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Charged domain walls as quantum strings on a lattice
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Recently, experimental evidence has been accumulating that the doped holes in the high-Tc cuprate super-
conductors form domain walls separating antiferromagnetic domains. These so-called stripes are linelike ob-
jects and if these persist in the superconducting state, high-Tc superconductivity is related to a quantum string
liquid. In this paper the problem of a single quantum meandering string on a lattice is considered. A kink model
is introduced for the string dynamics, which allows us to analyze lattice commensuration aspects. Building on
earlier work by den Nijs and Rommelse@Phys. Rev. B40, 4709~1989!#, this lattice string model can be related
both to restricted solid-on-solid models, describing the world-sheet of the string in Euclidean space time, and
to one-dimensional quantum spin chains. At zero temperature a strong tendency towards orientational order is
found and the remaining directed string problem can be treated in detail. Quantum delocalized strings are found
whose long-wavelength wandering fluctuation is described by free field theory and it is argued that the fact that
the critical phase of delocalized lattice strings corresponds to a free Gaussian theory is a very general conse-
quence of the presence of a lattice. In addition, the mapping on the surface problem is exploited to show the
existence of different types of localized string phases; some of these are characterized by a proliferation of
kinks, but the kink flavors are condensed so that the long-wavelength fluctuations of these strings are sup-
pressed. The simplest phase of this kind is equivalent to the incompressible~Haldane! phase of theS51 spin
chain and corresponds to a bond centered string: The average string position is centered on bonds. We also find
localized phases of this type that take arbitrary orientations relative to the underlying lattice. The possible
relevance of these lattice strings for the stripes in cuprates is discussed.@S0163-1829~98!05132-7#
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I. INTRODUCTION

A series of experimental developments has changed
perspective on the problem of high-Tc superconductivity
drastically. As long as the doping level is not too high, ele
trons bind at temperatures well aboveTc ~Ref. 1! and the
superconducting state appears to be in tight competition w
some collective insulating state.2 There exists compelling
evidence that this insulating state corresponds with a dif
ent type of electron crystal, characterized by both spin
charge condensation: the stripe phase.3–5 This phase consist
of a regular array ofcharged magnetic domain walls: The
holes introduced by doping form linelike textures that are
the same time antiphase boundaries, separating antiferro
netic spin domains; see Fig. 1~a!. This stripe phase is ob
served in systems where the insulating state is stabilized
Zn doping5,6 or by the so-called low temperature tetragon
~LTT! collective pinning potential.3,4

Inelastic neutron scattering data reveal that strong
namical stripe correlations persist in the metallic and sup
conducting regimes.4,6–8 Although no static stripe order i
present, the magnetic fluctuations as measured by inel
neutron scattering should reflect stripe correlations. As w
shown very recently, the magnetic modulation wave vec
of the static stripe phase seems identical to that of the
namical spin fluctuations in the metal and superconductor
various doping levels.4 In addition, it was argued that th
anomalous normal state magnetic dynamics can be expla
in terms of domain wall meandering dynamics.9

The exciting possibility arises that the zero-temperat
superconducting state is at the same time a relatively mi
fluctuating quantum stripe fluid. Unlike the rather featurele
PRB 580163-1829/98/58~11!/6963~19!/$15.00
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diagonal sector of, e.g.,4He,10 it can be imagined that the
charge and spin sectors of this quantum stripe problem h
an interesting internal structure. Because charged dom
walls are linelike objects, the charge sector might be look
at as aquantum string liquid.9,11,12Little is known in general
about such problems and a theoretical analysis is neede
order to address the problem of many interacting strings,
first necessary to find out the physics of a single string
charged domain wall in isolation. A string is an extend

FIG. 1. ~a! Charged domain wall separating spin domains
opposite antiferromagnetic order parameter.~b! Breaking up do-
main walls causes spin frustration, while~c! ‘‘kinks’’ do not. ~d!
Kinks can gain kinetic energy by moving along the domain wall.~e!
Typical rough wall.~f! Example of a directed string.
6963 © 1998 The American Physical Society
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6964 PRB 58HENK ESKESet al.
object, carrying a nontrivial collective dynamics: In co
trast to particlelike problems, the elementary constituen
the string liquid poses already a serious problem. The ph
ics of quantum strings is a rich subject. This is most ea
discussed in terms of path integrals. In (D11)-dimensional
Euclidean space time, a particle corresponds to a world
and so the quantum string corresponds to a ‘‘world shee
The statistical physics of membranes is a rich subject, wh
is still under active investigation.13

The debate on the microscopic origin of the stripe ins
bility is far from closed.12,14–19 Nevertheless, in this pape
we will attempt to isolate some characteristics that might
common to all present proposals for the microscopy to ar
at some general considerations regarding the quantum m
dering dynamics. From those we will abstract a minim
model for the string dynamics. The phase diagram of t
model can be mapped out completely and turns out to
remarkably rich.

These characteristic features are the following.~i! It is
assumed that the charge carriers are confined to dom
walls. This is the major limitation of the present work and
is hoped that at least some general characteristics of
strong-coupling regime survive in the likely less strong
coupled regime where nature appears to be.~ii ! In addition,
we assume that domain walls are not broken up, as sket
in Fig. 1~b!, as this would lead to strong spin frustration.~iii !
Most importantly, we assume a dominant role of lattice co
mensuration on the scale of the lattice constant. Config
tion space is built from strings that consist of ‘‘holes’’ on th
sites of an underlying lattice. An example of such a str
configuration is sketched in Fig. 1~c!. This automatically im-
plies that the microscopic dynamics is that ofkinksalong the
strings@Figs. 1~c! and 1~d!# and this leads to major simplifi
cations with regard to the long-wavelength behavior of
string as a whole. Note that there is ample evidence for
importance of lattice commensuration: the scaling of the
commensurability with hole densityx for x, 1

8 ,6 the special
instability atx5 1

8 ,4 and the LTT pinning mechanism.3 ~iv! It
is assumed that the strings do not carry other low-lying
ternal degrees of freedom, apart from the shape fluctuati
Physically this means that localized strings would be el
tronic insulators. The data of Yamadaet al.5 indicate that
this might well be the case at dopingsx< 1

8 ~the linear de-
pendence of the incommensurability onx indicates an on-
domain wall charge commensuration!, but it is definitely vio-
lated at larger dopings where the strings should
metallic.19–22 Work is in progress on fluctuating metalli
strings, where we find indications that the collective stri
dynamics is quite similar to what is presented here for in
lating strings.23

Given these requirements, one would like to conside
quantum sine-Gordon model24 for the string dynamics,

H5
1

2 E dlFP~ l !21c2S dz~ l !

d l D 2

1g sinS 2pz~ l !

a D G .
~1.1!

Here z( l ) is the transversal displacement at pointl on the
string, P( l ) is its conjugate momentum defined through t
commutation relation@P( l ),z( l 8)#5 id( l 2 l 8), andc is the
transversal sound velocity. The first two terms in Eq.~1.1!
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describe a free string, while the last term is responsible
the lattice commensuration effects: Every time the string
displaced by a lattice constant, the potential energy is a
minimum. This model is well understood.24 When the
strength of the nonlinear interaction exceeds a critical va
(g.gc), the interaction term is relevant and the string loc
izes. The excitation spectrum develops a gap and it is c
acterized by well-defined kink and antikink excitation
When (g,gc) the sine term is irrelevant and although th
dynamics is at least initially kinklike on microscopic scale
the string behaves as a free string at long wavelength.
latter is the most elementary of all quantum strings. It f
lows immediately that the relative transversal displacem
of two points separated by an arclengthl along the string
diverges aŝ @z( l )2z(0)#2&; ln l.9 The string as a whole is
therefore delocalized and this is the simplest example o
‘‘critical’’ string.

A central result of this paper is that Eq.~1.1! is, at least in
principle, not fully representative for the present lattice pro
lem. More precisely, starting from a more complete mic
scopic kink dynamics model~Sec. II!, we find a richer infra-
red fixed-point structure. The phase diagram incorpora
phases associated with the quantum sine-Gordon model fi
point, but also includes additional phases that are intima
connected with the effects of the lattice and of the near
neighbor interactions between the holes. In Sec. III we de
the path-integral representation of our model. It turns out t
the world sheet of this string in Euclidean space time cor
sponds with two coupled restricted solid-on-solid~RSOS!
surfaces,25 each of which describes the motion of the stri
in either thex or y direction on the two-dimensional lattice

The bare model is invariant under rotations of the string
space. As discussed in Sec. IV, we find indications fo
generic zero-temperature spontaneous symmetry break
For physical choices of parameters, the invariance un
symmetry operations of the lattice is broken. Even when
string is critical~delocalized in space!, it acquires a sense o
direction. On average, the trajectories corresponding to
string configurations move always, forward in one directio
while the string might delocalize in the other direction; s
Fig. 1~f!. This involves an order-out-of-disorder phenom
enon, which is relatively easy to understand intuitive
Quantum mechanics effectively enhances the fluctuation
mension by stretching out the string into a world sheet in
timewise direction and the enhancement of the effective
mension reduces the effect of fluctuations. Thermal fluct
tions destroy this directedness, but they do so more ef
tively when the string is less quantum mechanical.

This directedness simplifies the remaining problem c
siderably. We will show that the directed string problem
equivalent to a well-known problem in surface statistic
physics: Its world sheet is equivalent to a single RSOS s
face. At the same time, this model is easily shown to
equivalent to a generalizedXXZ quantum spin-chain prob
lem. The particular model we study is actually equivalent
the S51 spin chain, which has been studied in great det
The RSOS surface problem and the quantum spin-ch
problem are therefore also related to each other. This equ
lence was actually at the center of the seminal work of d
Nijs and Rommelse on the hidden order in Haldane s
chains.26 From our perspective, the introduction of the phy
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cally appealing quantum string model as an intermed
model that connects both with the spin chain and the RS
surfaces also helps to appreciate the depth of the work of
Nijs and Rommelse.26

The bulk of this paper~Secs. V–VIII! is devoted to an
exhaustive treatment of this directed string model. So
powerful statistical physics notions apply directly to t
present model and these allow us to arrive at a comp
description of the phase diagram of the quantum string.
was mentioned already in Ref. 11, this phase diagram is
prisingly rich: There are in total ten distinct phases. In t
context of the quantum spin-chain/RSOS surfaces, alre
six of those were previously identified. However, viewin
this problem from the perspective of the quantum string
becomes natural to consider a larger number of potenti
relevant operators and the other four phases become obv

Compared to strings described by Eq.~1.1!, we find a
much richer behavior, but this is limited to the regime whe
lattice commensuration dominates over the kinetic energ
that the string as a whole is localized. We use ‘‘localize
here in the sense that the transversal string fluctuation
two widely separated points remain finite,^@z( l )2z(0)#2&
→const asl→`. Besides the different directions the pure
classical strings can take in the lattice, we also find a num
of localized strings that have a highly nontrivial intern
structure: the ‘‘disordered flat’’ strings, characterized by
proliferation of kinks, but where the kink flavors condense
that the string as a whole remains localized. On the ot
hand, the quantum-delocalized~critical! strings are all of the
free-field variety and as we will argue in Sec. IX, this mig
be a very general consequence of the presence of a la
cutoff.

