth in a channel as well as those of
Ungar and Brown [4,73] make us favor the second
scenario.

11. Final remarks

The main results and implications of our work
for the existence and selection of cellular shapes
with deep grooves are summarized at the end of
section 1. We therefore confine ourselves here to
drawing attention to a possible application of the
LCS criterion to finite amplitude cells.

For matenals for which diffusion in the solid is
negligible the LCS criterion predicts that finite
amplitude cells for fixed » > 1 are more likely to
be found in experiments at Péclet number p of
O(1) than at small p. The reason is that cell
profiles for such materials have to obey the equal
area rule (7.5b). As a result, the dimensional value
of z of finite amplitude cells has to be of order
A/2, so that for these { =(vr—1)—(1—k)p.
Therefore, finite amplitude cells can only obey the

LCS criterion {, =0 for (v —1)/(1 — k)= p. For
larger values of v, we expect finite amplitude cells
to be unstable. Thus, we predict that the relative
velocity range in which stable finite amplitude
cells can be observed scales with the Péclet num-
ber p. Although we are not aware of any sys-
tematic study of this question, these predictions
are consistent with the fact that Trivedi (5] reports
finite amplitude cells only very close to threshold
for p = 0.02, whereas de Cheveigné et al. [6] have
seen finite amplitude cells with p = 0.25 at V/V,
= 1.4 (e, »—1=0.4). We hope that these ob-
servations will be extended so that the above
suggestion can be tested systematically.

Appendix A. Other approaches

Bower, Brody and Flemings [28b] (BBF) arrived
at an equation similar to the LCS criterion using
matching arguments similar in spirit to those found
in section 8. Ignoring curvature corrections, they
used the approximation (du/9z), = du;/dz=
—1/0; (see (2.20)) to estimate the gradient
(0u/0z), at the tip. (We use dimensional lengths
as in section 2.) While eq. (6.2) shows that
(du/dz),= ~1/l; is a very accurate approxima-
tion in the grooves, there may be notable correc-
tions near the tip. (Indeed, (du/9z), is given
exactly by the boundary condition (2.16). It is
only when { =0 that the two expressions are
equal.) Then, treating the pattern tips as planar, in
essence BBF approximated the field in front by
u=u, e~ 72 and matched the gradient at the
tip (du/3dz), calculated from this “far field” result
to the liquidus gradient calculated above. This
gives —~u,/In=—1/I; or

vupBt =1, (A1)

See eq. (17) in appendix A of ref. [28b]. Hunt and
coworkers [22,23,27] developed this approach fur-
ther and tried to estimate corrections due to inter-
face curvature. We note that (A.1) is equivalent to
the k=0 limit of the LCS criterion, though the
ideas leading to the two results are rather differ-
ent. While there are several points that might be
criticized in the above argument, and the connec-
tions to a stability analysis are obscured, eq. (A.1)
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does have the virtue that u®B" is always greater
than zero, in contrast to the LCS criterion for
v >1/k. (The value of z, predicted by (A.l) is
always less than that given by the LCS condition
${, =0, which we have argued [21] is an wupper
bound to the distance tips have to move to achieve
stability. See also appendix D.) Indeed (A.1) ap-
pears to be a useful first approximation even in
the dendritic regime, and most later attempts to
provide a more detailed treatment have proven
less successful [13]. (See, however, ref. [80] for a
modern treatment of stability in the dendritic reg-
ime.)

Based on arguments such as these, the idea that
constitutional supercooling should be small near
the tips of experimental patterns was stated ex-
plicitly in the early literature. See, e.g., ref. [2], p.
84, and ref. [81]. However, it was not emphasized
that it is primarily through changes in z, rather
than changes in cell spacing or curvature that this
condition can be approximately satisfied in the
cellular regime. Moreover, attempts to apply these
ideas outside their limited regime of validity (e.g.,
to materials with large k and/or large v > 1/k)
led to criticism of the basic concept (see, e.g., refs.
[81] and [82}), and these ideas are not discussed in
most current treatments. Very recently, however,
Billia and coworkers [13,25] have stressed the em-
pirical fact that relations like (A.1) hold ap-
proximately for many experimental patterns, and
independently of us, have pointed out that this
seems to disagree with the values of {, given by
the matching to Saffman—Taylor fingers [83].

