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It has recently been suggested by Mouritsen on the basis of computer simulations that systems
with soft domain walls exhibit slower domain growth than the R~1t'/2 growth law predicted by
Lifshitz and Allen and Cahn. We underscore the reasons to believe this interpretation of the data
to be incorrect, and draw attention to an experiment by Pindak, Young, Meyer, and Clark whose
results are in complete agreement with the predictions of Allen and Cahn. The reason for the
unexpected growth dynamics observed in Mouritsen’s simulations is suggested.

After a system is rapidly quenched below its transition
temperature for an order-disorder transition, the initial
dynamics of the system consists of the formation of small
domains of the various possible ordered phases. Soon
after these domains have formed, the kinetics become
dominated by the growth and shrinking, as well as merg-
ing, of these domains.! In this regime, the typical size R
of the domains usually exhibits power-law growth in time,
R(t)~1t". The dependence of the growth exponent n on
the parameters of the model has recently been explored
extensively with the aid of computer simulations.>™* For
nonconserved Ising systems, the ordering dynamics is
dominated by the curvature-driven motion of domain
walls discussed by Turnbull,® Lifshitz,® and Allen and
Cahn,” and this yields® n= 4. If the number of ground
states becomes larger than 2, topological constraints can,
however, slow down the growth; such behavior has, for ex-
ample, been seen in simulations® of g-state Potts models,
where 7 is found to be smaller than + and to decrease
with g. Recently, it has been claimed®® that softness of
domain walls can also slow down the growth kinetics with
respect to that of the Ising model. This sug%estion was
based on the results of computer simulations®” which ap-
peared to indicate that a growth exponent n== % is a gen-
eral feature of soft-wall models, not only of those with
more than two ground states, but also of those with only
two ground states.

The idea that the softness of the domain walls alone
would affect the growth kinetics is rather surprising, since
there is no particular reason why the driving force for the
motion of a soft wall would not be linear in its curvature,
as obtained in all approaches.®~’ In other words, in sys-
tems with a twofold-degenerate ground state so that topo-
logical constraints are not the rate-limiting factor, one ex-
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pects the Lifshitz-Allen-Cahn-type growth law, with
n=1%, to hold, provided the width of the walls is much
smaller than their radius of curvature.'®!! This is precise-
ly what Milchev, Binder, and Heermann'' found in their
simulations of the ¢* continuous-spin Ising model. More-
over, a critical assessment of the interpretation of
Mouritsen’s Monte Carlo data has been given by Kaski,
Kumar, Gunton, and Rikvold,® who argued that a better
interpretation of the data was consistent with n=7%. Fi-
nally, Pindak, Young, Meyer, and Clark!? measured
n=1% in an experiment on liquid crystals, whose relevance
appears to have been overlooked in this field.

In view of this apparent discrepancy concerning the
relevance of the softness of the walls, we investigate some
of the possible reasons that the model studied most recent-
ly by Mouritsen® gives rise to slower growth dependence
than expected. The reason we concentrate only on this
model is that it is simple enough that we can analyze some
of its aspects analytically. We will show that in contrast
to what has been asserted, this particular model actually
does not have soft walls in the parameter range explored
in the computer simulations. Moreover, we will argue
that the small effective growth exponent found by Mour-
itsen® may be ascribed to effects that are specific to the
particular zero-temperature Monte Carlo quench method
employed; in particular, we argue that for long times the
domain size grows as (Int) 2 (n =0) in the limit in which
the system becomes one dimensional, obtained by letting
the next-nearest-neighbor interaction vanish. At finite
temperatures, these effects may give rise to slow crossover,
but we do expect the model to exhibit ¢ /2 growth dynam-
ics at long times and finite temperatures. Before present-
ing these results, however, we will first try to put the
theory and the experiments by Pindak et al.!? into per-
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spective.

