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Liquid crystals are complex fluids that allow exquisite control of
light propagation thanks to their orientational order and optical
anisotropy. Inspired by recent advances in liquid-crystal photo-
patterning technology, we propose a soft-matter platform for
assembling topological photonic materials that holds promise for
protected unidirectional waveguides, sensors, and lasers. Crucial
to our approach is to use spatial variations in the orienta-
tion of the nematic liquid-crystal molecules to emulate the time
modulations needed in a so-called Floquet topological insula-
tor. The varying orientation of the nematic director introduces a
geometric phase that rotates the local optical axes. In conjunc-
tion with suitably designed structural properties, this geometric
phase leads to the creation of topologically protected states of
light. We propose and analyze in detail soft photonic realiza-
tions of two iconic topological systems: a Su–Schrieffer–Heeger
chain and a Chern insulator. The use of soft building blocks
potentially allows for reconfigurable systems that exploit the
interplay between topological states of light and the underlying
responsive medium.
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L iquid crystals are soft-matter phases characterized by their
orientational order (1). As a result of this order, liquid crys-

tals can control the propagation of light in a reconfigurable way,
with applications ranging from liquid-crystal displays (2) to adap-
tive lenses (3). In this article, we discuss how nematic liquid
crystals can be used as a soft-matter platform to realize the
building blocks of topological photonic materials (4–6). Topo-
logical materials are a class of structured materials exhibiting
remarkable features, such as the existence of chiral edge states
topologically protected against backscattering. The robustness
of these edge states can be traced to the existence of topologi-
cal invariants characterizing how waves propagate in the bulk of
the material. Such materials, inspired by topological insulators
(TIs) (7), are ubiquitous, including examples in photonics (4–
6, 8–14), mechanics (15–20), hydrodynamics (21–24), stochastic
systems (25), and electrical circuits (26–28). The unique proper-
ties of topological photonic materials suggest several potential
applications (4–6), ranging from high-power single-mode lasers
(29, 30) to slow light (31).

Here, we develop a strategy purely based on liquid crystals,
where the orientation of the nematic molecules, described by
their director field, is used both to realize waveguiding (32–
34) and to build topological materials (10, 35, 36) by coupling
these waveguides. Our proposal is inspired by recent advances in
liquid-crystal technology that make it possible to effectively print
out any target director field either by stacking two-dimensional
photoaligned slices (32, 37–42) or through three-dimensional
photopatterning techniques (43). Electrically controlled and
light-driven liquid crystals (39, 44) could be further exploited to
engineer reconfigurable topological photonic devices (14).

To facilitate experimental investigations of these phenomena,
we develop a tight-binding (TB) model (i.e., a coupled-mode
description) for the coupled liquid-crystal waveguides (45). We
establish its domain of validity through a careful comparison with
direct simulations of Maxwell equations. Along with a precise
analysis of the symmetries in the system, these results allow us
to engineer a liquid-crystal realization of two archetypal topo-

logical systems. The first is perhaps the simplest TI: an analogue
of the Su–Schrieffer–Heeger (SSH) model (36, 46), which is a
one-dimensional system displaying nonvanishing winding num-
bers. The second and more challenging one is inspired by the
quantum Hall effect: an analogue of the Haldane model (47),
which is a two-dimensional system with nonvanishing topological
invariants called Chern numbers.

The main challenge in realizing the two-dimensional Hal-
dane model in classic systems lies in the requirement that
time-reversal (TR) symmetry must be broken (7). In electronic
systems, this symmetry breaking can easily be obtained via a
static magnetic field. This is more difficult in classic systems, such
as photons or phonons, because of the absence of a direct cou-
pling with the magnetic field (48–50). Here, one of the spatial
directions is treated as time. More precisely, the evolution of
light waves along the paraxial direction z (i.e., at small angles
with the direction of propagation) can be mapped to the evo-
lution in time t of a quantum wavefunction described by the
Schrödinger equation. In this picture, modulations of the wave-
guide in the paraxial direction correspond to a time-dependent
quantum potential (51, 52), effectively allowing TR symmetry
breaking in static liquid-crystal textures.