II. MODEL: THE MEANDERING LATTICE STRING

Whatever one thinks about the microscopy of the strip
in the end any theory will end up considering the charg
domain walls as a collection of particles bound to form
connected trajectory, or such a model will be an import
ingredient of it. Moreover, these trajectories will commun
cate with the crystal lattice because the electrons from wh
the strings are built do so as well. This fact alone puts so
strong constraints on the collective dynamics of the char
domain walls.

Let us consider the string configuration space. On the
tice this will appear as a collection of particles on latti
sites, while every particle is connected to two other partic
via links connecting pairs of sites. The precise microsco
identity of these particles is unimportant: They might
single holes ~filled charged domain walls14,15 as in the
nickelates27!, an electron-hole pair~the charge-density wave
of Nayak and Wilczek12 or Zaanen and Ole´s18!, or a piece of
metallic20 or even superconducting28 domain wall. All that
matters is that these entities have a preferred position
regard to the underlying lattice~site ordered14 or bond
ordered19!. Quite generally, curvature will cost potential e
ergy and a classical string will therefore be straight, orien
along one of the high-symmetry directions of the lattic
Without loss of generality, it can be assumed that the lat
is a square lattice while the string lies along the~1,0! (x)
direction. Denoting asNy the number of lattice sites in they
te
S
en

e

te
s
r-

e
dy

it
ly
us.

e
o

’
of

er

o
er

ice

s,
d

t

h
e
d

t-

s
ic

th

d
.
e

direction and assuming periodic boundary conditions, t
straight string can be positioned inNy ways on the lattice.
Obviously, such a string will delocalize bylocal quantum
moves: The particles tunnel from site to site.17,29Moving the
whole string one position in they direction involves an in-
finity of local moves in the thermodynamic limit and th
different classical strings occupy dynamically disconnec
regions of Hilbert space.

This is analogous to what is found in one-dimension
systems with a discrete order parameter.30 In the case of,
e.g., polyacetylene the order parameter is of theZ2 kind: The
bond order wave can be either̄ -A-B-A-B-¯ or
¯-B-A-B-A-¯ ~A is a single bond andB a double bond!,
while a single translation over the lattice constant transfor
the first state of the staggered order parameter into
second kind of state. This is a discrete operation beca
the lattice forces the bond order to localize on the cen
of the bonds. Such an order parameter structure imp
the existence of topological defects, which are Isi
domain walls: ¯-A-B-A-B-B-A-B-A-¯ ~‘‘kink’’ ! and
¯-B-A-B-A-A-B-A-B-¯ ~‘‘antikink’’ !. When they occur
in isolated form, these are also genuine building blocks
the quantum dynamics because although their energy i
nite, it involves an infinity of local moves to get rid of them
~topological stability!. In the particular problem of polya
cytelene, these kinks only proliferate under doping~charged
solitons!. Although topological quantum numbers are n
longer strictly obeyed when the density of topological d
fects is finite, it has been shown in a number of cases
they nevertheless remain genuine ultraviolet quantities
long as they do not overlap too strongly.31,32

If we consider a~locally! directed piece of string, the
string is analogous, except that the symmetry is nowZNy

: On
the torus, a half infinity of the string is localized at they
position ny and the other half can be displaced tony11,
ny12,...,ny21. Hence, in total there areNy21 distinct kink
excitations with the topological invariants corresponding
the net displacement of the half string in they direction.
Because the kink operators can occur in many flavors,
problem is therefore in principle richer than that of on
dimensional solids.

Clearly, kinks with different flavors have to be dynam
cally inequivalent. Since there is apparently a reason for
particles to form connected trajectories, it should be m
favorable to create a kink corresponding to a small displa
ment than one corresponding to a large jump. Here we
focus on the simplest possibility: Only kinks occur corr
sponding to a displacement ofone lattice constant in they
direction. This restriction is physically motivated by the fa
that the string is thought to separate two antiferromagn
cally ordered states; so, if the displacement of succes
holes would be larger than one lattice constant, the anti
romagnetic ordering would be strongly suppressed: After
this is the very reason that holes tend to line up in stripes
addition, we will specialize on the ‘‘neutral’’ string. It will
be assumed that the string is characterized by a gap in
charge and spin excitation spectrum, so that the strings w
kinks contain the same number of particles as the class
reference configurations. The model we will consider mig
apply literally to the charge commensurate stripes of
nickelate.27 In the cuprates, it might be better to consider t
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6966 PRB 58HENK ESKESet al.
stripes as one-dimensional metals or superconductors, c
acterized by massless internal excitations. In these case
remains to be demonstrated that eventually the transve
string fluctuations decouple from the internal excitations
the present model to be of relevance.

Given these considerations, we propose the follow
model forquantum lattice strings. The string configurations
are completely specified by the positions of the partic
~holes! r l5(xl ,yl) on the two-dimensional~2D! square lat-
tice. Two successive particlesl and l 11 can only be neares
or next-nearest neighbors, orur l 112r l u51 or &. We will
call these connections between successive particleslinks.
Two classes of links, those of length 1 and those of len
&, exist. Taking the order of the particles into account, th
are eight distinct links. The string Hilbert space is spann
by all real-space configurations satisfying the above str
constraint.

We consider local discretized string-tension interactio
between nearest and next-nearest holes in the chainH
52bH)

HCl5(
l

FKd~ uxl 112xl u21!d~ uyl 112yl u21!

1 (
i , j 50

2

Li j d~ uxl 112xl 21u2 i !d~ uyl 112yl 21u2 j !G
1M(

l ,m
d~r l2rm!. ~2.1!

The various local configurations and interaction energies
shown in Fig. 2. The last term is an excluded-volume-ty
interaction: The physically relevant limit isM→`, so that
holes cannot occupy the same site. The interactionK distin-
guishes horizontal from diagonal links andLi j 5Lj i is a set
of two-link interactions, which one can think of as micr
scopic curvature terms. Furthermore, we exclude strings w
a physically unrealistic extreme curvature by takingL10
→`. Note also that configurations that would give a con
bution L00 to the energy are automatically excluded in t
limit M→`, which we will take throughout this pape
There are five local configurations, distinguished by four
rameters. Therefore, we can chooseL2050 and the string is
determined by the parametersK, L11, L12, andL22; see Fig.
2.

The second term inH is a quantum term that allows th
particles to hop to nearest-neighbor lattice positions. Ho
ever, such hopping processes should not violate the st
constraint. This constraint can be enforced by means o

FIG. 2. ~a! Set of local configurations and their classical en
gies.~b! Two allowed hopping processes. We taket5t8.
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projection operatorPstr(r l 112r l), which restricts the motion
of hole l to the space of string configurations,

Pstr~r !5d~ ur u21!1d~ ur u2& !. ~2.2!

The string is quantized by introducing conjugate mome

p l
a , @r l

a ,pm
b #5 id l ,mda,b , wherea5x or y. A term einp l

x

acts like a ladder operator and causes particlel to hop a
distancen in the x direction,

einp l
x
uxl&5uxl1n&. ~2.3!

Therefore, the kinetic-energy term becomes

HQ52T(
l ,a

Pstr
a ~r l 112r l !Pstr

a ~r l2r l 21!cos~p l
a!.

~2.4!

Note that the particles, even underHQ , keep their order and
therefore can be labeled byl. Thus the fermion nature o
holes in realistic domain walls plays no role at our level
approximation and quantum statistics becomes irrelevan

The above model is minimal since it contains on
nearest-neighbor hopping and the simplest string tens
terms. One natural extension would be to take the two h
ping amplitudesT in Fig. 2~b! to be different since there is
no microscopic reason why they should be identical. In
following sections we will discuss the zero-temperatu
properties of the above string model. The self-avoidan
term is a complicated nonlocal operator. However, we w
find that, surprisingly, the kinetic energy favorsoriented
walls without loops. Therefore, this term turns out to be u
important for the present zero-temperature discussion.

III. RELATION TO RSOS-LIKE SURFACE MODELS

The problem introduced in the preceding section can
reformulated as the classical problem of a two-dimensio
surface ~worldsheet! embedded in (211)-dimensional
space, using the Suzuki-Trotter mapping. The model can
seen as two coupled RSOS surfaces. The solid-on-solid m
els are classical models for surface roughening.25 They de-
scribe stacks of atoms of integer height in two dimensio
with an interaction between adjacent stacks depending on
height differences. With this construction overhangs are
cluded. In the RSOS models these height differences are
ited to be smaller or equal to some integern. In the present
case, the two RSOS models parametrize the motion of
world sheet in the spatialx and y directions, respectively
while the ~strong! couplings between the two takes care
the integrity of the world sheet as a whole.

In the Suzuki-Trotter33 or Feynman path-integral pictur
one writes the finite-temperature partition function as an
finite product over infinitesimal imaginary time slices. In th
limit the commutators between the various terms in
Hamiltonian vanish like 1/n2, wheren is the number of Trot-
ter slices, and the partition function can be written as

Z5 lim
n→`

Tr~eHCl /neHQ /n!n. ~3.1!