Lifshitz® and Turnbull® (LT) as well as Allen and
Cahn’ (AC) all argue that the normal growth rate ¥V, of
an interface is proportional to its curvature x, V,=cx.
For the radius R of a shrinking droplet this yields
dR/dt=—2c/R (c/R in two dimensions), and so
R2=2c(to—1) where 1 is the time at which the droplet
disappears. This shows that n=%. AC stress, however,
that their prediction for the coefficient ¢ is different from
that of LT. The latter argue that ¢ =uo, with u a mobili-
ty and o the surface tension of the interface, while in AC’s
squared-gradient theory c is equal to the prefactor of the
gradient term in the free energy. The origin of this
discrepancy can be summarized as follows. In all ap-
proaches the driving force for the motion of the interface
is the excess energy associated with the interface, which is
proportional to the surface tension. The physical picture
on which LT base their discussion of the resulting
curvature-driven dynamics is that of a sharp interface in
an alloy, in which the rate of motion of the interface is
determined by the diffusion (exchange) of atoms at the
boundary.® This yields a relation of the form ¢ =uo with
4 a mobility coefficient for this process. AC, on the other
hand, consider interfaces whose structure is smoothly
varying in the direction normal to the interface (“soft™).
In a squared gradient theory of the type considered by
AC, the width of such a continuous interface is inversely
proportional to the surface tension. When such an inter-
face moves, the rate at which the order parameter changes
in the interface region is inversely proportional to the
width of the interface, so that both the driving force and
the energy dissipation are inversely proportional to the in-
terface width. As a result, within the AC theory, the nor-
mal growth rate coefficient ¢ becomes independent of the
interface width, !? and hence o.

Obviously, the conclusion from both approaches is that
the sharpness or softness of the walls does not affect the
growth law, as one would expect: n=7% in both cases.
Only the prefactor ¢ will, in general, depend on the struc-
ture of the walls, although for sufficiently wide walls de-
scribed by the AC theory, the rate coefficient ¢ becomes
independent of the wall width. These results are clearly at
variance with Mouritsen’s claims about the softness of the
walls.

Many of the AC results were rederived independently
by Pindak et al.,'?> who performed experiments on orienta-
tion patterns in freely suspended smectic-C liquid-crystal
films. Since smectic-C films have a permanent electric di-
pole moment P, the director angle ¢ can be oriented with
an electric field E and the free energy of a field becomes in
the one-constant approximation '

F=fax [ayl} K(Ve)?~ PEcose] . )

After turning on the field E, the director field in the exper-
iment reorganizes into domains of the lowest free-energy
state ¢ =0, *27x,... . The domains are separated by 2x
disclination lines which either end at point defects or form
closed loops. The radius R of the latter “droplets” was
found!? to shrink as R2=c(to—1t), with ¢ independent of
the wall width, which in agreement with Eq. (1) was
found to vary as E ~'/2. Thus, these experiments provide

a direct verification of the AC predictions that both the
growth exponent n and the rate parameter c are indepen-
dent of the “softness” of the walls. Since these liquid-
crystal films provide such a clean realization of noncon-
served ordering dynamics, we hope that these experiments
will be pursued in more detail to measure the structure
function S(q,t), for which, to our knowledge, the theoret-
ical predictions have not been tested extensively.

We now turn to the two-dimensional lattice model re-
cently investigated by Mouritsen.® The Hamiltonian for
the angle variables ¢; of this model can be written as '’

X
H=—J2 cos(¢; — ;) — 2. cosp;cosg; . ()
nnn t,J
i>j
The first sum is over next-nearest-neighbor terms on the
square lattice, while the second term is over nearest neigh-
bors in the horizontal (x) direction only [see Figs.
1(a)-1(c)]. We will take ¢ =0 when the spins are point-
ing up [see Fig. 1(c)], so that in the two ground states of
the system correspond to the spins pointing up or down.
The width of walls in this model depends on J, larger
values of J giving rise to wider walls. Mouritsen® presents
data for J=0.2, reporting that data in the range
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FIG. 1. (a) The spin in the center is coupled through fer-
romagnetic next-nearest-neighbor interaction to four other
spins. (b) The nearest-neighbor interaction only couples spins
within the same row. (c) Convention for the angle ¢ and the x
and y directions. (d) For J < 1, a wall parallel to the x direction
is hard in that all spins are at angles 0 or n. (e) A symmetric
wall parallel to the y direction. In the two rows adjacent to the
center one the spins are rotated by about 9.5° for J=0.2. (f)
For small J, the spins rearrange quickly after a quench into
domains of up and down spins. (g) In the J =0 limit, the model
becomes one-dimensional because rows get decoupled. The spin
labeled A4 separates up and down domains. (h) A domain of
perfectly aligned (¢ =0) up spins in a sea of down spins is frozen
in, in spite of the J interaction.



