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We analyze the shape z(x) of two-dimensional needle crystals far away from the tip and find that
in general the deviation Az away from the Ivantsov solution has an asymptotic behavior of the form
Az ~x ~% with a a noninteger exponent. For the asymptotic behavior, the regime where the Péclet
number p is less than —;— and the one where p is larger than % are distinct. For p > —;—, the exponent

is calculated explicitly, while for p < %, we present numerical evidence for the existence of the ex-

ponent . These results differ from those used in earlier numerical and analytical studies of two-

dimensional dendritic growth.

The analysis of the steady-state equations of the nonlo-
cal solidification problem!~* has recently attracted a lot
of attention motivated by the possible connections be-
tween the solvability of the steady-state equations and the
dynamical velocity selection. >°

An asymptotic analysis of the symmetric model in two
dimensions was performed by Kessler et al.> who conclud-
ed that the shape of the solidification front moving in the
z direction with velocity V is far away from the tip given
by z(x)=—x%/2p4+c+a/|x|. Here p is the Péclet
number of the Ivantsov solution, and all lengths are mea-
sured in units of the diffusion length 2D /V. The coeffi-
cient a, according to Kessler et al.,? is a Péclet-number-
dependent constant whose value does not depend on the
details of the shape in the tip region; the constant c is ar-
bitrary and of no physical significance, since it can be
made to vanish by translating the whole shape in the z
direction by an amount —c.” In this note we reconsider
this problem by investigating what asymptotic behavior is
allowed as a function of p in the integral equation ob-
tained by linearizing the full equation about the Ivantsov
solution. For p < 1/2 we conclude on the basis of analyti-
cal as well as numerical results that

1 2 a 1
z(x)= pr +c+xa, alp)>1, p<5. (1)
The coefficient a depends on the complete shape of the
needle crystal and cannot be determined only from the
tail; moreover, it appears that the exponent a cannot be
determined solely from the asymptotic large-x behavior of
the linearized equation. In numerical solutions of the full
equation, a is found to vary with p. For p >3 we find
that in general it is possible to have

z(x)=—$x2+b |x |[B+c, —1<Bp)<], p>7,

(2)
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where the coefficient b is arbitrary within the asymptotic
analysis. The value of b can therefore only be determined
by matching the tail expansion (2) to the profile in the tip
region. Clearly, the structure of the asymptotic solution
in the tails of the needle is rather different from what was
claimed before.?

The issue of whether the steady-state equations have
solutions for a continuous range of values of d or for a
discrete set of values is still a subject of some debate. We
do not intend to address this issue here, but only note that
the dominant term in an “outer expansion” for the large-x
regime, from which the results (1) and (2) also follow, will
be interpreted physically and discussed in the light of this
question elsewhere.® Our results in this paper are valid
for any steady-state solution, if one exists, or for any gen-
eralized solution studied in the numerical approaches,'-?
for which z'=dz /dx=-0 at the tip.

The two-dimensional steady-state equations for the
symmetric two-sided model of dendritic growth are given
by® 10

pvr+v2L o, 3)
az
subject to the boundary conditions ([ ] denotes the discon-
tinuity across the boundary at the solid-liquid interface)

aT Va

— |=L——, 4
D= c, 4)
T=Ty(1—dyk) . (5)

Here « denotes the curvature, D the diffusion constant,
C, the specific heat, L the latent heat, d, a capillary
length, T, the bulk melting temperature, ¥ the propaga-
tion velocity along the z direction, and ¥, the normal
component of the velocity. Measuring all temperatures in
units of L/C, and the lengths in units of the diffusion
length 2D /V, the steady-state problem reduces to the
integro-differential equation® !0
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The main contribution to Eq. (7) comes from the region
[0,x]; more precisely, consider, e.g.,11 x; in the range
[0,x —x~'/?] in the first integral and in the range
[0,x —x /4] in the second integral, so that we can use the
asymptotic expressions
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1
r+52—(x2——x%)+ x—x,

Changing variables x;=x(1—v)/(1+v) in the first in-
te%ral and x;=x(v—1)/(14v) in the second we arrive
at!?
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dy=T,C,doV/2DL, and K, is the zeroth-order modi-
fied Bessel function.

