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Force and weight distributions in granular media: Effects of contact geometry
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The influence of the local contact network on interparticle forces and effective particle weights is studied in
simulations of two-dimensional packings of frictionless, Hertzian spheres. The weight distributionP(w)
changesqualitativelywhen approaching a boundary and differs for regular and irregular packings, while the
interparticle force distributionP( f ) is robust. We provide examples whereP(w) at the boundary, which is the
quantity probed experimentally, deviates substantially fromP( f ) in the bulk. Discrepancies between the
P(w)’s predicted by theq model and measured in experiments are due to differences in the contact geometry.
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A crucial property of granular materials is their heterog
neity @1#. In particular, the strong fluctuations of interpartic
forces and the organization of the largest of these in tenu
force networks have recently attracted considerable atten
@2–9#. The most basic characterization of the force netw
is the probability distribution of the contact forces. Measu
ments@2–6#, numerical simulations@7,8#, and theory@9# all
find that force distributions decay exponentially for lar
force @10#, albeit with nonuniversal exponents. The behav
for small forces is less well settled but relevant: it may in
cate arching@11# or jamming@12#.

In this paper, we will unravel the effect of the local co
tact geometry on the distributions of interparticleforce Fand
effective particleweight W; the weight is defined as the su
of the vertical components of all downward pointing forc
on a particle@see Fig. 1~b!#. While the distribution of forces
F is the primary object one ultimately wishes to characteri
it is difficult to access experimentally. In experiments whe
particle-wall forces are measured by means of imprints
carbon paper@2–4# or force sensors@5# one probes the
weightof the bottom particles. The weight is also the prim
quantity described by theq model, which is a lattice mode
in which weights are randomly redistributed over a fix
number of supporting grains@9#.

Our central point is that while the distribution ofF is
robust, the distribution ofW is profoundly influenced by the
contact geometry, in particular bythe number of downward
pointing contact forces nc . This has the following conse
quences.

~i! The bulk and bottom weight distributions are qualit
tively different due to geometrical effects: on an averagenc
is smaller for bottom than for bulk particles@see Fig. 1~a!#.

~ii ! For small weights, the weight distribution of theq
model is qualitatively different from distributions observe
experimentally; this is due to the fixed contact geome
~fixed nc) of the q model.

~iii ! The distributions of bottom weights and bulk forc
are in generaldifferent; regular contact geometries or high
compressed packings@4# exhibit substantial differences be
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tween bulk force and bottom weight distributions. For pac
ings in which many bottom particles havenc51, however,
the bulk force and bottom weight distributions are similar

We will focus on frictionless, Hertzian spheres und
gravity. The particle-boundary forces are then purely ve
cal, and we will refer to their magnitude as the effecti
weightW of a particle. To allow comparison to theq model,
we define the effective weight also for bulk particles@see
Fig. 1~b!#:

Wj[mjg1(̂
i &

~FW i j !z . ~1!

Here mj denotes mass,g denotes gravity,FW i j are the inter-
particle forces, and the sum runs overnc ‘‘up’’ contacts,
associated with the particles that exert a force on particj
from above. In the following, we rescaleW and F to their
average values at a certain height; we write the resca
weights and forces asw and f with distributionsP(w) and
P( f ).

We will probe P(w) and P( f ) by examining boundary
effects in an irregular packing~Figs. 2 and 3!, and by study-
ing a regular packing where the packing order can be bro
by curving the boundary~Fig. 4!. Our framework can now be
summarized as follows. The geometry of the contact netw
has a strong effect onP(w), but P( f ) is very robust. The
weight distribution for particles with a givennc , Pnc

(w), is

robust and behaves aswnc21 for small w. P(w) can be de-

k,

FIG. 1. ~a! Detail of a typical packing in our simulations; th
heighth denotes the distance from the bottom. The force networ
represented by the black lines whose thickness represents the
magnitude.~b! Definition of interparticle forcesF and weightW for
a particle withnc52.
©2003 The American Physical Society02-1
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FIG. 2. ~a! The weight distributionP(w) at various heights
between 10 and 30 in the bulk~open circles! for 2,h,3 ~full
curve! and at the bottom~dots!. Inset: ^w2& which quantifies the
width of P(w) as a function of heighth. The sharp transition of
P(w) near the bottom is clearly visible.~b! P( f ) in the bulk~open
circles! and for the layer-to-layer forces near the bottom~dots!; the
inset showsP( f ) for bulk forces on a log-lin scale.~c! Detail of a
typical packing showing dominance near the bottom of layer
layer forces~black lines! to intralayer forces~white lines! in deter-
mining w. The numbers show the values ofnc for the respective
bottom particles.~d!,~e! Scatter plot of (f i j ,w i j ) for ~d! the bulk
forces and~e! the layer-to-layer forces near the bottom.