Appendix B. Conservation equations allowing for
diffusion in the solid

If §=D*/D is non-zero, then the term B(# -
v u); should be added to the right-hand side of
the conservation equation (4.5) to take account of
the diffusion flux into the solid. The result can be

written
) - ,8(3?) ] cos 0

] sin 8,

p, Au,; cos 8= — [(

(B.1)

where we note that 2 = cos 62 — sin 81. Eq. (B.1)
allows us to determine corrections for non-zero 8
to the results (7.2) and (5.4), which hold for 8 = 0.
In particular, eq. (5.4) follows from (B.1) by
setting 8=0, and dividing by sin §. The term
(du/9x), in (B.1) can be exactly re-expressed as

Ju’ X 9tu x 9%u ou
(‘55)_4 dxa ™ ’fo dx(?“’s@)’

(B.2)

noting that du/9dx vanishes by symmetry at x = 0,
and using the diffusion equation (4.4). Substitut-
ing (B.2) into (B.1) with 8 =0 yields eq. (5.4).

The inner equation (6.4), which describes the
deep grooves and the matching region in the limit
B =0, follows from (5.4) on approximating the
integrals in (B.2) as

du’ d*u, duy,
(é;)’z—xl(d72 +ps*a?), (B3)

using the steepness and narrowness of the grooves,
as discussed in section 6. Note that the first term
on the right in (B.3) is most important in the
matching region, as shown in section 9, while deep
in the grooves the second term dominates, leading
to the linear term in the Scheil equation (6.6).
These considerations lead to a criterion predic-
ting when the results of the one-sided model, and
in particular, the Scheil equation describing deep
grooves, must be significantly modified for 0 < f8
<< 1. Deep in the grooves where the curvature is
very small the dominant effect of the added terms
in (B.1) is to replace the Scheil equation (6.6) by

¢dx,/dz=px,— B(r/p)(du/dx);. (B.4)

For small B, it is reasonable to ignore the last
term on the right hand side of (B.4) until it is of
the same order of magnitude as the first. Thus the
Scheil equation can be trusted until we get to
sufficiently large values of —z that

Cdx,/dz = B(v/p)|(dusdx); | (B.5)

or, equivalently from eq. (B.1), until (du/dx), =
B 1(Bu/0x);|. Using eq. (C.1) to evaluate
(du/3dx):, an accurate approximation until about
the breakdown distance {,, and the lowest order
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estimate (Jdu/dz), =du;/dz= —p /v yields the
criterion

§, cot’d, = Bk. (B.6)

For very small 8, the grooves can be nearly verti-
cal before the assumptions of the one-sided model
and the Scheil equation must break down. Note
that the initial effect of the added term is to
produce a more rapid closing of the grooves, as is
clear on physical grounds.

Appendix C. Effect of diffusion in the solid

In section 5, we gave a systematic and rather
general treatment of the shape of the narrow
grooves between fingers. The main limitation was
our use of the one-sided model, where 8= D*/D
= 0. Deep in the grooves where curvature correc-
tions become negligible our results reduce to those
of the classical Scheil equation, which predicts
infinitely deep grooves with power law shapes.

However, experiments as well as numerical
solutions of the DS equations with 8> 0 find
grooves with large but finite depth, often
terminated by a bubble-like closure. Actually, it is
easy to show that the predictions of the Scheil
equation must eventually break down sufficiently
deep in the grooves for any nonzero 8, no matter
how small. The main physical effect can be seen
from fig. 1b, which shows numerical solutions of
the DS equations with 8 small but non-zero [4].
We see that for steep grooves, very large gradients
build up in the solid near the interface. Indeed,
the existence of such large gradients is predicted
by he one-sided model. Using eq. (2.19) we have

ou\’ du du\ dz,
(75 ), = (55 ) +#(55 ) & (€1

The Scheil equation (6.6) predicts that dz,/dx =
tan 8 becomes arbitrarily large deep in the grooves
for sufficiently large { =(» — 1) — (1 — k)p,z, im-
plying arbitrarily large values of (84/0x);. On the
other hand, if 8> 0, then these large gradients
must eventually produce an appreciable diffusion
flux proportional to 8(du/9x)} in the solid, thus

leading to a breakdown of the one-sided model,
and of the Scheil shapes derived using it.