To show the relation with RSOS models, we will cast t
transfer matricesT in the form of a two-dimensional classica

-
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effective Hamiltonian. This implies writing the matrix ele
ments of theT matrix between configurations$r l% in terms of
an effective classical energy depending on the world-sh
positions$r l ,k%, wherek is the imaginary time index running
from 1 to n with periodic boundary conditions. Schema
cally,

lim
n→`

^$r l%kue~1/n!Hu$r l%k11&→eHeff~$r l %k ,$r l %k11!. ~3.2!

SinceHCl is diagonal in the real-space string basis, it
already in the required form

lim
n→`

^$r l%kue~1/n!HCl→e~1/n!HCl~$r l %k!^$r l%ku. ~3.3!

ForHQ a few more steps are needed,

^$r l%kue~1/n!HQu$r l%k11&

5K $r l%kU (
m50

`
1

m! SHQ

n D mU$r l%k11L
5 K $r l%kU11

HQ

n U$r l%k11L 1OS 1

n2D
5)

l
)

a5x,y
S d~a l ,k112a l ,k!

1
T
n

d~ ua l ,k112a l ,ku21! D
5expF(

l
lnS TnD @d~ uxl ,k112xl ,ku21!

1d~ uyl ,k112yl ,ku21!#G . ~3.4!

The expression in the last line is of course only valid
states in which thea l ’s in successive time slices differ by a
most one unit. Combining these two energy contributio
we arrive at the classical problem

Z5 lim
n→`

Tr eHeff,

~3.5!

Heff5(
l ,k

FKn d~ uxl 11,k2xl ,ku21!d~ uyl 11,k2yl ,ku21!

1 (
i , j 50

2 Li j

n
d~ uxl 11,k2xl 21,ku2 i !

3d~ uyl 11,k2yl 21,ku2 j !

1
M

n (
m

d~xl ,k2xm,k!d~yl ,k2ym,k!1 lnS TnD
3@d~ uxl ,k112xl ,ku21!1d~ uyl ,k112yl ,ku21!#G .

This classical world sheet is constrained touxl ,k112xl ,ku
<1 and uyl ,k112yl ,ku<1 and the interactions are anis
tropic. The above classical model can be viewed as
coupled two-dimensional RSOS surfacesxl ,k andyl ,k . Thex
et

r

,

o

coordinate of holel at the time slicek is now identified as the
height of a RSOS column positioned at (l ,k) in the square
lattice. In a similar way they coordinates define a secon
RSOS surface, coupled strongly to the first by the abo
classical interactions. Since the stepsDx can at most be
equal to 1, the RSOS sheets are restricted to height dif
ences 0,61 between neighboring columns. The classic
model as defined above is not unique. While the above m
ping allows us to exploit the connection to other mod
most efficiently, for the numerical Monte Carlo calculatio
a different decomposition is used, which allows for a mo
efficient approach to the time continuum limit. This is furth
discussed in Appendix A.

IV. DIRECTEDNESS AS SPONTANEOUS SYMMETRY
BREAKING

We are not aware of any similarity of the statistical phy
ics problem of the preceding section to any existing mod
RSOS problems are well understood, but it should be re
ized that in the present model the two RSOS problems
strongly coupled, defining a different dynamical proble
When we studied this problem with the quantum Mon
Carlo method, we found a generic zero-temperature sym
try breaking: Although the string can be quantum deloc
ized, it picks spontaneously adirection in space. This sym-
metry breaking happens always in the part of parame
space that is of physical relevance.

Let us first discuss the simulations. In principle, the pro
erty of directedness is aglobal quantity. Consider 2D spac
with open boundary conditions. Directedness means tha
the string starts at, say, the left boundary it will always ha
its end point at the right boundary and it will never reach t
top or bottom boundaries. Although in our specific mode
appears possible to rephrase this global property in term
a local order parameter, a quantitative measure of direc
ness can be constructed that is more general. Although a
ward for analytical purposes, this measure is easily evalua
numerically and it illustrates effectively the phenomeno
Every continuous string configurations can be written as a
parametrized curve in two dimensions@x(t),y(t)#, wheret
could, for instance, be the discrete label of the succes
particles along the string. When the string configuration c
be parametrized by asingle-valuedfunction x(y) or y(x),
we call the string configuration directed@see Fig. 1~f!#. The
quantum string vacuum is a linear superposition of ma
string configurations. When all configurations in the vacuu
correspond to single-valued functionsx(y) or y(x), the
string vacuum has a directedness order parameter. At
temperature, the ground-state wave function of the string

uC0&5 (
$xl ,yl %

a0~$xl ,yl%!u$xl ,yl%&, ~4.1!

where every state in string configuration space (u$xl ,yl%&)
corresponds to a trajectory@x(t),y(t)#. Consider first the
case of a continuous string. For every configuration, the t
string arclength is given by

L~$xl ,yl%! tot5E ds5E Adx21dy2. ~4.2!



e

ro

he

i
us
o
y
e

ta

g
ho
th

f
in
a
f
th

lo
of

e

of

th
or

-
n

t

6968 PRB 58HENK ESKESet al.
Consider now an indicator functiongy(x), which equals 1
when the string is single valued when projected onto thx
axis and zero otherwise, and analogously a functiongx(y),
which equals 1 when the curve is single valued when p
jected onto they axis and zero otherwise~see Fig. 3!. The
total directed length in thex andy directions is then defined
as

L~$xl ,yl%!dir,x5E dx gy~x!A11S dy

dxD
2

,
~4.3!

L~$xl ,yl%!dir,y5E dy gx~y!A11S dx

dyD
2

.

The measure of directedness in the string vacuum is t
defined as the larger ofNdir

x (0) andNdir
y (0), where

Ndir
h ~0!5 (

$xl ,yl %
ua0~$xl ,yl%!u2

L~$xl ,yl%!dir,h

L~xl ,yl ! tot
~4.4!

and h5x,y. On the lattice, our measure of directedness
the immediate analog of this definition, except that we j
count the number of directed bonds, irrespectively
whether they are oriented diagonally or horizontally. B
thermal averaging, the above definition of directedness d
sity is immediately extended to finite temperature,

Ndir
h ~T!5(

n
e2b~En2E0!Ndir

h ~n!, ~4.5!

whereNdir
h (n) is the directedness density of a string exci

tion with energyEn .
Equation~4.5! can be straightforwardly calculated usin

the quantum Monte Carlo method. A Monte Carlo snaps
defines a stack of coupled string configurations along
imaginary-time direction~the Trotter direction!. We calcu-
late Ndir

x for every Trotter slice by calculating the fraction o
the string length in this configuration that is single valued
the x direction. This is given by the number of bonds th
step forward in thex direction divided by the total number o
bonds in the string. We then average this quantity over

FIG. 3. Illustration of the way we measure the directedness
string ~a! in the continuum case and~b! on the lattice. The heavy
solid parts of the string indicate the parts where the projection of
string onto thex axis is single valued and for which the indicat
function gy(x) equals 1.
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string world sheet~Trotter direction! and then over the
Monte Carlo measurements. The same is done forNdir

y (n).
The larger ofNdir

x (n) and Ndir
y (n) is then the density of di-

rectedness at the given temperature.
In Fig. 4 we show the results of typical Monte Car

calculations for the density of directedness as a function
temperatureNdir(T). We have considered four points in th

a

e

FIG. 4. Monte Carlo result for the directedness densityNdir(T)
at four points.~a! The XY point ~triangles! where all curvature
energies are zero. Two points are in the flat phase, withK51.8
~crosses! andK54.0 ~filled squares!; the rest of the curvature en
ergies are zero.~b! Inset: a point in the middle of the Gaussia
phase with parametersK50.5, L21520.25,L22521.0, andL11

50 ~open circles!. The full line in both figures is the result for a
classical string where only flat bonds andp/2 corners are presen
with L1151.
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parameters space; as will be discussed later, these point
representative for phases with interesting quantum fluc
tions and serve to clarify our conclusion. In Fig. 4~a! the
triangles~dashed line! is the result for the density of direct
edness at the point where all the classical curvature ene
are zero, i.e., corresponding to the pure quantum string.
crosses~dotted line! and the filled squares~dash-dotted line!
are the results for points whereK51.8 and 4.0, respectively
and the rest of the classical curvature energies are zero
terms of the phase diagram for the directed string problem
Fig. 8 in Sec. VI and Table III in Sec. VII, the first poin
corresponds to a Gaussian string~pure quantum! and the
other two correspond to flat strings. The pointK51.8 lies
just inside the flat string phase II where significant quant
fluctuations are still present, while the pointK54.0 lies deep
inside the flat phase. The fourth curve in Fig. 4~a!, given by
the full line, is the result of a Monte Carlo calculation for
classical string (T50) where only flat segments andp/2
corners are allowed~no diagonal segments!. This same clas-
sical result is shown again in Fig. 4~b! together with the
result of the directedness density for a point in the middle
the Gaussian (XY) phase (K50.5, L21520.25, L22
521.0, andL1150 corresponding toD50 andJ520.5).
A further discussion of the numerical results as well as
interpretation of the finite temperature behavior can be fo
in Appendix C.

Our general conclusion, based also on Monte Carlo s
ies of the behavior in other phases summarized in Appen
C, is thatapart from some extreme classical limits, the ge
eral lattice string model at zero temperatures is a direct
string. The phase diagram of the general string model int
duced in Sec. II will essentially be the same~apart from
special limits! as the corresponding phase diagram of
simplified directed string model. In the remaining sections
this paper we will therefore focus on the phases and ph
transitions of the directed string.

Although we have not found yet a formally rigorous d
scription of the directedness symmetry breaking, we can
fer a qualitative explanation at least on the level of our s
cific model. As we showed in Sec. III, the string problem c
be mapped on the problem of two strongly coupled class
RSOS surface problems. The symmetry breakings of asingle
RSOS surface will be discussed in great detail later, but
the present discussion it suffices to know that such a sin
surface can be fully ordered, as well as~partly! disordered.
Because of the strong coupling, it woulda priori appear
questionable to discuss the dynamics of the full model
Sec. II in terms of the dynamics of the two separate RS
subproblems. However, in the context of directedness i
quite convenient to do so. When both thex and y RSOS
problems would be fully disordered, it is easy to see that
string vacuum would be undirected. This is illustrated in F
5~a!: Two kinks moving the string from a~1,0! to a ~0,1!
direction in the lattice correspond to one kink that can mo
freely in the horizontal part of the string and one kink th
can move freely in the vertical part of the string. On the oth
hand, when both RSOS problems are ordered, the strin
also ordered. For instance, the~1,0! string can be thought o
as a combination of a RSOS surface that always steps
ward in thex direction and one that is horizontal in they
direction @Fig. 5~b!#.
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A third possibility is that one of the RSOS subproblems
ordered, while the other is disordered. Dismissing crump
phases~such as condensates of theL11-type corners!, the
only possibility remaining is that one of the RSOS proble
steps up always, while the other is disordered, as illustra
in Fig. 5~c!. This results in a disordereddirected string
vacuum: The string steps always forward in, say, thex direc-
tion, while it freely fluctuates in they direction. Hence the
local order parameter underlying the directedness co
sponds to the diagonal flat order~phase I of Fig. 8! of at least
one of the two RSOS surfaces describing the string.

