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a b s t r a c t

We consider stagnation point flow away from a wall for creeping flow of dilute polymer solutions. For a
simplified flow geometry, we explicitly show that a narrow region of strong polymer extension (a birefrin-
gent strand) forms downstream of the stagnation point in the UCM model and extensions, like the FENE-P
model. These strands are associated with the existence of an essential singularity in the stresses, which is
eywords:
irefringent strand
ingular behaviour
tagnation point
ENE model

induced by the fact that the stagnation point makes the convective term in the constitutive equation into
a singular point. We argue that the mechanism is quite general, so that all flows that have a separatrix
going away from the stagnation point exhibit some singular behaviour. These findings are the counterpart
for wall stagnation points of the recently discovered singular behaviour in purely elongational flows: the
underlying mechanism is the same while the different nature of the singular stress behaviour reflects the
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. Introduction

Extensional flows of polymer solutions and melts occur in many
ndustrial polymer processing operations, and hence such flows
ave been studied for decades [1,2]. Recently however, interest

n extensional flows was renewed by observations of steady and
nstable continuous flow in microfluidic devices [3–5], and it was
ealized only recently that extensional flows are prone to the forma-
ion of singularities and non-analytic structures in the stress fields
6–8]. Depending on the Deborah number and the model used,
hese stress singularities may take various forms. For purely exten-
ional flow in continuum models that describe infinitely extensible
olymer chains (such as the upper convected Maxwell model
UCM) and the Oldroyd-B model [1,2,9]) the stresses can have power
aw spatial behaviour with a finite limit at the centre line, or they
ven have power law divergencies. For models that are based on
nitely extensible chains, divergencies are cut off at some scale, but
ingular behaviour of the stress gradients may persist [6–8]. Such
ingular behaviour may have important implications for numerical

imulations of extensional flows, since it leads to structures with
very small length scale. Indeed it is known that for many such
ows, numerical schemes break down at only moderate flow rates
Deborah numbers of order unity).

∗ Corresponding author. Tel.: +31 71 527 5517; fax: +31 71 527 5511.
E-mail address: becherer@lorentz.leidenuniv.nl (P. Becherer).
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pansion close to the stagnation point.
© 2008 Elsevier B.V. All rights reserved.

The question quite naturally comes up whether singular
ehaviour near special points is the rule rather than the exception.
e argue in this Communication that the latter is the case and

emonstrate this for a simplified case where all calculations can be
one analytically, so that the emergence of the singular behaviour
an be followed explicitly.

The reason to expect singular behaviour near special points
here the velocity vanishes – even though the geometry is not

ingular1 – is actually very simple. For steady flow, the only deriva-
ive terms of the stress T in UCM-type constitutive equations come
rom the convective term (v · ∇)T. The points where v vanishes –
he stagnation point in elongational flow or in the wall stagnation
oint flow considered here – thus translate into a singular point [10]
f the partial differential equation obtained from the constitutive
quation for the stress. Close to the singular point, the lowest order
erms in the expansion of v are often fixed by simple symmetry con-
iderations and boundary conditions, if applicable. So the nature of
he dominant singularity at the singular point is generally fixed
ndependent of the precise details of the model. Further away from

he singularity, the behaviour will typically depend on the details of
he flow profile. All these features are well illustrated by the analysis
elow. As stated, we focus on a simple case where the calculations
an all be done analytically, but the scenario holds generally for

1 Of course, at sharp corners where the flow field itself is singular, this singular
ehaviour carries over to the stresses.

http://www.sciencedirect.com/science/journal/03770257
http://www.elsevier.com/locate/jnnfm
mailto:becherer@lorentz.leidenuniv.nl
dx.doi.org/10.1016/j.jnnfm.2008.09.001
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Fig. 1. Stagnation flow (a) in a wake, (b) approximated by a flow near a flat wall. In

omplex more realistic flows and we suspect this mechanism of
dvection to be at the origin of the formation of birefringent strands.

We focus on wall stagnation point flows where the flow is away
rom the wall. Examples of this are flows in the wake of a falling
phere or of a fixed cylinder, as shown schematically in Fig. 1(a).
n particular, the flow past a fixed cylinder or sphere in a channel
as become a benchmark problem for numerical modelling of vis-
oelastic constitutive equations [11–13]. It is known that in such
ows a narrow region of high polymer extension may form, a so-
alled b irefringent strand [14,15]. This region starts at a small but
nite distance downstream from the stagnation point, as indicated
chematically in Fig. 1(b), where a flow near a flat wall is depicted.