Based on this idea, a quantitative estimate of
the breakdown distance §, 1s carried out in ap-
pendix B, where the effects of non-zero 8 are
taken into account. We find that the predictions
of the Scheil equation must be appreciably mod-
ified by the effects of diffusion in the solid when

$, cot’d, = Bk. (C2)

For sufficiently small 8, it is only very far from
the tip region that diffusion in the solid must
induce a breakdown of the groove shapes predic-
ted by the one-sided model.

This criterion is to be contrasted with that
given by Kessler and Levine [34]. They argue that
there exists a minimum groove width x,;, & &, or
equivalently, a lower bound to the cell depth of
order k' ¥, independen: of the value of 8. How-
ever, their estimate is based on the assumption
that the impurity distribution in the solid near the
groove closing has a simple quadratic dependence
on x, rather than the very inhomogeneous distri-
butions seen in fig. 1b.

In principle, theirs is the correct limiting distri-
bution an infinite distance from the tip, where the
initial inhomogeneous impurity distribution in the
solid, estimated as in eq. (B.1), has had time to
re-equilibrate by lateral diffusion. However, since
the typical impurity in the solid must diffuse a
distance of order the cell width during this equi-
libration process, a (dimensional) time of order
Tq @ N/D* is required. For impurities initially
captured near the tip, this occurs at a distance Az
from the tip of order Az = V7, =2pA/B. Thus B
is implicitly involved in the Kessler and Levine
[34] treatment, since only sufficiently far from the
tip (a distance proportional to 87!} can the equi-
libration assumption hold true.

In practice, for most solidification cells with
small B, equilibration in the solid is almost never
achieved, particularly if the (large) temperature
dependence of D® is also taken into account. Thus
the treatment we have given based on the initial
breakdown of the inhomogeneous solid impurity
distribution as given by the one-sided model seems
more physically relevant for cells with small S.
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Our treatment of the groove corrections caused
by diffusion in the solid illustrates several points
we believe should be considered in assessing the
utility of the one-sided model. In contrast to the
impression the casual reader might get from ref.
[34], we argue that the one-sided limit offers a
simple and generally useful starting point to de-
scribe many features of patterns seen in systems
with 8 small but non-zero.

Certainly the one-sided model can never (ex-
cept for the unphysical case k& =0) reproduce a
final equilibrated solid distribution with u®*=0
independent of x, which in principle is the correct
boundary condition to impose in the solid far
from the interface as z — — oo. In practice, how-
ever, for B small there is often an “intermediate
asymptotic” regime [84] extending far behind the
tip region where almost no solid state diffusion
has taken place. This is the regime found in most
experiments. Thus the lack of equilibration in the
solid can often be taken as a strength, rather than
a weakness of the one-sided model.

Further, the accuracy of the patterns predicted
using the one-sided model depends on the shape
of the patterns. As we have seen in eq. (C.2), if the
grooves become too steep, corrections to the one-
sided model must become important. A related
but more obvious limitation occurs in the descrip-
tion of the “melting” portion of reentrant pat-
terns, where the interface position z, is not a
single-valued function of x. Above such “melting”
interfaces, a thin boundary layer will form, whose
thickness is proportional to 8, such that 8(n - vu);
does not vanish as 88— 0. The description of
these boundary layers and of the reentrant portion
of the interface cannot be consistently carried out
in the one-sided limit where B(n-vu)} is as-
sumed to vamish [34].

However, most experimental finite amplitude
or fingerlike cell patterns are either single-valued,
where such boundary layers do not form, or have
only a small reentrant portion, as in the upper
part of a bubble closure. For these patterns the
one-sided model offers a physically relevant and
computationally very useful starting point, par-
ticularly for analytic work. In ref. [26], we gave a
simple approximate treatment of the bubble
closures found for two-dimensional patterns, based

on conservation requirements and the idea that
the boundary layer region above the reentrant part
of the bubble, where the one-sided impurity distri-
bution fails, is very small. We will not repeat the
analysis here, since it is somewhat technical, and
still not applicable to real three-dimensional pat-
terns, where the closures undergo an instability
similar to that seen for a dripping faucet [85].
However, we mention that the location of the
closure in two dimensions seems not to be related
to the breakdown distance calculated in eq. (C.2).
Instead it depends mainly on & and the matching
parameter ¢, and is essentially independent of §.