Liquid crystals have long served as a natural laboratory to
develop theoretical ideas at the interface between quantum and
soft matter (11, 53–61). For instance, in de Gennes’ seminal study
on the analogy between smectic liquid crystals and superconduc-
tors, the spatial direction perpendicular to the smectic layer is
also mapped to the time axis of a superconductor coupled to a
gauge field (54–56). (In the smectic, the gauge field can be traced
to the bending distortions of the layers.) More recently, varia-
tions on this space–time mapping have been exploited outside of
liquid crystals to realize topological photonic states (5, 10, 62–
64), in which the necessary TR symmetry breaking is obtained
by breaking space-inversion symmetry (z→−z ). Experimen-
tal studies have unambiguously demonstrated that periodic
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modulations induced by helix-shaped waveguides allow one to
implement photonic Floquet TIs, a particular class of TIs in
which the system is periodically driven in time (10). In these
helix-shaped waveguides, the change in the local direction of
propagation leads to geometric phases (65, 66) called Rytov–
Vladimirskii–Berry phases (67, 68), which are eventually respon-
sible for the existence of the photonic TI. Our system dis-
plays different geometric phases from ref. 10: the so-called
Pancharatnam–Berry phases (69, 70) that stem from the change
in the local optical axes.

A distinctive feature of our liquid-crystal system is that the
symmetries of the photonic topological material can be entirely
controlled by the spatial symmetries of the nematic texture, a
point of considerable interest for topological engineering appli-
cations. Not only does the patterned nematic allow for an
effective TR symmetry breaking, but it also generates the soft
waveguides that are the building blocks of our topological mate-
rials. Unlike permanent waveguides embedded in a composite
material, these soft waveguides could be switched on and off
by applying suitable external fields that induce the necessary
nematic textures.

Light Confinement via Periodic Drive.
Consider the propagation of a Gaussian light beam in a uni-
form nematic liquid crystal, where the nematic rods are in the
plane orthogonal to the direction of propagation. Because of
the shape of the nematic molecules, beams with different polar-
izations experience different refractive indices. The medium is
characterized by two particular indices, no and ne, that corre-
spond to the so-called ordinary and extraordinary polarizations
that propagate unchanged. Hence, three characteristic length
scales naturally appear: the light wavelength λ, the beating length
Λ =λ/(ne−no) between the ordinary and extraordinary polar-
izations, and the Rayleigh length ZR that determines the size
of the Gaussian beam. Additional length scales characterize the
spatial pattern of the liquid crystal. Here, we focus on pat-
terns where only the orientation of the nematic liquid-crystal
molecules (i.e., the director field) is changed, while the ordinary
and extraordinary indices no and ne are the same in the whole
system. This orientation is determined by the angle θ(x , y , z ) that
the rod-like molecules make with the y axis, as shown in Fig. 1A.
In the regime where ZR�Λ,λ, the dynamics of the electromag-
netic field can effectively be described by the evolution of a slowly
varying wavepacket ψ, which is a two-component vector in the
polarization space. In the paraxial approximation, the evolution
of this wavepacket is described by (10, 32, 51, 52)

i
∂ψ

∂z
=− 1

2n̄k0
[∇⊥+ iA]2ψ+ Vψ, [1]

with the synthetic gauge field A(z ) =−(∇⊥θ)S(z ) and the
potential V(z ) =−(∂zθ)S(z ), where S(z ) is a z -dependent
matrix that only depends on Λ and is responsible for the polariza-
tion dynamics (SI Appendix). Formally, this equation resembles
the Schrödinger equation of quantum mechanics, provided that
the paraxial direction z is replaced by time.

When the orientation θ(x , y , z ) of the director field is peri-
odic in the paraxial direction z with a period Λ, the Hamiltonian
is Λ-periodic in z and can be analyzed by using Floquet the-
ory (71, 72). The main idea is that the propagation of light over
large distances z�Λ is essentially captured by repeating its evo-
lution over one period Λ, which is described by the evolution
operator U (Λ) associated with Eq. 1. The eigenvalues of the
operator U (Λ) are phases of the form e−iκΛ, where κ is the
quasi-momentum in the paraxial direction of the corresponding
eigenmode. Here, the eigenmodes describe guided modes of the
soft waveguide (32), and, up to variations at the (small) scale of
the period Λ, their intensity remains constant.