In this work, we consider a strictly two-dimensional version of
his flow, with a simplified, fixed velocity field obeying the basic
ymmetry of a stagnation point at a wall (cf. [11]). We analyse this
ase in detail for the UCM model [1,2,9] but also discuss in the end
he qualitative changes that occur for a FENE-P model.

Unlike the case of steady purely extensional flow, which was
nalysed previously [6–8], the extension of the polymers does not
iverge for any extension rate. We find that a thin birefringent
trand forms, with a singularity at its centre. As argued above,
otwithstanding the simplifications we make in obtaining this
esult, we believe that the analysis makes it clear how singular
ehaviour emerges in general.

Unfortunately, our results cannot immediately be compared
uantitatively with experiments or numerical computations on
ealistic cases like flow past a cylinder [12,13]. First, one should
eep in mind that in such situations, there may be two sources of
near) singular behaviour: besides the one we analysed here, dom-
nated by the symmetry and boundary conditions of the velocity
eld near the wall stagnation point, in viscoelastic flow past a cylin-
er large stress fields are already built up at the sides of the cylinder,
here the flow is mostly along the cylinder. These shear stresses

re advected toward the rear stagnation point. This effect is clearly
ot present in the simplified geometry that we consider. Second,
ur analysis is based on taking a fixed velocity field obeying the
asic symmetry, and we show how this leads to an essential sin-
ularity in the stress. In reality, of course, the velocity and stresses
re coupled indirectly through the momentum balance equation.
hrough this coupling, the velocity field will also be affected in the
egion of large stress gradients near the stress singularity. Since the
ymmetry and expansion of the velocity near the stagnation point
annot change in lowest order, we expect that there is an interme-
iate flow regime where the basic structure of the singularity is
ot changed dramatically. This assumption is further supported by

ecent simulations of a two-dimensional cross-slot flow by Poole et
l. [5]. There, the velocity profiles remained smooth even when the
ow changed its symmetry (the new type of purely elastic instabil-

ty discovered by Arratia et al. [4]), while stresses exhibit the typical
ingular structure similar to the one discussed in [6,8]. At the same

v

N
e

e formation of a birefringent strand is qualitatively indicated by the shaded area.

ime, numerical studies suggest that at sufficiently large flow rates,
his nonlinear coupling can become so strong that there may be no
teady state flow solution past a cylinder for Deborah numbers of
rder unity [12,16]. The coupling and this effect are, unfortunately,
eyond the present approximation.

The layout of this paper is as follows. In Section 2 we introduce
he flow geometry and the models, and we briefly recapture similar-
ty solutions for UCM found by other authors [17,18]. We calculate
nalogous solutions for a simplified version of this flow, where we
x the velocity field, for UCM and FENE-P. In Section 3 we consider
ore realistic boundary conditions, and we solve the constitutive

quations analytically. In Section 4 we consider the resulting stress
eld (extension field) in more detail, showing that we find a narrow
egion of high polymer extension, with a non-analytic stress pro-
le at the centre of the strand. We then discuss these results in the

ight of more realistic flow profiles, and we conclude by discussing
he relevance of these results for computational and experimental
ork.

. Simplified stagnation flow of a UCM fluid

We consider incompressible planar stagnation flow of a UCM
uid without inertia (creeping flow). The UCM constitutive equa-
ion for steady flow is [1]

+ �[(v · ∇)T − (∇v)T · T − T · (∇v)] = �(∇v + (∇v)T), (1)

here � is the relaxation time of the fluid and � is the Newtonian
iscosity. The momentum balance for creeping flow is

· T − ∇p = 0, (2)

here p is the pressure. Incompressibility is given by

· v = 0. (3)

he planar stagnation flow geometry we consider is depicted in
ig. 2. We take the vertical direction as bounded, with length �.
ecause of the solid wall, the boundary condition at the wall (y = 0)

s v = 0. At y = �, we impose vy = V , with V > 0. For the velocity
eld, a similarity solution then exists, which is of the form [17,18]

x = −x ′(y) and vy =  (y), (4)

here the boundary conditions imply  (0) = 0 and  ′(0) = 0.
nspired by this solution, we take a fixed velocity field that sat-
sfies the boundary conditions and that would correspond to the
owest-order approximation near the wall:
x = −2
(
V

�2

)
xy and vy =

(
V

�2

)
y2. (5)

ote that these terms are the lowest order analytic terms in an
xpansion in x and y away from a symmetric stagnation point at the
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Fig. 2. Planar stagnation flow.

all. This is why our analysis illustrates the emergence of singular
ehaviour in more general cases as well.