Appendix D. Constitutional supercooling near an
arbitrary point on the interface

In general, let r,=(x,(z), z) denote an arbi-
trary point on the interface of a fingerlike pattern,
and r,=r.+alf a point in the adjacent fluid
layer for a small normal displacement of magni-
tude a/; with « << 1. (We use dimensional lengths
as 1n section 2.) Neglecting curvature corrections,
a measure of the net supercooling at r, is u, (r,) —
u(r,), where u (r,) = u;(z,) is given by (2.20). Of
course, this difference vanishes as « — 0, and a
more relevant measure is the differential supercool-
ing
SutS=lu, (r,) - u(r)] /. (D.1)

If 8uL©S is positive, then the fluid at an infinitesi-
mal distance normal to the interface is constitu-
tionally supercooled. Expanding both u, (r,) and
u(r,) in a Taylor series about a =0 and using
(2.15)-(2.20) yields

Sut“® = (vAu, — 1) cos § = ¢(z) cos 8, (D.2)

where {(z) 1s (3.4) evaluated at the general posi-
tion z. Although { becomes large deep in the
grooves, we can use the Scheil results (6.6) and
(6.7) to give for large {

SulS =sin 0 x, /1. (D.3)

This indeed vanishes for large { from (6.7). Thus
we can show explicitly that the differential super-
cooling is very small (but positive) in the grooves,
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because of the cos 8 factor in (D.2). This is true
for any pattern that has deep grooves, and does
not distinguish between different members of a
family of solutions. However, if we require that
8ul is small near the tip, where the estimate
(D.3) is inaccurate, we arrive at the LCS criterion
from (D.2). In general §u:“® is very small but
positive in the grooves, and we expect it will
remain small but positive near the tips of experi-
mentally selected patterns. This is consistent with
the results of ref. [21]), which showed that the
corrections to (3.4) all tend to increase (slightly in
the cellular regime) the value of {,.

Appendix E. Derivation of eqs. (7.13)-(7.16)

Since (7.10)-(7.12) satisfy the diffusion equa-
tion (4.4), the remaining equations to be solved by
the coefficients B, are the interface condition (4.6)
and the flux conservation boundary condition
(4.5). Writing the latter condition in the form (B.1)
with #=0 and noting that tan § =dz,/dx, we
obtain upon substitution of (7.10) the equations

k ervs o — kg~ ¥ BH(M +k)

nz=1 Po

Xe (PamPo)z—m) COS(qnx)

1 dz
= — — “(PamPoNE—2) i !
p() Z Bn € ’ qn Sln(qnx) dx .

nx=1

(E.1)

Upon multiplication of this result by the factor
exp[—p;(z, — z,,)] cos(g,x) and integration over
x, we obtain a set of equations of the form (7.13)
with N, given by (7.14) and M, given by

M, Zfo dx cos(g,x) cos(qg,x)

Xe'”’/“’n—l’oxzﬁzm)(ﬁ"_:@ + k)
Po

+f dx cos(g,x) g, sin(g,x)
0

d

d_(eﬂpﬁpfpo)(z,*zm))
X

X (E.2)

po( P, +p,— po)

After a partial integration, the second term on the
right-hand side becomes

a
—f dx[q,f cos(g,x) cos(q,x)
A .

4,9, sin(q,x) sin(q,,-X)]
e (PatpimPuNZ T 2m)

2o P, TP~ Do)

(E.3)

Upon combining this with the first term in (E.2)

using the fact that according to (7.12) ¢2=p,(p,

— Do), we then obtain eq. (7.15) for the M,
Note that (7.13) for j = 0 takes the form

Y M,,B,=N,. (E.4)

n=0

Since

My, = k [ dx cos(g,x) expl =p, (2, = )]

and N, = ka, this becomes in view of (7.10)

kf dx[u(x, z,) -1} =0, (E.5)
0

which is the conservation condition (5.3) evaluated
in the solid from which the equal area rule (7.5)
was derived.
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