A

B C
D

E

Fig. 1. Coupling of two waveguides, corresponding to the liquid-crystal pat-
tern in A and with an effective optic potential shown in B. The z axis in A
shows the orientation of the molecules in the center of a waveguide for one
Floquet period, given by Λ. (C and D) The intensity profile obtained with
the guided mode of one of the waveguides as an initial condition shows
an oscillatory pattern, which is reminiscent of Rabi oscillations in two-level
quantum systems. (E) Dependence of the dimensionless Rabi frequency fR =

λ/TR with the distance between waveguides for both the continuum parax-
ial simulations and the TB method. The effective coupling between two such
waveguides, proportional to fR, decays exponentially with their distance.

Coupling of Waveguides
We now consider a system that consists of two such soft pho-
tonic waveguides by transversely repeating the director mod-
ulation which corresponds to one waveguide (Fig. 1A). When
two of these waveguides are located close to each other, they
become coupled, as light can tunnel from a waveguide to another
through evanescent waves: the electromagnetic field inside one
waveguide induces a field inside the other one. Fig. 1C shows
that if a guided mode is initially inside one of the two iden-
tical waveguides, it will eventually leak into the other one.
The light-intensity pattern obtained from this coupling oscillates
sinusoidally with a period TR (Fig. 1D) exactly like Rabi oscil-
lations in two-level quantum systems. We confirm these results
by directly solving the full Maxwell equations with the finite-
difference time-domain method using the open-source software
package MEEP (73).

We wish to consider a system made of a large number of cou-
pled waveguides. To do so, we need a simplified description of
the waveguides and of their couplings that allows to capture the
essential features of the system (such as the Rabi oscillations
described above) without having to describe the full liquid-crystal
configuration. Hence, we use a time-dependent Hückel method
(74, 75) to develop a TB model for the photonic waveguides
(SI Appendix). The TB Hamiltonian H TB obtained by using this
method for the evolution of a system of N waveguides reads

i∂z |ψn〉=
N∑

m=1

H TB
nm(z ) |ψm〉 , [2]

where ψn is the mode inside waveguide n . This TB model
brings the essential simplicity that is needed to analyze a system
with many coupled waveguides, such as a lattice configuration.
The Rabi oscillations obtained from this TB model for a two-
waveguide system are in agreement with the solutions of the
Schrödinger Eq. 1 in the continuum using appropriate initial
conditions, validating our approach (Fig. 1E). Using this TB
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model, we further quantify the coupling between two waveguides
and observe that the coupling strength decays exponentially with
respect to the distance between the waveguides (Fig. 1E)

Photonic Crystals in 1+1d: SSH Chain. A lattice of coupled waveg-
uides is obtained by a periodic patterning of the nematic director
in the transverse plane. Here, we consider a 1+1d lattice, where
the second dimension stands for the paraxial direction z that
plays the role of time in this system. We consider a system
inspired by the SSH model (36, 46). Using the coupling-distance
dependence from the section Coupling of Waveguides, we design
a lattice of these waveguides on a chain so that the coupling
between two neighboring waveguides changes in an alternating
way, as shown in Fig. 2 A and B. The distance between waveg-
uides is chosen such that the ratio between the two different
hopping amplitudes is J−/J+ = 0.25(1).

Fig. 2 A and B also shows that, depending on the ordering
of the strong and weak bonds at the boundary, there are two
different dimerizations of the neighboring waveguides. The TB
description of the system in Fig. 2 A and B is a time-dependent
version of the SSH chain (46). We find a photonic state that
remains at the edge of one of the two configurations of this
system, as shown in Fig. 2C, whereas in the other configura-
tion, in Fig. 2D, the initial mode at the edge leaks into the bulk
while it propagates forward. The intensity profile of the local-
ized edge mode shows an exponential decay away from the wave-
guide at the boundary. The presence of this edge mode is due to
the topology of the Hamiltonian describing the system, which is
characterized by an integer winding number across the Brillouin
zone (BZ) (SI Appendix). In this particular case, this topological
invariant depends on whether J− is smaller or greater than J+,
which explains why this edge mode is present in only one of the
two configurations in Fig. 2.