What is the source of the condensation energy? As
already stated, violation of directedness implies thatp/2
bends occur on the string, equivalent to overhangs on
world sheet. As can be easily seen, these bends block
propagation of links along the chain. Close to the bend its
the particles in the chain cannot move as freely as in the
of the chain. This effect is shown in Fig. 6.

Therefore, the presence of these bends increases th
netic energy associated with the kink propagation and
makes no difference whether the bend consists of a sin
p/2 corner or twop/4 corners. This kinetic-energy cost dis

FIG. 5. ~a! Undirected string with two kinks propagating alon
different directions. Note that the bend blocks the propagation
kinks. ~b! ~1,0! string and the corresponding two~coupled! RSOS
surfaces along thex and they directions, respectively. The numbe
correspond to thex (y) position of holel at imaginary timet. ~c!
Disordereddirectedstring and the corresponding ordered and d
ordered RSOS surfaces.

FIG. 6. Illustration of the fact that a bend blocks the propagat
of links along the string. Note that holes 1 and 2 cannot move.
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appears when one of the two RSOS surfaces straightens
this drives the directedness condensation. It might be call
quantum order-out-of-disorder mechanism and it is s
pected that a theory of the Hartree mean-field type can
formulated catching the phenomenon on a more quantita
level ~with the kinks playing the role of electrons and th
second surface offering the potentials!. To emphasize the
order-out-of-disorder aspect, it is easy to see that in the c
sical case,T50, in many regions of parameter space t
problem becomes that of a self-avoiding walk on a lattice
the limit T→0, which does not exhibit the directedness o
der.

The directedness phenomenon might be viewed from
more general perspective. At zero temperature, the quan
string is equivalent to a thermally fluctuating sheet in th
dimensions. Now it is well known from studies of classic
interfaces34 that while a one-dimensional classical interfa
in two dimensions does not stay directed due to the str
fluctuations, for a two-dimensional sheet the entropic fl
tuations are so small that interfaces can stay macroscopi
flat in the presence of a lattice.35,36 For this reason, the
roughening transition in a three-dimensional Ising mode
properly described by~i.e., is in the same universality clas
as! a solid-on-solid model in which overhangs a
neglected.35,36 In other words, even if microscopic configu
rations with overhangs are allowed, a classical interface o
lattice in three dimensions can stay macroscopically fla
‘‘directed,’’ in agreement with the findings from our specifi
model. Obviously, directedness order is rather fragile. Itcan-
not existat any finite temperature. When temperature is
nite, the width of the world sheet in the imaginary time d
rection becomes finite as well and the long-wavelen
fluctuations of the string becomes a 1D statistical proble
which cannot be directed.

V. DIRECTED STRINGS AND THE SPIN-1 CHAIN

Quite generally, the string problem does not simply
duce to that of the internal dynamics of the world sheet
cause of the requirement that the world sheet has to be
bedded in (D11)-dimensional space. However, in th
presence of directedness order and in the absence of pa
number fluctuations,21 the string boundary conditions ar
trivially fulfilled and the string problem is equivalent to th
of a single ‘‘world sheet’’ in 111 dimensions. Assume th
string to be directed along thex direction. Since the string
steps always forward in this direction, the number of p
ticles in the string has to be equal to the number of latt
sites in thex direction and every directed string configuratio
will connect the boundaries in this direction. The string
still free to move along they direction. Instead of labeling
the positions in the 2D plane the string is completely spe
fied by the list of links, for which there are only three po
sibilities @in the ~1,1!, ~1,0!, or ~1,21! direction#, and the
position of a single ‘‘guider point.’’ As a guider point we ca
take the positionr of any one of the particles, which, to
gether with the relative coordinates given by the links, fix
the position of the entire string. Since the guider represe
just a single degree of freedom and since the thermodyna
behavior of a chain is determined by the link interactions,
guider coordinates will be irrelevant for the behavior of t
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chain. Apart from this guider degree of freedom the direc
string problem reduces to a one-dimensional quantum p
lem with three flavors.

From Eq.~3.5! one directly deduces the Hamiltonian o
the string directed alongx,

Heff5(
l ,k

FKn d~ uyl 11,k2yl ,ku21!

1
L12

n
d~ uyl 11,k2yl 21,ku21!

1
L22

n
d~ uyl 11,k2yl 21,ku22!

1 lnS TnD d~ uyl ,k2yl ,k11u21!G . ~5.1!

It is clear that the directedness simplifies the model con
erable. The directed version can not self-intersect and
excluded-volume constraint is satisfied automatically. F
thermore, theL11 type of configurations are not allowed, thu
the directed model is specified by three parameters and
temperature (T51). Because of the preceding conside
ations, Eq.~5.1! corresponds to a (111)-dimensional prob-
lem, which is actually equivalent to a general quantu
spin-1 chain.

We identify the spin with the stringheight difference
yl 112yl , which can be either 0, 1, or21; see Fig. 7. These
link dynamical variables specifying the string can be direc
identified with thems50,61 variables of the spins on th
sites of the spin chain. Defining the latter using hard-c
bosonsbms

† , the spin operators for theS51 case become

Sz5b1
†b12b21

† b21 and S15&(b1
†b01b0

†b21) and by
comparing the action of the spin and string operators on t
respective Hilbert spaces one arrives at operator identitie26

A quantum hop fromy to y11 increases the height differ
ence on the left ofl by one and decreases it by one on t
right, as is easily seen by inspecting the two hopping ter
in Fig. 2. Therefore,26

Sl
z5yl 112yl ,

~5.2!
Sl 21

6 Sl
752Pstr~yl2yl 21!Pstr~yl 112yl !e

6 i p̂ l.

The identities, forS51,

d~ uyl 112yl u21!5~Sl
z!2,

d~ uyl 112yl 21u21!5~Sl
z!21~Sl 21

z !222~Sl
zSl 21

z !2,
~5.3!

d~ uyl 112yl 21u22!5 1
2 Sl

zSl 21
z @11Sl

zSl 11
z #

FIG. 7. Relation between spin 1 and directed strings,Sl
z5yl 11

2yl .
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are easily checked. The directed string problem can now
reformulated in spin language as

Hspin5(
l

F ~K12L12!~Sl
z!21

L22

2
Sl

zSl 21
z

1SL22

2
22L12D ~Sl

zSl 21
z !2

1
T
2

~Sl
1Sl 21

2 1Sl
2Sl 21

1 !G . ~5.4!

Following the spin-1 literature, we define the parameters

D5K12L12,

J5L22/2, ~5.5!

E5L22/222L12.

TheE term is new. It is a quartic Ising term, leading to ext
phases and phase transitions. For the special choiceE50
(T51), the above Hamiltonian reduces to the familiarXXZ
model with on-site anisotropy,

HXXZ5(
l

@D~Sl
z!21JSl

zSl 21
z 1 1

2 ~Sl
1Sl 21

2 1Sl
2Sl 21

1 !#.

~5.6!

The zero-temperature phase diagram of the above sp
model has been discussed in detail in the literature.37–40,26In
Sec. VI we will briefly review the six phases found for th
model, from a string perspective. Then we will show tha
nonzeroE parameter leads to the appearance of four e
phases in Sec. VII.

den Nijs and Rommelse26 discuss a direct mapping be
tween the spin chain and the RSOS surface. We stress
this mapping in fact involves two steps. First the RSO
model is mapped on a string problem, using theT matrix.
Then the spins are identified as shown above. Thus the q
tum string is anatural intermediateof the two other models
den Nijs and Rommelse make use of the freedom in
choice of theT matrix to define a mapping that is slightl
different from ours since they introduce a transfer mat
along a diagonal, while we introduce one along thex direc-
tion. As a result, in their case there are only interactio
between next-nearest neighbors along the~1,1! direction,
while our choice allows for interactions between next-nea
neighbors along thex direction. Therefore, our RSOS mod
differs slightly from theirs.

The RSOS representation is more transparent than
quantum model. The spin-1 phases and the nature of
phase transitions all have a natural interpretation in spa
time. For instance, the Haldane phase, or Affleck, Kenne
Lieb, and Tasaki~AKLT ! wave function, with its mysterious
hidden string order parameter is identified as a ‘‘disorde
flat’’ RSOS surface26 with a simple local order paramete
The height representation, dual to the spins, gives a sim
local order parameter for the quantum string.
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VI. PHASES „E50…

In this section the general string Hamiltonian will be sim
plified by leaving out the quartic Ising term@E50 in Eqs.
~5.4! and ~5.5!#. Our string problem is now equal to th
spin-1 XXZ model. The zero-temperature phase diagram
the string problem is surprisingly rich, and even for the ca
E50 there are six phases and a large variety of phase t
sitions. These phases can be classified in three groups:
sical strings localized in space, quantum rough strings of
free variety, and partly delocalized phases of which the d
ordered flat phase is a remarkable example. In this sec
we will briefly review the six phases as discussed in
literature on the spin-1XXZ problem~5.6!. The problem will
be addressed from the quantum string perspective. For m
details we refer to Ref. 26. In Sec. VII we will show tha
with a finite E.0 four additional phases are stabilized.

The phase diagram of the quantum string is shown in F
8 as a function ofD and J. We have used theXXZ model
parameters, defined in Eq.~5.5!, such that the phase diagra
can be compared directly with the spin-1 literature37–40 and
in particular with Fig. 13 of Ref. 26. We will introduce be
low the various order parameters that have been introdu
in this reference to distinguish the six phases in this ph
diagram. The relation between the more general (EÞ0)
string and spin phases will be clarified in Sec. VII.