FIG. 3. ~a,b! Decomposition ofP(w) according to Eq.~3! ~a! in
the bulk ~open circles! and ~b! at the bottom~dots!; the measured
bulk values for the fractions$r0 ,r1 ,r2 ,r3% in Eq. ~3! are $0.01,
0.11, 0.52, 0.36% and the bottom values are$0.08, 0.46, 0.44, 0.02%;
as explained after Eq.~3!, we excluded the intralayer, almost hor
zontal forces at the bottom.~c!,~d! When rescaled to the averag
value for each distribution function,P1(w) ~c! andP2(w) ~d! are
essentially the same in the bulk~open circles! and at the bottom
~dots!.
03030
composed asP(w)5(nc
rnc

Pnc
(w), wherernc

are the frac-

tions of particles that havenc50,1,2, . . . ‘‘up’’ contacts.
Differences ofrnc

between boundary particles and bulk pa

ticles, and between irregular and regular (q model-like!
packings explain the differentP(w)’s for these cases. Whe
r0 andr1 are large, the total weight distributionsP(w) ex-
hibits a plateau at small weights and a slow decay at la
weights; whenr2 and r3 become large,P(w) becomes
sharply peaked. In this way,P(w)’s small weight behavior as
well as its exponential decay rate for large weights@10# re-
flect the packing geometry.

(a) Numerical method.Our two-dimensional~2D! pack-
ings consist of frictionless spheres~3D! under gravity; the
particles interact through normal Hertzian forces, whe
f }d3/2 andd denotes the overlap distance@13#. Unless noted
otherwise, the material constants and gravity are chosen
that a particle deforms 0.1% under its own weight, and
particle radii are drawn from a flat distribution betwee
0.4,r ,0.6. Masses are proportional to the cube of the ra
The container has a width of 24, employs periodic bound
conditions in the horizontal direction, and has a bottom c
sisting of a fixed hard support. The data shown in this pa
were obtained from 1100 realizations of 1180 particles ea
We construct our packings by letting the particles relax fro
a gaslike state.

(b) Boundary effects.In Figs. 2~a! and 2~b!, the distribu-
tions for the weight and interparticle forces are shown
bottom~dots! and bulk~open circles! particles. ForP(w) we
observe a substantial difference between bulk and bot

-

FIG. 4. ~a!,~b! Packing and force networks in a weakly polydi
perse packing near a flat bottom~a! and a curved bottom~two circle
segments of radius 20 glued together! ~b!. ~c! Distribution of
weightsP(w) on the flat bottom~solid line!, convex curved bottom
~dashed line!, and the concave curved bottom~dotted line!. The
various shapes originate from the corresponding$r0 ,r1 ,r2%: $0.00,
0.10, 0.90%, $0.02, 0.39, 0.58%, and $0.04, 0.46, 0.50%, respectively.
~d! P( f ) in the bulk (h ranging from 10 to 20! for the flat, convex,
and concave bottoms; the inset shows theP( f )’s on a log-lin scale
~the curves are offset for clarity!.
2-2
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particles, and the transition between the bulk and bott
behaviors is remarkably sharp: in the slice 2,h,3 ~full
curve!, the weight distribution is already bulklike@Fig. 2~a!
and inset#. The force distributionP( f ) is more robust; the
only difference between bulk and bottom distributions is
change of the small peak aroundf 50.7 for bulk forces to a
plateau forP( f ) near the bottom@Fig. 2~b!#. It is intriguing
to note that this change is reminiscent of what is propose
an identification of thejamming transition @12#. The good
agreement betweenP( f )bulk and Pbottom(w) for w*0.3 is
fortuitous and, as we will show below, due to the large fra
tion of bottom particles that havenc50 or 1.

Figure 2~c! illustrates that due to particular geometry of
packing near the bottom, the interparticle forces natura
divide up into almost horizontal intralayer forces and ‘‘laye
to-layer’’ forces. The distributions of the contact anglesw i j
are shown in Figs. 2~d! and 2~e! for bulk and boundary con
tacts. In the bulk the contact angles are uniformly distribu
and independent ofu fW u: our packing is isotropic. Near th
boundary, however, this isotropy is strongly broken: t
angles of the ‘‘layer-to-layer’’ forces between bottom pa
ticles and those in the layer above are concentrated aro
p/3 and 2p/3.