Let us now insert this velocity field into the constitutive equa-
ion. The resulting stress field will not in general satisfy momentum
alance, but it does yield a valid solution for Newtonian creeping
ow. This is sometimes referred to as “Newtonian kinematics”; in
he Oldroyd-B extension of the UCM model, this would be a reason-
ble approximation in the dilute limit, ˇ� 1, in which the polymer
tresses do not influence the flow [18,16].

We can rescale the quantities appearing in the equations: length
s scaled with �, velocity with V, and stress with �V/�. The velocity
eld becomes

x = −2xy and vy = y2, (6)

ith 0 ≤ y ≤ 1, and for the constitutive equation we obtain a dimen-
ionless form

+ De[(v · ∇)T − (∇v)T · T − T · (∇v)] = ∇v + (∇v)T. (7)

ere we introduced the Deborah number2

e = �V

�
. (8)

e can then insert the rescaled velocity into the constitutive
quation and solve for the stresses. We obtain equations for the
omponents of the stress tensor, and we observe that the equation
or the yy component decouples from the other equations, because
vy/∂x is identically zero for this velocity field. The equation for the
y component becomes

yy + De[−2xy
∂Tyy
∂x

+ y2 ∂Tyy
∂y

− 4yTyy] = 4y. (9)

et us first analyse the solution of this equation under the often-
ade assumption that Tyy is constant in x [17] and then analyse why

his solution misses an important part of the physics. One might
aively think that this solution can be seen as the first term in a
eries expansion in powers of x [18], but as we shall see this assump-
ion itself is incorrect: singular terms are typically generated by the
tagnation point flow. Defining

yy(x, y) ≡ Y(y), (10)

e solve

(y) + De[y2Y ′(y) − 4yY(y)] = 4y. (11)

his equation allows an exact solution, and we find

gen(y) = 4y+ 12De y2 + 24De2 y3 + 24De3 y4 + Cy4 exp
[

1
De y

]
,

(12)

here the last term corresponds to the homogeneous solution of
he differential equation, and C is a constant of integration. This

2 One should keep in mind that our Deborah number cannot directly be compared
ith the one used in studies of flow past a cylinder.

o
s
p
i
p
x
p
t

ig. 3. Planar stagnation flow on the finite rectangular domain analysed in this
aper.

erm clearly leads to unphysical results, as it implies |Y(y)| → ∞
s y→ 0+. Hence, if one thinks of Y(y) as the first term in a reg-
lar series expansion in x, we should discard it and keep only the
articular solution

0(y) = 4y+ 12 De y2 + 24 De2 y3 + 24 De3 y4. (13)

few remarks about this solution are in order: (i) It does not in
eneral satisfy momentum balance, but it is qualitatively similar
o the more accurate similarity solution of Öztekin et al. [18]. (ii)
y forcing the solution to be independent of x, we find a solution
hat can only be seen as an approximation that is valid in a small
ange around x = 0. (iii) We assume the same functional form of the
elocity field for all De. (iv) The solution does not diverge at finite y
or any De. This is in contrast with purely extensional flow, where
tresses diverge for De ≥ 1/2.

Let us now discuss the shortcoming of the above line of analy-
is. The solution is an admissible solution if we work in the infinite
omain x→ ±∞. However, if we work in a finite domain, with
oundary conditions at some finite x = ±L, say, then the solution is
nly relevant if the stresses on this boundary are precisely consis-
ent with (13). In general, the boundary stresses are incompatible
ith this expression and the flow drawn in Fig. 2 advects all devi-

tions from this expression towards the stagnation point. While in
he above analysis it appears as if the analysis close to the stagna-
ion point dictates what the proper boundary condition far to the
eft and right should be, in reality we have to analyse what happens

ith the stresses as they are advected from the left and right to the
tagnation point. That dictates the behaviour there, not the other
ay around! The analysis below does show that singular behaviour

s picked up through this advection from the boundaries, as one
ight expect.