There is first of all a horizontal and a diagonal strin
phase. In the diagonal phase I no quantum fluctuations
allowed since a diagonal string does not couple to ot
states byHQ ~this is illustrated in Fig. 16 in Appendix A, to
which we refer for further details!. This phase is stabilized
by a large and negativeL22, so that sinceE50 also J
5L22/252L12 is large and negative. A suitable variable i
troduced to define order parameters, following Ref. 26, is
Ising spin variables l5(21)yl, which identifies whether a
given height is in an even or odd layer. This underlying sp
model can have ‘‘ferromagnetic’’ or ‘‘antiferromagnetic
order and so we introduce the corresponding or
parameters41

r5^s l&, rstag5^~21! ls l&,
~6.1!

rstr5^s l~yl 112yl !&.

FIG. 8. Phases and phase transitions of the directed quan
string as a function of the on-site anisotropyD and the Ising inter-
actionJ of the corresponding spin-1XXZ model. The parameterE
is set to zero.
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Here the angular brackets denote the ground-state exp
tion value as well as an average over string membersl. In Eq.
~6.1! we have also included the order parameterrstr dis-
cussed below. In the horizontal phase II one particular he
is favored, thus the order parameterr is nonzero here. This
phase is stabilized by a large positiveK, which suppresses
diagonal links. However,HQ causes virtual transitions from
two horizontal links into two diagonal ones; see Fig. 2. O
the 2D world sheet these fluctuations show up as local
races that do not overlap and thus do not destroy the lo
range order. In both phases the elementary excitations
gapped.

Upon loweringK the terraces grow and at some po
they will form a percolated network: The string has beco
disordered in both space and imaginary time. Via the w
known Kosterlitz-Thouless roughening transition,35 phase IV
is entered forJ,0. This phase belongs to the well-know
XY universality class, characterized by algebraic correlat
functions and gapless meandering excitations: capil
waves in fluid interface language. The roughness, howe
is extremely ‘‘soft’’ and the height difference diverges on
logarithmically, ^(yl2ym)2&; lnul2mu. The transition from
the Gaussian phase that is rough and on average orie
horizontally to the ‘‘frozen’’ diagonal phase is a ‘‘quasi-firs
order’’ potassium dihydrogen phosphate~KDP! transition.26

For large negativeK diagonal links are favored over hor
zontal ones. There is a transition to a second rough ph
~phase VI!. It is distinguished from the first by the orde
parameterrstag, which is zero in phase IV. In this phas
horizontal links are virtual and occur in pairs. As we w
discuss later in Sec. VII, for large negativeK the model can
therefore be reduced to an effective spin-1

2 problem.
For negativeK and positiveJ (5L12/25L22/8) the string

becomes a~physically unlikely! zigzag with alternating up
and down diagonal pieces. Excitations to pairs of horizon
links are gapped. Againrstag5^(21)2 ls l& serves as an or
der parameter. Upon increasingK the islands formed by
pairs of horizontal links start to overlap and there is an Is
transition into the Haldane or disordered flat~DOF! phase.

The pointJ51, D50 belongs to the gapped DOF phas
in agreement with Haldane’s educated guess42,43 that integer
spin chains are gapped at the Heisenberg antiferromag
point. In this ‘‘disordered horizontal’’ string phase the pr
totypical wave function, equal to the AKLT valence bon
state,44 has every up diagonal link followed by a down lin
with a random number of horizontal links in between. T
heightyl takes just two values, say, 0 and 1. The local or
parameterrstr is defined in Eq.~6.1!. This order paramete
measures the correlation between the next step direction
whether one is in a layer of even or odd height. Whenrstr
51, the string just steps up and down between two lay
but the steps can occur at arbitrary positions. Note that
height is a global quantity in spin language, i.e., it is t
accumulated sum over spinsyl5(m50

l Sm
z . Because of this

the above order parameter becomes nonlocal when rewr
in terms of the ‘‘string’’ of spins. Therefore, it is often calle
the string order parameter. We will also use this name,
stress that the ‘‘string of spins’’ to which this name refe
should not be confused with the general strings that are
basis of our model and that the other order parameters
nonlocal as well in terms of the original spinsS.
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This phase diagram can be rationalized by writing t
RSOS problem as the product of a six-vertex model and
2D Ising model ofs spins on the six-vertex lattice, as dis
cussed in detail by den Nijs and Rommelse.26 The horizontal,
diagonal, zigzag, and also the second rough phase VI
correspond to Ising order:r5^s l& is nonzero in the horizon-
tal phase II, whilerstag5^(21)ls l& is nonzero in the diago-
nal phase I, the zigzag phase III, and the rough phase VI.
six-vertex part is defined on the crossing points of steps
the surface; see Fig. 9. This is a~sometimes highly! diluted
set of points. The Ising degree of freedom disorders on
transition between phases III and V and between IV and
while the six-vertex part remains unchanged. Therefo
these transitions are Ising like. Transitions I→IV, I→VI,
IV→V, and III→VI are related to the six-vertex part becom
ing critical and these KDP and Kosterlitz-Thouless~KT!
transitions are known from the quantum spin-1

2 chain. The
transition II→IV is related to the famous surface-rougheni
transition, of the Kosterlitz-Thouless type.35,36 The subtle
transition between phase II and V is coined a ‘‘prerough
ing transition’’ by den Nijs. It separates two gapped phas
At the transition the gap closes and the system is Gauss
with varying exponents along the transition line.37–40

Almost all the phases can be distinguished by the ab
order parametersr, rstag, andrstr, except that these do no
discriminate between the diagonal phase I and the ro
phase VI. These two phases can be identified by also in
ducing an order parameter that detects the presence o
average slopepslope5^yl 112yl&. In Table I we list the vari-
ous phases forE50 and the order parameters.

As we shall see in the next section, in the general c
EÞ0 it is more convenient to introduce slightly differen
spin variables to identify all the ten different phases th

FIG. 9. Vertices~thick dots! on the space, imaginary-time strin
world sheet. The numbers correspond to the heightsyl ,k . Arrows
are drawn when the heights of neighbors differ. When four arro
occur at a crossing point this is called a vertex.

TABLE I. Order parameters that distinguish between the
different phases in the phase diagram forE50. A plus entry in the
table indicates that the particular order parameter is nonzero.

Phase r rstag rstr rslope

I 1 1

II 1

III 1 1

IV
V 1

VI 1



m
lit

to
a
e

de
er
or
s

f
en

an

a

r

sp

s
a
F

.

ase
a

ing
p

s
he
een
e

te

es.

for

PRB 58 6973CHARGED DOMAIN WALLS AS QUANTUM STRINGS ON . . .
occur then. The choice of Ref. 26 discussed here is so
what more convenient for understanding the universa
classes of the various phase transitions.

VII. THE FULL PHASE DIAGRAM:
PHASE-BOUNDARY ESTIMATES

As mentioned above, the quartic Ising term with prefac
E generalizes theXXZ Hamiltonian and leads to extr
phases. We will show that four extra phases are to be
pected and that they are stabilized by a positiveE parameter.
The most disordered phase is still the Gaussian phase~see
Fig. 10!.

Using a decomposition similar to that above, we can
termine how many different phases to expect for a gen
spin-1 chain withz-axis anisotropy and nearest-neighb
interactions.45 Think of the spin 1 as consisting of two spin
1
2; see Table II. The first issz5↓ when the spin 1 hasSz

50 andsz5↑ whenSz561, similarly to the Ising degree o
freedom defined above. This spin thus indicates the pres
or absence of a step. The second spin1

2 s is defined assz

5Sz/2 whenSz561 and is absent whenSz50. This is re-
lated to the diluted vertex network discussed by den Nijs
Rommelse, in that if there is a step, thez component ofs
indicates whether this step is up or down. The spinss can
have ferromagnetic (F) or antiferromagnetic~AF! order or
they can be disordered (D). For s the two ferromagnetic
cases correspond to different physical situations and we h
to distinguish ferromagnetic↓ (F2), a horizontal string,
from ferromagnetic↑ (F1). When s has F2 order, s be-
comes irrelevant~or better, there are disconnected finite te
races ofs spins with short-range correlations!. Therefore, one
expects ten phases, depending on the order of the two
species: oneF2 phase, threeF1 phases, threes-disordered
phases, and threes-antiferromagnetically ordered phase
These are listed in Table III. An example of a phase diagr
in a case in which all ten phases are present is show in
11, which corresponds to the caseE55. The detailed of how
this phase diagram was obtained will be discussed below

FIG. 10. Typical low-temperature string in the slanted parame
region VII.

TABLE II. Spin-1 Sseen as a combination of two spins1
2, s and

s.

S 1 0 21

s ↑ ↓ ↑
s ↑ ↓
e-
y

r

x-

-
al

ce

d

ve

-

in

.
m
ig.

There are four new phases, VII–X, compared to the ph
diagram discussed in Sec. VI. All four are stabilized by
positive E parameter in Eq.~5.4!. Three phases, VIII–X,
result from an antiferromagnetic order of thes spin. This
corresponds to alternating horizontal and diagonal str
links ~see Table III!. The diagonal links can be either all u
@ferromagnetic~FM!, phase VIII#, alternatingly up and down
~AF, phase X!, or disordered~phase IX!. In phase VII thes
spin is disordered, while thes spin is in the FM phase. This
is a diagonal wall diluted with horizontal links. These link
coherently move up and down along the wall, lowering t
kinetic energy. The wall can take any average angle betw
2p/4 and p/4 and this angle is fixed by the value of th

r

TABLE III. Schematic representation of the different phas
Also shown is the long-range order of the two spins1

2, s ands, as
defined in the text.F denotes ferromagnetic,F1 up-spin ferromag-
netic, F2 down-spin ferromagnetic, AF antiferromagnetic, andD
disordered.

FIG. 11. Phases and phase transitions of the quantum string
E55 as a function oft. On the axis are the on-site anisotropyD and
the Ising interactionJ.
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parameters. We will call this the ‘‘slanted’’ phase. In term
of the decomposition into an Ising spin model and a s
vertex model of den Nijs and Rommelse it is easy to see
the horizontal links change the orientation of the Ising s
and act like a Bloch wall. The Ising spin is therefore diso
dered. The six-vertex term is irrelevant for the existence
the slanted phase: In the case of a single horizontal l
i.e., on the boundary between the slanted and diagonal s
phase, there are no vertices.