Decomposition ofP(w). To understand the change o
P(w) near the bottom, consider the typical packing of F
2~c!. The forces between neighboring bottom particles
almost purely horizontal, so these hardly contribute to
total force on the particle from above@the ‘‘weight’’ in Eq.
~1!#. Thus, the average value ofnc , the number of particles
that contribute to its weight, is on an average lower at
bottom than in the bulk. Let us now argue whythe probabil-
ity of finding a small value of w increases with smaller nc.
Consider Eq.~1! for fixed nc and analyzePnc

(w), the weight

probabilities restricted to particles of givennc . As long as
the joint probability distribution of the interparticle force
remains finite for small forces, it follows from a phase-spa
argument that

Pnc
~w!}wnc21 for w→0, ~2!

for all nc>1 @14#. The particles that do not feel a force fro
above havenc50 and give ad-like contribution at W
5mg; for deep layers this occurs forw!1.

To check the validity of this idea, we have determin
Pnc

(w) both in the bulk and near the bottom by determini

nc for each particle and decomposing the weight distribut
P(w) into thePnc

(w)’s,

P~w!5(
nc

rnc
Pnc

~w!. ~3!

In Figs. 3~a! and 3~b! we show this decomposition for th
bulk and bottomP(w)’s, while P1(w) andP2(w) are shown
in Figs. 3~c! and 3~d!. In determining the value ofnc we
explicitly exclude the intralayer bottom contacts; for t
strongly polydisperse packings, these correspond to an
that deviate less than 13° from the horizontal. For our e
mates of the bulkrnc

’s we do not exclude any forces, i.e., th
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‘‘cutoff angle’’ is strictly 0°. Since the bulk is isotropic, a
cutoff angle of 13° leads to a change of the order of 15%,
too little to explain the change ofr1 by a factor of more than
4. For simplicity, we therefore have kept a cutoff angle of
in the bulk.

The crucial difference between bottom and bulk are
fractions rnc

of particles that experiencenc other particles

pressing on them from above; thePnc
(w)’s obey Eq.~2! and

are very similar, except for a small difference between
bulk and bottomP1(w)’s for small w @15#.

The behavior ofP(w) for smallw is dominated byr0 and
r1 , but these fractions also affect the steepness of the tai
P(w) via the normalization conditions*dw P(w)51 and
*dw wP(w)51. A small value of lim

w↓0
P(w) leads to a

sharply peaked distribution that falls off with a large exp
nent@Fig. 2~a! for the bulk and Fig. 3~d!#, while a plateau at
small w leads to a slower exponential decay at largew @Fig.
2~a! for the bottom and Fig. 3~c#. The contact geometry af
fects the small weight distribution and hence, via the norm
ization constraints, the exponential decay rate of the larg
weight tail [10].

(c) Regular packings.We have seen above that the weig
distributionP(w) is very sensitive to the local packing ge
ometry, while the distribution of interparticle forces is robu
For the particular example shown in Figs. 2 and 3, howev
Pbulk( f ) and Pbottom(w) look rather similar due to a large
amount of particles withnc51. In order to provide an ex-
ample whereP( f ) andP(w) are radically different, and to
test the robustness ofP( f ), we consider a packing of weakl
polydisperse particles, 0.49,r ,0.51. Above a flat bottom,
the particles form an almost perfect hexagonal packing@Fig.
4~a!#, while for a curvedbottom this order is broken@Fig.
4~b!#. The flat bottom leads to particles with mostlync52,
and indeedP(w);w for small w in agreement with Eq.~2!
@see Fig. 4~c!#. For the curved bottom a dramatic change
the fractionsrnc

and correspondinglyP(w) occurs @Fig.

4~c!#. P( f ) in the bulk are all indistinguishable@see Fig.
4~d!# and very similar toP( f ) in the strongly polydisperse
case@Fig. 2~b!#: even major changes in the contact netwo
do not affect the bulk P( f ).

In experiments, the differences between regular and
regular packings were found to be minute@3#. However, the
experimental data for regular packings shows evidence f
d peak atw50, which indicates that there arenc50, and
likely also nc51 particles present. Even though the expe
mentalpackingis regular, thecontact networkis apparently
not, possibly due to friction and the hardness of the partic

The regular packing also clarifies the discrepancy
tween theP(w)’s in measurements andq model@9#. In such
a lattice model, the weight of a particle is randomly distri
uted overnc neighbors. In the simplest casenc52; the re-
sulting P(w) is then qualitatively similar to what we foun
for the flat bottom; in particular,P(w);w for small w @9#.
This is due to the absence of particles withnc51: in simu-
lations of theq model with random connectivities, we foun
a variety ofP(w)’s with finite lim

w↓0
P(w) oncer1.0 @16#.
2-3
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Finally, note thatf q[qw in the q model is more like a con-
tact force, and thatP( f q) remains finite for smallf q @9,16#.

(d) Perspective.Our message is clear: in experiments
which the forces on a boundary are probed, one meas
effectively the weight distributionP(w) that is sensitive to
the local packing near the bottom and whicha priori is dif-
ferent from the robust force distributionP( f ). Why P( f ) is
so robust remains an intriguing open issue.