2276

0.02 < J < 2 yield similar results. For these values, how-
ever, the walls are quite sharp: From a gradient expansion
of the Hamiltonian (2), assuming that the ¢; vary gradu-
ally, one finds that the wall width (in units of the lattice
parameter) is of order vJ. In the range of parameter
values investigated, this is of order unity or smaller, indi-
cating that the walls are actually quite localized. Of
course, this analysis is, strictly speaking, inconsistent,
since the assumption that the ¢; vary slowly breaks down
in this regime. We have therefore performed a more care-
ful analysis of two types of walls. For the zero-
temperature walls normal to the y direction, we find that
these are sharp for J <1, i.e., in the ground state the ¢;
change abruptly from O to = from one row to the next, as
illustrated in Fig. 1(d). (For J=2 1, the spins get rotated
slightly near the wall.'®) The structure of the walls nor-
mal to the x direction is more complicated. For angles ¢;
varying only in the x direction (all ¢; are the same in each
column), the condition 8 H/8¢; =0 for minima of the ener-
gy can, with the aid of some trigonometric relations, be
written as

[¢i+1"‘¢i—1

2
J cos 3

(1+J ~Y)sing; cos

i+1+0i—1
2

41+ 0i—
— Cos¢; sin lﬂ'ﬂz#H=0 .
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This equation allows sharp-wall solutions of which the an-
gles ¢ abruptly change from 0 to = at some i, but these do
not have the lowest energy. A lower-energy solution is,
for example, the symmetric wall for which at row i =0,
say, ¢o=n/2, and ¢, =x—¢_,. Assuming that ¢;— O for
large negative values of i, we then find from Eq. (3), eval-
uatedati=—1,

sin(x/4+¢—2/2) 1 ]

¢-1=arctan [ cos(z/d+¢_>/2) 147!

4)

==arctan

1+J

where we used the fact that ¢—, can be neglected for
JX<1. This formula shows that the spins adjacent to the
one at i =0 only turn slightly for J < 1—e.g., for J =0.2,
the value used by Mouritsen, we have ¢ —;==9.5°, and the
wall looks like the one sketched in Fig. 1(e).

These considerations show that contrary to what has
been suggested, the lattice model [Eq. (1)] does not have
continuous, soft walls like those of AC in the regime in-
vcstxgatcd by Mouritsen (screening of soft walls has been
suggested® as the reason for dynamics slower than '/2).
Why, then, did the simulation not exhibit a growth ex-
ponent n =% ? We suggest that this is due to the particu-
lar zero-temperature Monte Carlo method employed in
the study. In these zero-temperature quenches the orien-
tation of a spin is only changed to a new randomly gen-
erated angle if this results in a lower energy. For
quenches of systems with small J, the second term in the
energy dominates and since this term strongly favors the
alignment of spins in either the up or down state, the ini-
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tial evolution of the system will be dominated by the
grouping of the spins into domains of mainly up
(—n/2 < ¢ <n/2) or down (n/2 < ¢ < 3n/2) spins, as in-
dicated in Fig. 1(f). As time progresses, the spins in the
bulk of the domains continue to relax towards the ground
state ¢ =0 or ¢ =x. The more a spin has relaxed towards
the ¢ =0 or ¢ = state before this spin becomes part of the
boundary of a domain, the more unlikely it will be that
such a spin is flipped in a Monte Carlo step; in other
words, the chance that a random attempt to change a spin
angle lowers the energy becomes smaller and smaller as
long as the next nearest-neighbor interaction is negligible.
To make this explicit, we consider the model in the J =0
limit, so that it consists of a set of uncoupled, one-
dimensional rows of spins, as in Fig. 1(g).