A large part of the phase boundaries can be estima
exactly, almost exactly, or to a fair approximation. Let
focus first on the classical phases. The diagonal, horizon
and zigzag phases have the following energies in the cla
cal approximation in which there are no fluctuations, as
easily verified:

EI5L~K1L22!5L~D1J1E!,

EII'0, ~7.1!

EIII'LK5L~D2J1E!,

whereL is the length of the chain. The first-order transitio
will therefore occur close to the linesK52L22 (D52J
2E) between phases I and II,L2250 (J50) between
phases I and III, andK50 (D5J2E) between phases I
and III. These transitions become exact in the classica
large-spin limit.

The transition between phases I and VII, the diagonal
slanted phases, can be found exactly. The transition is of
Pokrovsky-Talapov or conventional 1D metal-insulator ty
~see, for instance, Ref. 25!. The horizontal link can be see
as a hard-core particle or a spinless fermion, with the par
eters determining an effective chemical potential. For a c
cal chemical potential equal to the bottom of the band of
hard-core particle the band will start to fill up. The transiti
occurs when the diagonal string becomes unstable with
spect to a diagonal string with one horizontal link adde
This single link delocalizes along the string with a mome
tum k and a kinetic energy 2T cos(k). The minimal energy is
(L21)K1(L22)L2212L1222T and the transition occur
whenK52(L122L222T) or, with T51, when the phase I to
phase VII transition

D522~J1E11! ~7.2!

occurs.
The transition between phases III and V will occur wh

horizontal link pairs unbind in the zigzag background.
rough estimate, neglecting fluctuations, is obtained by co
paring the energy of a single horizontal link with that of
perfect zigzag. In the same way as above we estimate
phase boundary to be close toD52(J2E21). In the same
way the transition from phase II to V or IV is determined b
the energy of a single diagonal step in a horizontal w
which becomes favorable whenD52. This last estimate
turns out to be very crude, in that it largely underestima
the stability of the flat phase.

For large negativeK the horizontal links are strongly sup
pressed and the string can be mapped perturbatively o
spin-12 chain. IdentifySz51 ~diagonal upward! with sz5↑
andSz521 ~diagonal downward! with sz5↓. Via a virtual
-
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ng
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~0,0! spin pair~two horizontal links! the spins can still fluc-
tuate, (1,21)→(0,0)→(21,1). One finds, using second
order perturbation theory inT/K,

Heff~D→2`!5~4J1 j 6!(
l

sl
zsl 11

z

1 j 6
1
2 (

l
~sl

1sl 11
2 1sl

2sl 11
1 !,

j 65
2T 2

u2D13Eu
. ~7.3!

Here we subtracted an irrelevant constant term. This has
form of the well-studied spin-1

2 Heisenberg chain with Ising
anisotropy. Transitions occur when 4J1 j 656 j 6 or when
J50 ~III to VI ! and J521/u2D13Eu ~I to VI ! ~settingT
51).

The above estimates seem to suggest that the lineJ50 is
special. Our numerical results show that it describes ac
rately the transition between phases III and VI, but also
transition between phases IV and V. This agrees with
arguments given by den Nijs and Rommelse26 that the
Kosterlitz-Thouless transition between phases IV and
should occur precisely at theJ50 line.

The slanted phase consists predominantly of up diago
and horizontal links. Neglecting down diagonals altogeth
which turns out to be a good approximation, one can ag
map the string or spin-1 chain on an effective spin-1

2 system.
Now the relevant degree of freedom is thes Ising degree of
freedom. Becauses5↑ ~a diagonal link! is not symmetri-
cally equivalent tos5↓ ~a horizontal link! the spins will
‘‘feel’’ an effective magnetic field, which regulates the de
sity of horizontal links. Rewriting Eq.~5.4! gives

Heff5D(
l

~s l
z1 1

2 !1~J1E!(
l

~s l
z1 1

2 !~s l 11
z 1 1

2 !

1T (
l

~s l
1s l 11

2 1s l
2s l 11

1 ,! ~7.4!

and, after rescaling and puttingT51,

Heff5h(
l

s l
z1D(

l
s l

zs l 11
z 1 1

2 (
l

~s l
1s l 11

2 1s l
2s l 11

1 !,

~7.5!

with the field h5(D1J1E)/2 and Ising couplingD5(J
1E)/2. On the lineh50 the number of up diagonal link
equals the number of horizontal links. The average tilt an
is thus 22.5° in this approximation. The phase diagram of
spin-12 chain in theh-D plane was discussed by Johnson a
McCoy.46 For h50 there are three phases. The ferromag
corresponds to phase I, the antiferromagnet to phase V
and the gapless disordered phase translates to the sla
string phase VII. Increasing the fieldh in the AF phase will
cause a transition to the gapless phase with a finite mag
zation. In the approximation that down diagonals are
glected, it follows from the results of Johnson and McCo46

that the pointD51, h50 or J522E is the point with the
most negative value ofJ where phase VIII is stable. ForE
50 ~as well as for small values ofE! this occurs in the
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positiveJ side of the phase diagram, meaning that the tr
sition from phase VIII to phase X will in fact not be stabl
For positive values ofJ, down steps in the original mode
proliferate. To have a phase diagram with all ten pha
present we chooseE55.

In Fig. 12 the various phase-boundary estimates gi
above are summarized. The topology of the main part of
phase diagram has now become clear. In the center of
figure for E55 the Johnson-McCoy phase diagram is
serted. The estimates suggest that at least phases VII
VIII are stabilized by takingE55. The dotted line through
phase VIII is the line where the effective fieldh is zero and
the number of diagonal links is~nearly! equal to the numbe
of horizontal ones.

We finally argue that the slanted phase exists in so
region of the phase diagram for anyE.0. To see this, first
consider the caseE50. Along the lineD50, our model
~with E50) corresponds to the Heisenberg model with Is
anisotropy and the pointJ521 corresponds to the isotropi
ferromagnetic Heisenberg point. Along the lineD50, the
transition from the ‘‘ferromagnetic’’~diagonal in string lan-
guage! phase I to theXY phase IV therefore occurs atJ
521. Now, for E50, the exact location of the line alon
which phase I becomes unstable to the slanted phase
given byD522(J11) according to Eq.~7.2!, goes exactly
through the ferromagnetic Heisenberg point atJ521 as
well. The results of Fig. 13 of den Nijs and Rommelse26

indicate that this line then touches the phase boundary
tween phases I and IV right at this point in such a way t
for E50 no slanted phase occurs. If we assume that b
phase boundaries shift linear inE for E nonzero and small, it
is clear that the slanted phase must stabilize in some re
near the pointD50, J521. for one sign ofE, while for the
other sign the phase must be absent. Physically, it is c
that the stabilization of the slanted phase will occur for po
tive values ofE, E.0.

VIII. NUMERICAL ANALYSIS

To fill in the details of the phase diagram we have p
formed exact diagonalization and finite-temperature quan
Monte Carlo calculations. Ground-state properties of stri
up to 15 holes~spin chains of length 14! were obtained using
the Lanczos diagonalization method. For the Monte Ca
method we used the checkerboard decomposition, briefly

FIG. 12. Various phase transitions, obtained from semiclass
estimates, exact arguments, and perturbative mappings to spin1

2.
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plained in Sec. III. The Monte Carlo method has the dis
vantage that an extra limit to zero temperature has to
taken, a regime where the updating slows down considera
and where it is difficult to judge the accuracy. To determi
the phase boundaries of the directed string we mainly u
the Lanczos results for the equivalent spin model. On
other hand, the Monte Carlo space-time world sheets prov
a transparent physical insight into the phases, phase tra
tions, order parameters, etc. Moreover, the Monte Ca
method allows, of course, one to treat bigger systems.

We are in the fortunate situation that the order parame
of the various phases and the universality classes of the t
sitions are known. This offers a variety of approaches
determine the critical lines: One can monitor the finite-s
behavior of the order parameter, correlation functions, or
energy-level spacings. Typically we applied two independ
methods to the various transitions. Our aim is to map out
entire phase diagram with an accuracy of roughly the l
thickness in the phase diagram. For very accurate estim
other methods, notably the density-matrix renormalizatio
group treatment of White,47 are more appropriate.

An elegant and powerful method is the phenomenolog
renormalization-group approach pioneered by Night
gale.48,49 In this approach one considers an infinite strip w
a width L, as a finite-size approximation to the 2D classic
system. At the critical temperature of the infinite system o
expects, from finite-size scaling, that the correlation len
along the strip scales like the width of the strip~L1 or L2),

jL1
~Tc!5

L1

L2
jL2

~Tc!. ~8.1!

The infinite strip is solved by diagonalizing the~finite! T
matrix. The correlation length can be calculated from

j51/ln~l1 /l0!, ~8.2!

wherel0 andl1 are the largest and second largest eigenv
ues of theT matrix.

al

FIG. 13. Estimate of the preroughening transition betwe
phases II and V. The plot showsL@E1(L)2E0(L)# for various
lengthsL, as a function of the parameterD, with J50.8 andE
50. The two crossing points between the successive curves form
upper and lower estimate of the transition.
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A finite 1D quantum chain can be viewed as a strip in
nitely long in the imaginary-time direction~zero tempera-
ture!. In the time continuum limit, writingT5exp(tH), the
equation corresponding to Eqs.~8.1! and ~8.2! is

L1@E1~L1!2E0~L1!#5L2@E1~L2!2E0~L2!# ~8.3!

for two different string lengthsL1 ,L2→` and for parameter
values at criticality. HereE0 andE1 are the ground state an
first excited energy of a quantum HamiltonianH. According
to Eq. ~8.3!, a phase transition line can be located by stu
ing the energy gap as a function ofL, while monitoring when
Eq. ~8.3! is obeyed. A practical example of Eq.~8.3! is
shown in Fig. 13. Successive curves for lengthsL and L
12 show two crossing points. Extrapolating these cross
points to infiniteL gives two estimates of the prerougheni
transition from phase II to phase V.