Symmetries and Topological Modes in 2+1d
So far, we only considered systems in which there is a symme-
try between the photonic modes that propagate forward and
backward along the z direction. This z -reversal symmetry cor-
responds to TR symmetry in the effective quantum picture. We

A C

B D

Fig. 2. An SSH chain of photonic waveguides in a liquid-crystal medium.
(A and B) The effective photonic potential for two topologically distinct
dimerizations of the waveguides in such system, which correspond to a SSH
chain with and without an edge mode, respectively, as shown in C and D.
The effective tunneling between these waveguides is controlled by their
distance, as illustrated in Fig. 1E. A and B, Insets sketch an SSH chain corre-
sponding to each system. Strong (J+) and weak (J−) couplings are shown
by double and single bonds, respectively. (C) The propagation of an edge
mode whose existence is topologically protected. (D) The scattering into the
bulk of the same initial mode in a trivial chain.

would now like to explore the phenomena that can arise with
introducing an asymmetry in this direction. The TR symmetry
acts on Eq. 1 through the operator T =σzΘ, where Θ is complex
conjugation and where the Pauli matrix σz exchanges right and
left circular polarizations. It follows that a configuration is TR-
invariant if there is a reference point z0 such that the orientation
of the directors satisfies θ(z0− z ) =−θ(z0 + z ) (SI Appendix). In
the TB model of this system, we focus on the subspace of guided
modes, since the unguided ones do not follow a coupled-mode
picture. In this reduced description, the TR operator is simply
the complex conjugation operator Θ. We prove analytically in
SI Appendix that the TR invariance in the paraxial Hamiltonian
leads to the TR invariance of the TB model.

We break TR symmetry by considering the director-field
configuration

θ(x , y , z ) = θ0(x , y) [sin Ωz + η cos(2Ωz −ϕ)], [3]

where θ0(x , y) describes the nematic pattern in the transverse
plane (it is a sum of Gaussians centered at desired positions),
Ω = 2π/Λ is the frequency of the drive (an inverse length scale
here), η is a dimensionless coefficient that controls the strength
of the TR symmetry breaking, and ϕ is the dephasing between
the harmonics of the pattern. We focus on configurations of these
waveguides in 2+1 dimensions, where the absence of TR invari-
ance can lead to topological modes (5, 10, 47). A 2+1d lattice
of these waveguides can be designed by considering transverse
modulations of the nematic directors that are periodic in two
directions. We consider a modulation that creates a honeycomb
lattice of such waveguides in the transverse plane, as shown in
Fig. 3A.

We find that in our Floquet model, the TR symmetry breaking
is not sufficient to get a topological band structure. This can be
understood through a high-frequency Magnus expansion (71) of
a general Floquet TB Hamiltonian on a honeycomb lattice, by
mapping the obtained effective Hamiltonian to the Hamiltonian
of the Haldane model (47) (SI Appendix). We find that breaking
the threefold symmetry between the three neighboring bonds is
necessary to get a nonzero Haldane mass at the first order of
the expansion. Many Floquet-driven models involve a rotating
gauge field, arising, for example, from the coupling with a cir-
cularly polarized light radiation (76) or an effective gauge field
originating from spin-orbit coupling of light on a helical wave-
guide (10). In this case, the rotating gauge field effectively breaks
the C3 symmetry via a Peierls substitution in the hoppings.

Here, we do not have access to such a rotating gauge field.
Instead, we break this symmetry by shifting the waveguides along
the z axis, with a shift that is different for each of the neighbor-
ing waveguides (Fig. 3B). The relative shift of waveguides affects
both the strength of their couplings, as shown in Fig. 3C, and
induces a dephasing between the hoppings. We choose a spa-
tially periodic configuration of phase shifts. However, the unit
cell is enlarged with respect to the hexagonal lattice, as shown in
Fig. 3B, where the colors represent the shifts.

We note that the TB description is only reliable when the shifts
are small enough (Fig. 3C). We use the guided mode of each
waveguide as a basis for the TB description. This works well when
the waveguides are not shifted. When they are, our procedure
does not span the whole space where the modes evolve when the
waveguides are shifted, because the guided modes of waveguides
with relative shifts are different: The guided mode of one wave-
guide can be repelled from a similar waveguide with a relative
shift of origin. In the following, we focus on the range of shifts
where the TB description still provides a reliable approximation
(blue dashed rectangle in Fig. 3C).