. Inflow boundary conditions and an explicit solution

To back up the above observations, we now allow explicit x-
ependence of the stress field without including higher orders in
in the velocity field. We can then match more realistic inflow

oundary conditions by including homogeneous parts of the solu-
ion, and we shall see that this causes qualitative changes in the
tress field.

To do so, we modify the geometry by explicitly taking a finite
omain in the x direction, with −1 ≤ x ≤ 1, see Fig. 3. We observe
hat the equation is purely advective. This implies that is it a first-
rder differential equation and that there is no “interaction” across
treamlines. We can therefore split the domain in two separate
arts, one for x < 0 and one for x > 0, with the line x = 0 act-
ng as the separatrix between the two domains. As in the case of
ure extensional flow, this allows for non-analyticity on the line
= 0. [6–8]. On each of the two subdomains, we can impose inde-
endent inflow boundary conditions. We will restrict ourselves
o the domain 0 ≤ x ≤ 1, and we will assume that the negative
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ig. 4. Polymer extension in a simplified wall stagnation flow for ultradilute UCM fl
ontour plot of the extension, showing the shape of the birefringent strand, (c) cros

omain is the mirror image of this domain. On the lateral bound-
ry x = +1 we impose the boundary condition Tyy(x = 1, y) = Yb(y)
ith Yb(0) = 0.

We thus consider again the differential Eq. (9):

(x, y) + De

[
−2xy

∂Y(x, y)
∂x

+ y2 ∂Y(x, y)
∂y

− 4yY(x, y)

]
= 4y. (14)

n the language of local analysis of differential equations, this partial
ifferential equation has an irregular singular point atx = y = 0 [10].

It is easy to check that the partial differential terms in the equa-
ion together give identically zero if Y is a function of xy2 only. In
ther words, the form

(x, y) ≡ f (xy2), (15)

s a zero mode of the differential operator since

2xy
∂f (xy2)
∂x

+ y2 ∂f (xy
2)

∂y
≡ 0 (16)

or any function f.
Now, due to the linearity of the equation, the solution of the

quation is the sum of the particular solution Y0 given in (13) plus
n arbitrary solution Yhom(x, y) of the homogeneous equation, that
s

(x, y) = Y0(y) + Yhom(x, y). (17)

oreover, if we assume Yhom to be of the form

hom(x, y) = g(y)h(xy2), (18)

hen inserting this into the homogeneous part of the equation (with
ight hand side equal to zero) effectively gives an equation for g(y)
hat is identical to the homogeneous part of Eq. (11). For g we thus

ecover the homogeneous solution of (11), that is, the last term of
12). Thus, we have

(x, y) = Y0(y) + y4 exp
[

1
De y

]
h(xy2) (19)

(
w
—
a

r De = 1.0: (a) three-dimensional plot of the extension as a function of x and y, (b)
ion of the extension profile for y = 0.25,0.5,0.75,1.0.

e can now impose the boundary condition Y(x = 1, y) = Yb(y) at
= 1: requiring that Y(x = 1, y) given by (19) equals Yb(y), imme-
iately gives

(y2) = Yb(y) − Y0(y)
y4

exp
[ −1

De y

]
. (20)

ince h(xy2) is a function of the product xy2 only, we now know h
or all x and y. This finally gives the general full solution

(x, y) = Y0(y) +
Yb

(√
xy2

)
− Y0

(√
xy2

)
x2

exp

[
1 − 1/

√
x

De y

]
.

(21)

ote that the structure is precisely as we envisioned: the deviations
f the x-independent solution Y0(y) from the stress boundary con-
ition Yb(y) are convected towards the stagnation point, and the
tresses there are largely dominated by the singularity.

For the flow that we consider, we use the procedure above to
atch the stress field to the inflow boundary condition. For sim-

licity we take this to be

b(y) ≡ 0, (22)

ut since the behaviour for small x is dominated by the singular
erm, other choices lead to similar conclusions. For De = 1 we then
nd the stress field in Fig. 4. Since we consider the ultradilute limit,
ne may also think of this as the polymer extension in the y y
irection (see below).
We clearly see that a narrow region of high extensional stress
polymer extension) forms in the centre of the domain. The solution
e find does not diverge for any De, nor does any gradient diverge
in fact, the x-derivatives are zero to any order on the centre line,

nd we have an essential singularity there.
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Fig. 5. Polymer extension in a simplified wall stagnation flow fo