The above scaling holds when time and space scale in
same way orE1(q)2E0;qz, with a dynamical exponentz
51. This can be checked independently, giving a s
consistent justification of the use of Eq.~8.3!. In a similar
spirit one can determine the critical scaling of correlati
functions of an operatorO by monitoring the lowest-energ
state with a nonzero overlap withOu0&. This has been use
extensively37–40 to study the phases and exponents of
Gaussian phases of the spin-1 chain. We refer to these
ticles for more details.

Another method used to determine second-order ph
transitions is the Binder parameter,50 which we define as (3
2^m4&/^m2&2)/2, wherem is the relevant order paramete
This quantity tends to 1 in the ordered phase, where^m4&
'^m&4, and approaches 0 in the disordered phase, whem
has a Gaussian distribution around̂m&50. In a
renormalization-group sense the shape of the order param
distribution function becomes independent of the size
criticality. The various curves for different sizes of th
Binder parameter versus model parameters orT should there-
fore cross at the critical point. For instance, for the Isi
transition between phases III and V we takem5(21)yl2 l ,
the Ising degree of freedom introduced before.

The Kosterlitz-Thouless transition between, for instan
phases IV and V is a subtle one due to the infinite orde
the transition and the exponential vanishing of the gap. P
vious studies show a large uncertainty in the position of
transition line. In the entire Gaussian rough string phase
system is critical. Height correlations diverge very weak
like G(r )5^(yr2y0)2&}C ln(r). At the KT transition point
the prefactor takes the universal36 valueC52/p2. We found
that this relation is very useful in determining the KT tra
sition line; see Fig. 14. This relation gives surprisingly go
results even for very small distances and is consistent wi
KT transition at J50, as discussed by den Nijs an
Rommelse.26

The complete phase diagram forE55 was already shown
in Fig. 11. For this value ofE the slanted phase VII is ver
pronounced. Phases VIII–X occur in a small region in t
middle of the diagram around the line of equal probability
horizontal and diagonal links, in the approximation that t
Hamiltonian can be mapped onto the spin-1

2 problem ~7.5!.
The rough phases occur at small negative values ofJ. Phases
I–III, V, VIII, and X are gapped.
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The character of the various phases becomes clea
looking at the corresponding Monte Carlo snapshots in F
15. In the flat phase one particular heightyl dominates and
the quantum fluctuations do not percolate in space-time.
creasingK these quantum fluctuation islands grow and wh
they overlap the string enters phase IV. The system is Ga
ian rough in both space and time. Note the very weak lo
rithmic meandering; e.g., for a string of length 10, Fig.
shows that the mean-square height fluctuations are onl
order 1 near the KT transition. Despite this, determining
KT transition from G(r ) works surprisingly well for the
small systems calculated.

The fascinating order parameter of the Haldane phas
disordered flat phase becomes transparent when lookin
the world sheet, using the height representation instead o
spin-1 language. Globally, the surface is limited to tw
heights only and is therefore macroscopically flat. Howe
in both the time and space directions there is a disorde
array of up and down steps, with the restriction that ev
step up is followed by a step down, when the order is perf
On flat pieces, however, there are local fluctuations~with
consecutive up steps or down steps! decreasing the value o
the order parameter. These islands will grow whenJ→0
from the positive side and when they overlap the string
comes rough. Note that the rigidity~flatness! is clear when
viewing the overall structure of the world sheet in 111 di-
mensions. On the other hand, from a single time slice
might be tempted to conclude that the string is rough.

The transition from phase I to phase VII is of th
Prokovsky-Talapov type. Such transitions are often d
cussed in the context of a commensurate-incommensu
transition of a monolayer of atoms on a substrate with
different lattice parameter. In the ‘‘floating solid’’ phas
such a system consists of a set of parallel domain walls w
entropic meandering.25 The similarity to phase VII, illus-
trated in Fig. 15, is clear. The entropic meandering in the
classical case is now to be interpreted as the quantum mo
of hard-core particles~horizontal links! along the string.

IX. DISCUSSION AND CONCLUSIONS

Motivated by stripes, we have introduced a lattice stri
model for quantum domain walls and mapped out its f

FIG. 14. Estimate of the Kosterlitz-Thouless transition betwe
phases IV and V. At the transition the slope betweenG(r )5^(yr

2y0)2& and ln(r) approaches 2/p2 ~the dotted lines!.
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FIG. 15. Monte Carlo snapshots of~a! the Haldane phase~phase V, withD50, J51, andE50), ~b! the slanted phase~phase VII, with
D520.75, J525, E55), ~c! the flat phase~phase II, withD52, J50, andE50), and~d! the rough phase~phase IV, withD50, J
520.5, andE50). Black to white means increasing height, except for the slanted phase in~d!, where black denotes a horizontal link an
white an up diagonal link.
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phase diagram. We find a generic zero-temperature sym
try breaking: The string acquires a direction in all cases. T
main reason is that bends in the string prohibit the quan
transport or, vice versa, the quantum motion of kin
straightens out the string~the ‘‘garden hose’’ effect of Nayak
and Wilczek12!. We arrive at the counterintuitive conclusio
that for increasing kink quantum disorder the orientatio
preference of the string grows. The directed string probl
that remains appears to be related to a well understood
face statistical physics~RSOS! model and simultaneously t
a S51 XXZ quantum spin chain with single-site anisotrop
Motivated by the string interpretation, we found a number
phases described by this class of models that were previo
not identified.

Physically, the phases fall in three main categories: c
sical ~flat world sheet!, Gaussian~rough world sheet!, and
disordered flat phases. The phases are further distingui
by the direction they take in the embedding space. Bes
the flat strings in the horizontal and diagonal directions,
find that the disordered flat phases show here a rich beha
Apart from the known phase with horizontal direction, whi
is associated with the incompressible phase of the s
model, we identified another category of disordered
phases that take, depending on parameters, arbitrary d
tions in space~the slanted phases!.

Although this does not apply to the localized strings,
suspect that a strong universality principle might apply to
delocalized strings: At least away from the phase bounda
to the localized phases, the underlying lattice renders
delocalized strings to be described by free field theory. T
reason is simple: Regardless of the terms that one adds t
lattice scale action, the problem remains of theXXZ kind
and the massless phases fall into the (111)-dimensional
O~2! universality class. For instance, one can add other k
kink interactions, etc., and these can be all described
products ofSz operators. Although these operators determ
the nature of the localized phases, they turn into irrelev
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operators in the massless phases. The kinetic sector is m
subtle. For instance, one would like to release the constr
that kinks only occur with ‘‘height flavor’’61. This means
in surface language that one partially lifts the restrictedn
of the RSOS model or in spin language that oneincreases
the total spin; e.g.,S52 means in string language that kink
occur describing height differences of62 as well. Although
increasing the magnitude of spin has an influence on
localized phases, it does not change the fact that the mas
phase away from the phase boundaries is still obeyingXY
universality. A point of caution is that the holes in princip
could change their order when larger excursions are allow
However, these ‘‘exchange loops’’ are strictly local an
therefore irrelevant for the long-wavelength behavior as lo
as the string is internally an insulator. These could repres
more of a problem for strings that are internally superco
ductors or metals.

We also stress that it follows from the arguments of d
Nijs and Rommelse26 that the occurrence of a gappe
Haldane-type phase for strings is not a peculiar feature of
spin-1 representation, but a general consequence of the
tence of further neighbor interactions between the holes
strings.

Do our findings bear any relevance to the stripes in
prates? At the very least, they do bring up some interes
questions.

~a! Is the stripe solidification in, for instance, the LT
cuprates3 initially driven by a single string effect or by a
collective transition of the string liquid? In the end it has
be the latter since a single string cannot undergo phase
sitions at finite temperatures. However, it can be well ima
ined that the effect of the LTT-pinning potential is to stab
lize ~1,0! directed stripes over~1,1! stripes. In the language
of this paper, this amounts to an increase of the parameteK,
which could move the stripe from the Gaussian phase
the horizontal flat phase. At zero temperature, this wo
turn individual stripes in straight rods that are obvious
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much easier to order than meandering strings. At finite te
peratures, this could increase the single-string persiste
length substantially, so that stripe-stripe interactions beco
more effective in stabilizing a stripe solid at finit
temperatures.51 Further work is needed to establish if the
single-stripe transitions are of relevance.

~b! Do the disordered flat string phases exist? The s
plest disordered flat phase is the horizontal one~phase V!
corresponding with the Haldane phase of theS51 spin
chain. In string language, this is nothing but a localiz
string along the~1,0! direction in the lattice, which is, how
ever, not site centered~as is phase II! but, on average,bond
centered. Bond-centered stripes show up in the numeri
study of the t-J model by White and Scalapino,19 which
shows that the ground state of this model at finite doping
a stripe phase. A main difference with the mean-field stri
is that theset-J stripes are bond centered. Initially, one cou
be tempted to think that this has a truly microscopic reas
Charges int-J tend to be on links. However, it could also b
due to acollective string effect: It could be ‘‘our’’ phase V.
This can be easily established by measuring the approp
~string! correlators. Is it the case that on equal times
charges are on sites while the kinks take care of delocaliz
the stripes over two lattice rows or is it so that on all tim
the charges are on the links? This is obviously an impor
question in the light of recent works relating the bond ce
tering via Hubbard-ladder physics to superconductivity22

We also notice that there are experimental indications
bond centering in the nickelates52 where disordered flatnes
could possibly also play a role.

~c! If well developed stripes exist in the superconduct
and/or metals, these have to occur in the form of a quan
disordered stripe phase or a quantum string liquid. Wha
learned in this regard from the present study of a sin
string? A prerequisite for the existence of a quantum str
liquid is that a single string is delocalized. If our conjectu
that a single critical string is described by free-field theo
turns out to be correct, this amounts to a considerable s
plification. In Euclidean space time, the single free str
world sheet is like a Gaussian membrane and a system
strings becomes a system of interacting Gaussian m
branes, embedded in 211 dimensions. This in turn is like a
classical incommensurate system in three dimensions, wh
although barely studied, appears as a tractable problem
instance, it is known that the 3D incommensurate solid m
at a finite temperature in all cases.53 For the quantum cas
this means that the quantum-melting transition will occur
some finite value of the coupling constant, which in tu
depends on the single-string quantum fluctuation as wel
string-string interaction effects. Investigations address
this many string problem are in progress, profiting from t
simple fluctuation behavior of a single string.
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APPENDIX A: TRANSFER-MATRIX FORMALISM

In this appendix we will discuss the specifics of the n
merical calculations. This includes~a! a transfer-matrix for-
malism that is quite efficient numerically,~b! some specifics
regarding the updates, and~c! some further discussion of th
finite-temperature behavior of the directedness in the vari
T50 phases.