We will now study the asymptotic regime x — o for
any possible steady-state solution of Eq. (6). Since Eq. (6)
admits Ivantsov solutions z = —(1/2p)x? for dy=0, we
write z=—(1/2p)x?+Az and linearize in Az (we will
come back to the validity of the linearization later). For
the asymptotic large x behavior of (6) we then get, using
K6 = _Kl)

l[Az(x)—Az(xl)]

2
[Az(x)—Az(x))] , (7)

f

_dopzzLI“’ (+v) e™ 53,| 1
x3 2vir Jo Vi x? P 2v
| Az | ZI=0) ]—Az(x) . (10)
1+v

Two cases have to be considered separately in analyzing
Eq. (10): the one where the dominant term in Az for large
x gives a contribution to the integral of order x 3, and
the one where the leading term in Az makes the integral
vanish, so that a subdominant term gives a contribution of
order x ~3. We start by analyzing the first case.

Since Az(x) is assumed to be an even function of
x[Az(x)=Az(—x)], if Az(x) decays as 1/x9, this intro-
duces a singularity!® 1/|1—v |® in Eq. (10). We show
later that a less than 1 (including negative values of a) is
possible only in the second case, in which the dominant
term in Az makes the integral vanish. Since it will turn
out that Az has to be integrable, we restrict the analysis
here to @ > 1. In this case, the singularity 1/|1—v |%is
nonintegrable; however, for v close to 1, x(1—v) is not
necessarily large and it is incorrect to substitute the
asymptotic behavior of Az in (10). This suggests that all
parts of the profile, including the tip region, contribute to
the integral in (10). To make this more precise, it is con-
venient to split up the v integral into two parts, with
|[1—v | <ex™ "2 and |1—v | >ex~ "2 Since x(1—v)
is large in the latter range, we can approximate Az(x)
there by the asymptotic behavior Az ~a /x%. The integral
over this range then behaves as

372 a
_ap”’t I+v _ 1 1+v Oy —54a)2
WV gxite f}l—u1>ex*‘/2 dv v e lp— 2v 1—v —1=0 TR, ax1, (11)
-

which decays faster than the x ~° term on the left-hand side'* of Eq. (10). Hence on comparing terms of order x —3 in
(8), only the integral over the region |1—v | <ex ~!/2 has to be retained. After a change of variables v = 1 +2w /x, we

then get!* for large x

_d0P2= p*”? fex'/2/2 dw 242w /x .
717253 (

x3 —ex1722 1+2w/x)1/2

—p(142w/x)

1

L 244w /x

]Az(w/(l—l—w/x)) . (12)
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For large x, the terms w/x are negligible in the range of
integration, and the integral approaches a well-defined
limit. We then get

2
—dop 22
oP 172

1, — to

(p—Fle™ [ “dwhzw).  (13)
This equation confirms that Az(x) has to be integrable,
but otherwise does not determine the functional form of
the asymptotic behavior of Az. Clearly, if we assume
Az~a/x?% as in Eq. (1), the determination of the coeffi-
cient a depends on the solution of the problem close to the
tip, and cannot be derived solely from asymptotic con-
siderations as claimed in Ref. 2. We have solved Eq. (6)
numerically, and observed indeed such power-law
behavior (see Fig. 1); a is in general found to be nonin-
teger, significantly larger than 1 for small p, and indepen-
dent of dy. Thus, the numerical solutions appear to con-
firm the asymptotic from (1), although on the basis of the
numerical results we cannot rule out a small d, depen-
dence or asymptotic behavior of the form x ~%Inx (in fact,
the slight curvature in the data of Fig. 1 for p =0.25
might be an indication of the presence of such type of
terms). Note also that according to (13) f dw Az (w)
diverges as p— <, suggesting that a—1 in this limit.
Indeed, for increasing Péclet numbers, the slope in Fig. 1
decreases.

If one makes the Ansatz Az ~1/x, both the term in Eq.
(11) and the one in Eq. (12) become of order x ~3lnx.
Since we have not proven that these two terms cannot
cancel one another, we have, strictly speaking, not exclud-
ed the possibility a=1. We have found no indications
that such cancellations occur, nor observed Az~ 1/x in
our numerical solutions for p < .

