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It is conjectured that the anomalous spin dynamics observed in the normal state of cuprate superconductors 
might find its origin in a nearly ordered spin system which is kept in motion by thermally meandering charged 
domain walls. 'Temperature sets the scale' finds a natural explanation, while a crossover to a low temperature 
quantum domain wall fluid is implied. 

1. I n t r o d u c t i o n  

Much excitement is generated by the observa- 
tion by Tranquada et al. of the striped phase 
in the cuprates[1], which appears to be in a 
tight competit ion with the superconducting state 
as long as the doping level is not too high[2]. 
Taken together with the observation of the per- 
sistent gap in the normal state[3] and the find- 
ing that  a large magnetic field stabilizes an insu- 
lating state[4], this points to a bosonic physics. 
The electrons pair up above Tc, forming an in- 
teracting boson system and as in, e.g., 4He the 
crystalline ( 'charge-ordered') and superconduct- 
ing state appear  as the natural  candidates for the 
ground state. 

The real novelty of the striped phase is that it 
is at the same time a N6el spin condensate. At 
least, it is a bound state of charge and spin[5], 
with the specialty that  the charge sector couples 
into the spin sector in the form of disorder oper- 
ators: the charged stripes are anti-phase bound- 
aries in the N6el state. In fact, all evidence for 
persisting dynamical stripe correlations in the su- 
perconductors rests entirely on the spin sector[2]. 

Initially we considered the possibility of stripe- 
like correlations, motivated by the anoma- 
lous behavior of the spin-fluctuations in the 
cuprates[6]. Both inelastic neutron scattering[8,9] 
and NMR[7] reveal that  these fluctuations show a 
characteristic time- (r)  and length-scale (~) which 
are both precisely inversely proportional to tem- 
perature.  The lack of an intrinsic scale is rem- 
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inescent of a (quantum) critical regime. This is 
the underlying idea behind the 'nearly antiferro- 
magnetic Fermi liquid' idea of Pines and cowork- 
ers[10]: the system is on its way to a zero temper- 
ature ordered spin state, and superconductivity 
intervenes at the last moment. 

There is a conceptual difficulty with this sce- 
nario. It is expected that  temperature  and dop- 
ing play the role of control parameters: how 
can it be that  the critical regime extends over a 
temperature- and doping range of ~ 1000 K and 

10 %, respectively? At least classical critical 
regimes do not behave in this way. Assuming that  
the system is on its way to the striped phase, the 
relative insensitivity to doping dependence is triv- 
ially explained. In contrast to normal antiferro- 
magnets, the striped phase is an incommensurate 
solid which can exist over a large doping range. 
The non-trivial part  is to explain the tempera- 
ture dependences of the characteristic dynamical 
scales. 

The problem of thermally fluctuating domain 
walls in two dimensions ( ' incommensurate fluids') 
has been studied in great detail[i l l .  In such sys- 
tems, the phenomenon of entropic repulsions is 
common. For increasing temperature,  the ther- 
mal meandering motions of individual domain 
walls increases, as well as the number of collisions 
between domain walls. Collisions cost entropy 
and the net effect is that  the stiffness of the sys- 
tem as a whole increases. Due to these entropic 
repulsion effects, temperature  becomes an impor- 
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tant parameter  in the dynamics. It is emphasized 
that  the basic effect is unrelated to criticality and 
it can therefore appear over a large temperature  
range. As we showed in an earlier paper[6], the 
behaviors of the characteristic time- and length 
scales of the spin fluctuations match in a natural 
way with the expectations for a thermally fluctu- 
ating incommensurate fluid in two dimensions. 

Although the essence of our earlier work is un- 
changed, the relationship between the domain 
wall dynamics and the observed spin dynamics 
was t reated too casually in this earlier paper[6]. 
After summarizing the basics, we will make this 
connection more precise. This is used, together 
with a refined experimental characterization of 
the normal state magnetic fluctuations[9], to de- 
duce a more complete picture of the domain wall 
fluid. 

2. I n c o m m e n s u r a t e  f lu ids  in two  d i m e n -  
s ions .  

The s tandard theory of incommensurate flu- 
ids[Ill starts with the assumption that  single do- 
main walls (DW) behave like Gaussian strings. It 
is assumed that  its motions can be completely 
parametrized in terms of a transversal sound 
mode ~Vq -- cwq ,  where q is the wave number 
along the string, while cw = v f ~  (~ is the 
string tension and p the mass density). In addi- 
tion, it is convenient to first only consider hard 
core string-string interactions. At finite temper- 
atures, DW will be subject to meandering mo- 
tions. The mean square fluctuation of a single 
string in 2D in the transverse z direction between 
two points separated by a distance l diverges as 
((Azl) 2) _~ ~T-l .  When the walls have an aver- 
age distance d, they will on average collide when 
((Azlo)2) ~_ d 2. The typical distance between col- 
lision points follows immediately, 