The transfer matrix is constructed as follows. The pa
tion function is

Z5Tr eHCl1HQ5 lim
n→`

Tr~ ITAITB!n. ~A1!

In the above formulaI is the identity operator, in our case
complete set of string configurations. We have chosen
split theT matrix into a contribution from even and odd site
or A andB sublattices~checkerboard decomposition!,

TA5expF1

n (
l 51

L/2

~HCl,2l1HQ,2l !G , ~A2!

with a similar expression for the odd sites.H(2l ) is the
Hamiltonian of the even string element 2l , equal to Eq.~2.1!
or ~2.4! without the sum over string links.L is the number of
links in the chain. Because of the sublattice decomposit
TA is a simple product of localT matrices andZ becomes

Z5 lim
n→`

(
$r l ,k ,r l ,k8 %

)
k51

n

)
l 51

L/2

^$r l%kutA
2l ,ku$r l%k8&

3^$r l%k8utB
2l 11,ku$r l%k11&. ~A3!

Each time slice is split in two subslicesr and r 8. The nota-
tion $r l%k denotes the set of positionsr l at the given time
slice with indexk. Note that thet matrices are independent o
l and k and these indices only label the position of thet
matrix in the 2D world sheet. The localt matricestA and tB
depend only on three positions. For instance,

^$r l%kutA
2l ,ku$r l%k8&

5^r2l 2 l ,kr2l ,kr2l 11,kutA
2l ,kur2l 21,k8 r2l ,k8 r2l 11,k8 &, ~A4!

with the restriction r2l 21,k5r2l 21,k8 and r2l 11,k5r2l 11,k8 .
Since each link has eight different orientations, the locat
matrix connects in general 838564 possibilities. However,
most of thet matrix elements are zero and it decomposes i
subblocks, of which the biggest one is 333. The states tha
are connected via the localt matrix, or the Hamiltonian, are
listed in Fig. 16.

The localt matrix at positionl and Trotter slicek is de-
fined as

K r l 21,k ,r l ,k ,r l 11,kUexp
1

n
HlUr l 21,k8 ,r l ,k8 ,r l 11,k8 ,L .

~A5!

The matrix elements depend on the positions of three m
bers of the stringl 21, l, andl 11. The positions ofl 21 and
l 11 are required to be identicalr l 21,k5r l 21,k8 r l 21,k8 in the
two Trotter subslices involved, due to the checkerboard
composition, but the position of memberl can be different,
leading to off-diagonal matrix elements. The matrix eleme
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of the t matrix are easily found by first diagonalizingHl and
expanding the basis vectors in terms of the eigenvectors

Block A contains three configurations; see Fig. 16. W
use the same order for the states as in the figure. Note
only half of the energyK of the diagonal link betweenl
21 andl and the link betweenl andl 11 should be contrib-
uted tol. The Hamiltonian

H5S KT
0

T
0
T

0
T
K
D ~A6!

is easily diagonalized. The eigenvalues areK, E1 , andE2 .
The t matrix is

t5S t11

t12

t13

t12

t22

t12

t13

t12

T11

D ,

t115
1

2
eK/n1N1

2 eE1 /n1N2
2 eE2 /n,

t125N1
2 a1eE1 /n1N2

2 a2eE2 /n,

t1352
1

2
eK/n1N1

2 eE1 /n1N2
2 eE2 /n, ~A7!

t225N1
2 a1

2 eE1 /n1N2
2 eE2 /n,

E65
K
2

6
AK218T 2

2
,

a65
E62K
T , N65

1

A21a6
2

.

Heren is the number of Trotter slices andK, L12, L22, L11,
andT are the string model parameters.

Block B contains two configurations, each with one ho
zontal and one diagonal link. Repeating the above proced
one finds

t5S eDcosh~T/n!

eDsinh~T/n!

eDsinh~T/n!

eDcosh~T/n! D ,

~A8!

D5
K
2n

1
L12

n
.

FIG. 16. Four subblocks of the localt matrix. The other equiva-
lent, symmetry related blocks are obtained byp/2 rotations and
reflections in thex or y axis.
at

re

Block C contains a single configuration of two diagon
links, and the energy andt-matrix therefore containL22,

t5expSKn 1
L22

n D . ~A9!

Block D consists of a square corner between one horiz
tal and one vertical link andL11 is involved,

t5expSL11

n D . ~A10!

APPENDIX B: GLOBAL MONTE CARLO MOVES

For the Monte Carlo program to produce sensible res
it is crucial to have operations that add and remove be
easily. We added global mirror andp/2 rotation operations
illustrated in Fig. 17.

In the latter case half of the string is rotated around any
the sitesl P2, . . . ,L21. This means that, for instance, th
position of all holesm. l is replaced by (xm ,ym)→(xl ,yl)
1@ym2yl ,2(xm2xl)#. Such operations turn out to be ver
efficient: Completely wrapped high-temperature strings
wrap in just a couple of Monte Carlo steps at low tempe
ture.

APPENDIX C: DIRECTEDNESS AT LOW BUT FINITE
TEMPERATURE

Consider first the classical limit (T50 and, for instance,
the energy of thep/2 cornerL1151). At zero temperature
the string would be straight, running along~say! a ~1,0! di-
rection. A local ‘‘corner’’ configuration of the type shown i
Fig. 2~a! would be an excitation with energyL11 ~alterna-
tively, one could consider two kinks!. Clearly, a single cor-
ner suffices to destroy the directedness of the class
ground state. At any finite temperature, the probability
the occurrence of at least one corner is finite:P
5N exp(2bL11). Hence directedness order cannot exist
finite temperatures, for the same reasons that long-range
der is destroyed at any nonzero temperature in one dim
sion. In the simulations the string is of finite length and t
infinite temperature limit ofNdir(T) is therefore not zero bu
rather a small but nonzero value54 ~;0.03 for a domain wall
of length 50!. Ndir(T) is already close to this value for a
temperatures of orderL11 and larger. For an infinitely long

FIG. 17. Two additional Monte Carlo operations used for t
simulations of the general string.~a! The 90° rotation around posi
tion l in this example turns a nondirected string into a directed o
~b! The mirror operation is important to quench defects in diago
strings~mirror plane indicated by the dashed line!.
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domain wallNdir(T) drops very fast to zero with increasin
temperature. At the other limit, for lowT where T!L11,
Ndir(T) increases very fast to 1. Again, because the strin
of finite length, it becomes directed already at a finite te
perature: For all temperatures such thatL exp(2bL11),1
the string configurations in our simulations are typica
completely directed. An infinitely long classical string b
comes directed only atT50, of course, since at any nonze
temperature always some corners will occur in a sufficien
long string.

For the quantum string, all the curves look strikingly sim
lar to the classical one. When the temperature is very m
higher than the kinetic term,T@T, all curves merge togethe
and the classical limit is reached. At lowT, whereT!T,
Ndir(T) again increases very fast to 1, as in the classical c
it reaches this value at a finite temperature for the fin
length string. This is even true for the purely quantum str
at the XY point, where all classical microscopic curvatu
energies are zero@see the dashed line in Fig. 4~a!#. We can
understand this in terms of an effective corner or bend
ergy L̄ that is produced by the quantum fluctuations. As
the classical case the probability for the occurrence of a b
is proportional to;exp(2bL̄). At zero temperature no ben
is present and the string becomes directed. A finite len
string effectively becomes directed already at a tempera
such thatL exp(2bL̄),1. At intermediate temperature
where the temperature is of the order of the kinetic te
things are more difficult and it is far from obvious what
going on. Especially in this region, all the various classi
curvature energies may play a role and the interplay of th
on the directedness is unclear. Nevertheless, as is clear
the data of Fig. 4~a!, this region connects the high- and low
temperature limits smoothly. Moreover, by comparing t
results for the three quantum strings in this figure it is a
clear that when the string is more quantum mechan
Ndir(T) is higher.

We end this appendix with a brief qualitative descripti
of our observations concerning spontaneous directedne
low but finite temperatures in regions of the phase diagr
t
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where the directed string has a type of ordering other t
that already discussed. All the results apply toL1150 and
we refer to Table III in Sec. VII for a quick introduction to
the various phases of the directed string problem and for
numbering~I–X! of the various phases.

The entire zero-temperature phase diagram of the dire
string is reproduced.

Phase I is very stable with respect to bends. By ‘‘stabl
we mean thatfinite strings do not change their appearan
when increasing the temperature from zero to a modera
small temperature, of the order of 0.1T.

Deep in the horizontal phase II~large positiveK! quan-
tum fluctuations are strongly suppressed, and at the s
time the string becomes susceptible top/2 corners. On the
other hand, when we approach from phase II the bounda
with phases IV and V, the fluctuations increase and the st
stiffens ~Fig. 4!. This is in agreement with the pictur
sketched before that quantum fluctuations orient the strin

Deep inside phase III the string changes constantly
tween horizontal zigzags and vertical zigzags. Ap/2 turn
costs no extra energy. Again close to phase V quantum fl
tuations have the effect of removing bends.

The Haldane phase V and the rough phase IV are v
robust and a considerable fraction ofp/2 bends occurs only
at relatively high temperatures of the order of 0.2T.

In the slanted phase VII high temperatures are nee
before down diagonal links come in. On the other hand, h
zontal links are easily replaced by vertical ones. This o
increases the energy very slightly, but the entropy gain
considerable. A typical low-temperature string is shown
Fig. 10 in Sec. VII. To zeroth order the horizontal and ve
tical links can be thought of as spinless fermions mov
coherently along the string. In the dilute limit these lin
have only a weak interaction. The order of the links is co
served and at zero temperature the ground state has
horizontal links. However, our simulations indicate that fo
small range of negativeL11 values a diagonal string with
alternating horizontal and vertical links is favored. It is aga
the kinetic energy of the horizontal and vertical links th
keeps the string oriented in the~1,1! direction.
s.
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