From the experimentally obtainedP(w), one can estimate
the fractionsr0 and r1 which dominate the small weigh
distribution. The height of the peak atw50, clearly present
in Fig. 5 of Ref. @3# and in Ref.@4# is given by r0 /Dw,
whereDw is the bin width. Ignoring this peak and estimatin
lim

w↓0
P(w) gives the value ofr1P1(0); direct measure-

ments ofr1 would yield P1(0). Based on these conside
ations, it seems that for most experimentally observed pa
ings, r0 and r1 are substantial at the boundary, so th
Pbottom(w) is similar to P( f )bulk ~apart from ad peak atw
50). The same argument probably holds for recent simu
tions by Silbertet al. @17#.

However, in recent experimental data on highly deform
packings of rubber beads@4#, a clear decrease in thed peak
and lim

w↓0
P(w) is visible. We think that these trends a

entirely consistent with a decrease ofr0 andr1 and increase
of r2 and r3 , as expected for highly deformed packing
Such changes in ther ’s would also lead to a steepening
hy
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the exponential tail ofP(w); this steepening is clearly vis
ible in the data of Ref.@4#.

To further test our framework in experiments, direct me
surements of the fractionsr i would be very welcome. Alter-
natively, one can directly influence these fractions by plac
a layer of relatively small or large beads at the bottom. F
small beads,r0 andr1 will be enhanced, leading to a larg
P(w) for smallw, and a slow exponential decay for largew.
Relatively large bottom beads will suppressr0 and r1 and
increaser2 , etc.; the lim

w↓0
P(w) is then suppressed, th

exponential decay becomes steep andP(w) appears strongly
peaked. SinceP( f ) in the bulk is not influenced by a singl
layer of boundary grains, this may be the simplest way to
our framework.

An important issue for future study is clearly the role
friction and dimensionality. Our numerical study has be
done in two dimensions with frictionless spheres; howev
recent studies indicate@8# that the coordination number fo
3D packings with friction is similar to those of 2D friction
less packings. Qualitatively, the picture with which we ha
advanced is therefore expected to capture the realistic ca
three dimensions with friction because our phase-space a
ments are independent of dimension.

We are grateful to Martin Howard and Hans van Leeuw
for numerous illuminating discussions. J.H.S. and E.S.
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@5# G. Lo”voll, K.J. Målo”y, and E.G. Flekko”y, Phys. Rev. E60,

5872 ~1999!.
@6# D. Howell, R.P. Behringer, and C. Veje, Phys. Rev. Lett.82,

5241 ~1999!.
@7# F. Radjaiet al., Phys. Rev. Lett.77, 274 ~1996!; S. Luding,

Phys. Rev. E55, 4720~1997!; F. Radjaiet al., Phys. Rev. Lett.
80, 61 ~1998!; A.V. Tkachenko and T.A. Witten, Phys. Rev.
62, 2510 ~2000!; S.J. Antony,ibid. 63, 011302~2000!; C.S.
O’Hern et al., Phys. Rev. Lett.88, 075507~2002!.

@8# H.A. Makse, D.L. Johnson, and L.M. Schwartz, Phys. R
Lett. 84, 4160~2000!.

@9# C. Liu et al., Science269, 513 ~1995!; S.N. Coppersmith
et al., Phys. Rev. E53, 4673~1996!.
s.

.

@10# This tail is only exponential if the particle deformations a
sufficiently small@8#. Our maximal deformations are 2% an
our tails are not perfectly exponential.

@11# P. Claudinet al., Phys. Rev. E57, 4441~1998!.
@12# A.J. Liu and S.R. Nagel, Nature~London! 396, 21 ~1998!; C.S.

O’Hern et al., Phys. Rev. Lett.86, 111~2001!; I.K. Ono et al.,
ibid. 89, 095703~2002!.

@13# Contact Mechanics, edited by K.L. Johnson~Cambridge Uni-
versity Press, Cambridge, England 1985!.

@14# Such scaling is also implicit in theq model, although there
nc>2 so thatP(0)50.

@15# Bottom particles withnc50 or 1 are typically smaller than
average@see Fig. 2~c!#. For these particles, the intralayer ‘‘a
most horizontal’’ forcesdo contribute slightly to the weights
which enhances the probability for small~but nonzero! weights
at the expense ofP(0); this effect is visible forP0,bottom(w)
andP1,bottom(w) in Fig. 3~b!.

@16# J.H. Snoeijeret al. ~unpublished!.
@17# L.E. Silbert, G.S. Grest, and J.W. Landry, Phys. Rev. E66,

061303~2002!.
2-4