The band structures associated with the TB model of the lat-
tices of waveguides in Fig. 3 A and B on a cylinder are shown in
Fig. 3 E and F. Fig. 3E corresponds to a honeycomb lattice of

Abbaszadeh et al.
Liquid-crystal-based topological photonics

PNAS | 3 of 5
https://doi.org/10.1073/pnas.2020525118

D
ow

nl
oa

de
d 

at
 U

N
IV

E
R

S
IT

Y
 O

F
 C

H
IC

A
G

O
-S

C
IE

N
C

E
 L

IB
R

A
R

Y
 o

n 
Ja

nu
ar

y 
20

, 2
02

1 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2020525118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2020525118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2020525118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2020525118/-/DCSupplemental
https://doi.org/10.1073/pnas.2020525118


A B C D

E F

G

Fig. 3. (A) A photonic lattice on a honeycomb structure that is obtained by patterning of the nematic directors in the transverse plane. Each node of the
lattice corresponds to a photonic waveguide, as shown in the zoomed-in panels. (B) A unit cell of this photonic lattice, where the waveguides are colored
according to their relative phase shift in the z direction. The unit cell is enlarged with respect to the honeycomb one because of the different phase shifts.
(C) The Rabi period between two photonic waveguides as a function of the relative shift between them. We focus on the parameter space enclosed by the
blue dotted rectangle, where there is a close agreement between the TB model and the continuum paraxial simulations. (D) Evolution of a topological edge
mode on the projected x− y plane. The size of each circle corresponds to the light intensity on that site. This mode propagates along the edge without
backscattering on obstacles. The propagation direction of this edge mode is depicted with a red arrow. (E and F) One sideband in the Floquet band structure
of a honeycomb lattice of photonic waveguides without (E) and with (F) relative phase shift. In both cases, the TR symmetry is violated using the structural
parameter η= 0.67. The band structure in F shows the presence of one mode at the right (blue) and left (red) edge of this system for a range of transverse
momenta in the BZ. The presence of these edge modes and their unidirectional propagation are predicted by the difference between first Chern numbers
C1 of the bands, which are separated by the gap. (G) Snapshots of the director-field configuration in the unit cell shown in B during one Floquet period.
Gray areas correspond to regions where the directors are along the y direction.

waveguides without relative phase shifts. Fig. 3F corresponds to
the unit cell shown in Fig. 3B, where the waveguides are shifted
with respect to each other. In this case, we observe chiral modes
localized at the edges of the cylinder. A direct calculation of the
first Chern number of the top and bottom bands (SI Appendix)
shows that these edge modes have a topological origin. They cir-
culate unidirectionally along the edge in the transverse plane as
they propagate along the z direction, despite the presence of a
defect at the boundary (Fig. 3D) The decay length of the edge
modes in the bulk is related to the inverse size of the bulk band
gap in which these modes reside, compared to the frequency of
the Rabi oscillation. Thus, we find that the decay length is only a
few lattice sites, even though the gap is very small with respect to
the Floquet frequency.

Non-Hermitian Description of Shifted Waveguides
A full description of the photonic crystal should encompass
both guided and repelled modes. The analysis above shows that
waveguides shifted with respect to each other can be coupled.
In this situation, both the guided and repelled modes should
be taken into account. In principle, this would entail the use
of a non-Hermitian Hamiltonian (77) to describe the system, to
account for the loss of light intensity due to the repelled light
(eventually converted to heat in the bulk of the material). We
have verified that non-Hermitian effects involving nonorthogo-
nal eigenmodes are negligible in the topological system described
in Symmetries and Topological Models in 2+1d, validating our

approach based on Hermitian topological invariants. Look-
ing forward, the natural occurrence of non-Hermiticity in the
description suggests liquid-crystal-based soft waveguides as a
promising platform for non-Hermitian optics (78–81).

Conclusion
In this work, we have shown how to realize photonic Floquet
topological systems using liquid crystals. As an example, we have
shown how Floquet versions of the SSH and Haldane models can
be realized. As photonic crystals, these photonic Floquet TIs are
semimetal phases with a strong anisotropy; for instance, a (2 + 1)
-dimensional Chern insulator can be seen as a photonic Weyl
material (82, 83). Our analysis based on a reduction of the parax-
ial wave equation to a TB description provides a blueprint to
design photonic structures with targeted topological properties
in liquid crystal systems through Pancharatnam–Berry phases.

Data Availability. There are no data underlying this work.
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