The above considerations, do not apply if the dominant
asymptotic behavior of Az gives a vanishing contribution
to the right-hand side of Eq. (10); i.e., is a solution of the

xﬁ_zps/z

2V

Vo140 | _p
fodv‘/; e

1
4 2v

It is easy to see that the first term between square brackets
changes sign for p > +. Since the second term between
square brackets weights different parts of the interval
[0,1] differently depending on f3, the integral will vanish
for some value of 3, implying that Eq. (14) always has a
solution for p > +. This justifies Eq. (2), with the ex-
ponent B given by Eq. (14). A plot of B(p) obtained by
solving the latter equation numerically is shown in Fig. 2.
Note that B— —1 as p—+, so that we expect the ex-
ponents a and S to be continuous at p = %, at which point
presumably z~1/x or z~x ~"'Inx. In Fig. 3 we plot Az
as obtained from a numerical solution of Eq. (6) for p =1
on a log-log scale. The behavior is indeed consistent with
Eq. (2), although the effective exponent is still slowly de-
creasing. By extending our solution to large values of x
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FIG. 1. Log-log plot of | Az —c | vs x obtained from numer-
ical solutions with dy=0.0002 at p =0.475 (solid line, a ~1.25),
p =0.45 (short dashes, a=1.45), p=0.25 (dots, a=2.5), and
P =0.1 (long dashes, a=2.5).

homogeneous equation obtained by setting the left-hand
side of Eq. (10) equal to zero. We will see that this is pos-
sible for p > 5. Upon substituting Az ~x? with B> —1
and rewriting the integral from 1 to o« with the aid of the
transformation v—1/v, we get

) B
] H —v _1]20_ (14)
14+v
1
0.5+
Q o
-0.5+
B 1 2 3

FIG. 2. Exponent 8 as a function of the Ivantsov Péclet
number p, as determined by Eq. (14).
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FIG. 3. Log-log plot of Az vs for A=0.76 (p=<1). The
behavior is consistent with Eq. (2), with the effective exponent 8
slowly decreasing towards its predicted value of about 0.2.

(up to 4000), we have checked that the effective exponent
does continue to approach the value of about 0.2 predicted
by Eq. (14). We note that the data of Fig. 5 of Meiron'
for p =1 also appear to be consistent with Eq. (2), with an
effective exponent between 5 and 3 for x ~ 10.

When B>0, Az diverges; in view of the exponential
term exp[z(x;)—z(x)] in the integrand in Eq. (6), one
might at first sight conclude that the linearization leading
to Egs. (10) and (14) is inconsistent with this result. How-
ever, on closer inspection we find that this is not the case.
For, in the regime where the asymptotic expressions (9)
are valid, the dominant term exp(— r) of the Bessel func-
tion partly cancels the exponentially large term
exp[z(x;)—z(x)], and one gets for x; in the regime con-
sidered
)2

z(xy)—z(x) —r_ —(x —X1
e

e =exp . (15)

2|z(xy)—z(x)|
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Since z(x) is approximately parabolic, the exponent on
the right-hand side does not diverge for large x. More-
over, Eq. (15) also shows that linearization in Az in fact
amounts to an expansion in Az /z;,, = —2pAz /x?, which is
always small for large x. This is the origin of the term
x~%in Eq. (10), and implies that Eq. (14) also holds for
positive 3.

In the above analysis the dominant term in the integral
for p >3 comes from the tail region, while for p < all
parts of the profile contribute to the asymptotic behavior.
This, together with the appearance of the factor p — 5 in
Eq. (13), suggests that there will be slow transients near
P =75, and a more careful analysis is called for in this
limit. As stated before, at pz%, we expect Az~1/x
with possibly logarithmic corrections.

We also note that the asymptotic behavior is only given
by Eqgs. (1) and (2) in two dimensions in the absence of in-
terface kinetics. Kinetic undercooling would give rise to a
term proportional to ¥V, =V cosf~1/x on the left-hand
side of Eq. (10), and would obviously result in
Az ~dx +exP+ --- . We similarly expect a term linear
in x in three dimensions, since there « falls off as 1/x.

For completeness we finally show that contributions
from other regions of integration in Eq. (7) are asymptoti-
cally negligible. Over the interval [x~!'?4x,00],
(1/2p)(x*—x})—r+ <(x —x,)(x /p) and the integrand in
Eq. (7) decays exponentially fast. The contribution of the
interval [ —x ~'?4x,x +x ~1/?], to the first integral in
Eq. (7) is estimated by writing Az(x)—Az(x,)
~Az'(x)(x —x); the integral, which is convergent in
spite of the weak singularity of the integrand, then falls
off as (1/V'x )%, and since Az'(x)~1/x%*! the overall
contribution is at least!® O(1/x%*2). Similar considera-
tions show that the contributions of [x —x /4 x +x1/4]
to the second integral in Eq. (7) is at least O(1/x%%9).
Since we found a > 1, these terms are indeed negligible.
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