. Distance from the wall

The stress profile Y0(y), Eq. (13), for a UCM fluid has no intrin-
ic length scale, as the UCM model has no characteristic stress or
xtension. Therefore, we cannot obtain a meaningful “distance from
he wall” in that model. Models with finite extensibility, such as the
ell-known FENE-P model, are required to do this. In previous work
e argued [8] that for extensional flow a fair approximation to the

ENE-P model can be obtained by restricting to the yy extensional
omponent of the stress tensor, and making the simple approxima-
ion that the polymer stretching follows the UCM rheology up to a
ertain maximum extensional stress after which the stress does not
ncrease any further (this is sometimes referred to as a linear-locked
pproximation [19,20]). This maximal stress should correspond to
he maximal extension L in the FENE-P model, for which the trace of
he conformation tensor A is L2. The UCM stress tensor is related to
he FENE-P conformation tensor as A = 1 + De T (this can be seen
y taking L → ∞ in the FENE-P constitutive equations, and com-
aring this to the UCM constitutive equations). Restricting to the
y component, we find 1 + De Tmax

yy = L2. In Fig. 5 we show stress
rofiles for the simplified velocity field, for the UCM model and a
ENE-P-like model that is restricted to the yy component.

In this approximation and for a fixed velocity field, we can thus
stimate the distance of the strand from the wall, as well as the
idth of the strand, by considering the locus of points where the
CM extension 1 + De Tyy reaches L2. For our fixed velocity field,

t is straightforward to find scaling relations for the distance and
he width as functions of De and L2. From Eq. (13) we see that the
istance y0 from the wall is given in our approximation by

+ De y0 + 12 De2 y2
0 + 24 De3 y3

0 + 24 De4 y4
0 = L2. (23)

his means that y0 scales as 1/De for fixed L2 � 1 and all De. For
xed De we find that y0 should scale as (L2)
1/4 = √

L for L2 → ∞.
e conclude that

0 =
√
L

De
1

241/4
f (L2) with f (L2)< 1 and f (L2 → ∞)=1. (24)

D

I
s

ig. 6. The left panel shows the cross-section of the “UCM extension” profile at y = 1.0
anel shows a log–log plot of the width of the peak, both as a FWHM measure and for a F
dilute FENE-P fluid, for De = 5.0, and L2 = 10.0,100.0,1000.0.

his asymptotic result cannot be easily extended to other, more
ealistic velocity fields. Note that in the limit of large L2, the distance
0 will become larger than 1, and it falls outside the domain that
e assumed, 0 ≤ y ≤ 1. The general conclusion that the distance

ncreases with L2 and decreases with De is of course physically rea-
onable: for larger L2 at fixed De it takes a longer distance to fully
tretch the polymers, while for larger De at given L2, the stretching
ccurs more rapidly and one may expect that the distance required
or full stretching decreases, at least on the centre line of the flow.

. Width of the strand

The width of the strand is a more subtle issue. Since the stress
s bounded, and therefore also the UCM extension, we can define a

eaningful length scale even in the UCM model, as can be seen from
he left panel of Fig. 6. For example, we can take the full width at half
aximum (FWHM) of the peak. In that case, the width decreases as
function of De. We can also look at our FENE-P-like approxima-

ion and use the contour line where the profile reaches a given L2.
numerical analysis shows that the FWHM decreases as 1/De2,
hile the approximate FENE-P width increases monotonically and

aturates, see the right panel of Fig. 6.
These asymptotic results can be explained from the exact

olution, Eq. (21). The FWHM is mostly determined by the
ehaviour close to the centre of the strand, where the factor
xp[−1/(De

√
x)]dominates: as x→ 0 it vanishes more rapidly than

he factors in front of it diverge. The typical length scale x0 for this
xponential factor is given by

√
x0De ∼ 1, or x0 ∝ 1/De2, and thus,

he FWHM also scales as 1/De2. For the FENE-P-like width we make
he observation that the UCM extension as a function of x actually
onverges pointwise as De → ∞:
lim
e→∞

(1 + DeY(x, y)) = 1
x2

(pointwise in x). (25)

t is then evident that for given L2, the width will approach a con-
tant value of 2/L2 for De → ∞.

for a range of Deborah numbers, De = 0.30,0.55,1.00,1.81,3.31,6.03. The right
ENE-P-like definition (see text).
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. Discussion

One may ask the question to what extent the analysis above
s relevant for “real” flow profiles. We already argued above
hat although the details may (and will) change, the qualitative
ehaviour (localization of the extensional stress along the sepa-
atrix and non-analyticity) will persist.