Consider first a spin in the bulk of this system, one
whose two neighbors are pointing in the up direction, say.
With the convention that the angle ¢ varies between — =
and #, an attempt to change this spin is accepted if the
new angle is smaller (in absolute value) than the original
one. Thus, in suitable time units the evolution of the dis-
tribution function P(¢,) is given by a master equation of
the form

a—P(L 'P(¢‘ t)

+ 1 fd¢’P(¢ t)——f do'P(g,t) . (5)

For long times, P(¢,?) will become more narrowly peaked
around ¢ =0, and P(¢,7) will approach a symmetric self-
similar solution of the form t°P,(¢t®) [normalization,
JdoP(¢,t) =1, requires the presence of the factor ¢ in
front of P;]. To obtain the exponent a, we note that for a
symmetric distribution [P(¢,z) =P(—¢,t)], Eq. (5)
yields after differentiation

9%P 0P

FYeT -9 % - 6)
Substitution of P=¢*P;(u) with u=¢¢* then yields the
differential equation

at® " Y(uP,'+2P;)=—2P, —uP,. @)

Clearly, in order that proper similarity solutions exist a
must be equal to 1; the equatlon resulting for a =1 can be
solved to yield tPs (¢t) - lel* showing that the width
A¢ of the distribution decreases as t ~!1. As a result, the
probability of acceptance of a new random spin angle in
this Monte Carlo method also goes down as ¢z ~

This is also true for spins at the boundary of up and
down domains in this one-dimensional limit. Consider, for
example, the spin labeled A4 in Fig. 1(g). In order that the
boundary between the two domains moves over by one
step, this spin has to line up with one of the two domains;
i.., its angle has to fall within an interval Ag~¢ ~!
around ¢ =0 or ¢ =x. Since all angles are equally prob-
able in this method, the probability that this happens de-
creases as ¢ ~ !, and so the edges between up and down
domains perform a random motion with jump probabili-
ties decreasing as ¢ ~!. After absorbing this time depen-
dence in a new time 7=In¢, the master equation for the
position of the “interfaces” becomes equivalent to the usu-
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al one with constant jump probabilities and time variable
7. Accordingly, the size R of the domains grows in this
limit very slowly as R ~¢"/2=(Inz) /2.

Although the situation with J#=0, but small, is more
complicated, we still expect the dynamics to be affected by
a similar slowing down. To illustrate this, consider the up
(¢ =0) domain of Fig. 1(h), which is surrounded by a sea
of spins whose distribution of angles has a finite width
around #. It is easy to check that none of the spins in the
up domain will be flipped in the zero-temperature Monte
Carlo method. For this to happen the down spins would
have to point exactly down (¢=n). Such freezing in of
perfect up domains also occurs for J =0 and underlies the
R~ (In1) "7 behavior in that limit. Hence we expect the
model to be affected by very slow growth dynamics for
J#=0, but small, and that the small effective exponent ob-
served over a limited time interval in his zero-temperature
simulations is due to a crossover to such a regime.

In interpreting the results of the simulations, one should
also keep in mind, however, that zero-temperature dy-
namics can be very sensitive to the particular way in

which the method is implemented. For example, if the
spin angles are represented by a large but finite number of
states rather than by a continuous variable, crossover to a
different growth regime should eventually occur. It would
therefore be of interest to examine the dynamics of the
model at finite temperatures, and to reinvestigate some of
the earlier work on more complicated models® as well.

In summary, we have tried to underscore the reasons
one expects the softness of the walls to have no effect on
the validity of the Lifshitz-Allen-Cahn growth law, and
we have drawn attention to the fact that the experiments
by Pindak et al. are in full agreement with the prediction
of Allen and Cahn. We have argued that Mouritsen’s
zero-temperature Monte Carlo method yields very slow
dynamics in a simple limit of his model, and attribute the
general occurrence of slow dynamics in his simulation to
similar effects.
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