The procedure that was performed to obtain the stress profile
an be repeated for the “exact” velocity field in Refs. [17,18], using
umerical integration where necessary. That would still yield a
olution that does not obey the momentum balance Eq. (2), but
ore importantly, it would not qualitatively change the singularity

hat we find. Mathematically, this happens as follows. In the region
ear the stagnation point x = y = 0, the velocity field is expected
o have, in lowest order, always terms like in (5). Hence, in this
egime, the equation always has “zero mode” solutions f (xy2) of the
onvective part of the constitutive equation. Only in special cases
ill this term not be excited. Furthermore, close to the wall, the
ominant behaviour of the y-independent homogeneous solution
ust go as exp[−1/(De y)] and this then has to be compensated

y a similar essential singularity in
√
xy. Thus, close to the wall this

ssentially singular behaviour is robust. Further away from the wall,
owever, the behaviour will change if the velocity field crosses over
o a different y-dependence.

Similar considerations apply to other modifications that are
sed to give a more realistic description within the UCM framework.
s long as the velocity field is reasonably well-behaved, the exten-
ion profile on the separatrix is determined only by the velocity on
he separatrix.

In fact, we see that the only ingredients that we need in order to
btain our results, are the general form of the velocity field Eq. (4),
he “advective” part of the constitutive equation, as in Eq. (16), and
he absence of a stress diffusion term in the constitutive equation.
his strongly suggests that both the localization and the nonan-
lytic behaviour at x = 0 depend on these ingredients and not so
uch on the particular form of the constitutive equations. One
ould then expect that every viscoelastic flow with a stagnation
oint gives rise to singular behaviour downstream of the stagnation
oint.

We already mentioned that the stress profile we obtained does
ot satisfy the Navier–Stokes equation (momentum balance). It
ould be interesting to see how we might modify the velocity
rofile to have the system obey the Navier–Stokes equation. It is
ifficult to do this analytically, but given the singular structure of
he stress field, it is to be expected that a correction to the veloc-
ty field will show a similar singularity for intermediate flow rates.
s we mentioned in the introduction, for sufficiently large flow
ates, this coupling may cause a breakdown of the steady state flow
olution [12,13].

. Conclusions

Not only purely extensional flow but also (reverse) wall stag-
ation flow shows strong localization of extensional stresses and
on-analytic behaviour. At moderate and high Deborah numers, a
irefringent strand is formed, with an essential singularity at its
entre. The polymer extension becomes appreciable at a finite dis-
ance from the wall, and the width of the strand either decreases or
ecomes constant with increasing Deborah number, depending on

he definition. Asymptotic scaling relations can be found for both
he distance from the wall and the strand width. Although concrete
umerical and analytical results have been calculated only for a
xed velocity field, the qualitative behaviour that we find should
arry over to more realistic flows, at least if the usual constitutive

a
a
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quations are to be taken seriously. If an artificial stress diffusion
erm is added to the constitutive equation, as is sometimes done
n numerical simulations to enhance stability, the mathematical
ingularity will disappear. Nevertheless, the behaviour we have
nalysed here should still dominate most of the profiles if the dif-
usion constant takes on any value that is physically reasonable.

We suggest that the localization and the singular behaviour are
aused by the purely advective character (without diffusion) of the
onstitutive equation, combined with the extensional character of
he flow. We further suggest that the occurrence of this behaviour
oes not depend on the exact formulation of the constitutive equa-
ions, as long as these include stress advection and stress relaxation.
he non-analyticity at the separatrix is a result of the absence of dif-
usion, which essentially decouples the domains on either side of
he separatrix.

As we noted in the introduction, internal stagnation point flows
ere recently shown to exhibit singular behaviour of the type |y|ˇ,
here y is the upstream distance from the singular line. Such sin-

ularities may easily cause numerical problems since derivatives
f sufficiently high order diverge. In the case of wall stagnation
ow, the situation may at first sight not be as bad for numerical
pproaches, since all derivatives remain finite. Nevertheless, for
arge Deborah numbers there is a rapid crossover region, the width
f which decreases as 1/De2 for large De. This region will have to
e resolved numerically.3
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