~d  2 
Iv ~- - -  (1) 

k B T  

This is the most important  length scale in this 
problem. It sets (a) the crossover length where 
the system changes from single wall dynamics to 
that  of the domain wall fluid, (b) it determines 
the collision density and thereby the strength of 

the entropic repulsions, and (c) it corresponds to 
the shortest spin-spin disordering length in the 
special case of the striped fluid. For a further 
elaboration of the statistical physics we refer to 
the li terature[Ill .  The essence is that  the do- 
main wall system can be described as a 2D elas- 
tic medium with an elastic constant which itself is 
proportional to temperature:  F ,-~ T f d~'(A~) 2. 
This is like a XY spin system with J --, T,  and it 
follows that  it is characterized by a zero tempera- 
ture Kosterl i tz-  Thouless transition: at every finite 
temperature,  free dislocations proliferate and the 
system is a fluid. 

In order to adress the temporal  aspects of the 
dynamics we suggested that  the single wall dy- 
namics is coherent on length scales <_ lc: the sin- 
gle string sound oscillations are assumed to be 
underdamped. If this is the case, the relative mo- 
tion of two points a distance l apart  becomes im- 
portant  after a time l / c w ,  and likewise the mean 
average fluctuations of two points a distance lc 
apart deviates significantly from the value d after 
a time of order l c / c w .  Using Eq. (1), it follows 
that  the collision frequency is of order[6], 

~h 
hF = # k B T ,  # - p c w d  2 (2) 

Hence, we find both a characteristic length- and 
time scale which vary as 1 / T ,  with the obviously 
important  meaning that  they both refer to the 
crossover from single wall to many wall behavior. 
It remains to be demonstrated that  these charac- 
teristic scales govern the spin dynamics as well. 

3. C h a r g e d  d o m a i n  w a l l s  a n d  sp in  f l u c tu a -  
t ions .  

The unique feature of the stripes is that  it 
corresponds with an incommensurate solid/fluid 
problem in the charge/longitudinal sector, cou- 
pled into a spin problem: when the stripes are 
ordered one is still left with a Heisenberg anti- 
ferromagnet. Besides the modes of the previous 
section, one has to deal with the transversal fluc- 
tuations associated with the rotational invariance 
of the spin system. At least on the classical level, 
the domain wall- and the tranversal  spin f luctua-  
t ions appear to decouple in the infrared. Although 
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this is theoretically not well understood, this ap- 
pears to be implied by the fact that  the charge- 
and spin ordering transitions are decoupled[1,12]. 
This can be stated more precisely as follows: as 
long as the charged domain walls are intact, the 
spin system is unfrustrated. Calling the exchange 
interaction inside the spin domains J and that be- 
tween spins on opposite sides of the wall J~, the 
(classical) spin system appears identical for ev- 
ery possible configuration of domain walls when 
J = J~. Apparently, J - J~ is an irrelevant op- 
erator. Hence, although microscopically J ¢ J~ 
(and frustration), the spin- and domain wall dy- 
namics decouple in the approach to the long wave 
length limit, although the numerical factors (like 
the spin wave velocity) have to be adjusted. 

Does this mean that  the domain wall dynamics 
would be completely invisible in a measurement 
of the spin dynamical form factor? In fact, in this 
way one measures a convolution of (transversal) 
spin- and domain wall dynamics. One can define 
two distinct equal time correlators (2k~ri = ( -1) iSi  
is staggered spin), 

S(R) = . . ,  (3) 

ST(R) = [uL_,+Re ~ (4) 

where the last proportionalities hold when the 
spin system is disordered. In Eq. (4), h mea- 
sures the charge associated with a single domain 
wall unit cell (e.g., in the nickelates h corresponds 
with the hole number operator, while in the half- 
filled cuprate walls h = 1 corresponds with half a 
hole). Hence, the charge sector appears in a dis- 
order operator form in the spin correlator Eq. (4): 
regardless of the location of the domain walls, the 
change of sign of the spin order parameter upon 
crossing the walls is undone by the term between 
square brackets. It is this correlator which mea- 
sures the transversal spin correlations. On the 
other hand, in the experiment one measures the 
correlator Eq.(3), which is also sensitive for the 
disorder induced by the domain wall fluid. This 
general wisdom should also apply to unequal time 
correlations. 

With the above observations, it becomes possi- 
ble to deduce some characteristics of the ~" and w 

dependence of the spin dynamical structure fac- 
tor. Let us consider the case that  Eq. (4) would 
show near-long-range order, while the charge sec- 
tor is an incommensurate fluid (~T > >  ~). To 
address the temporal aspects of the dynamics it 
is convenient to consider the imaginary part of 
the local dynamical spin susceptibility X"(W) = 
f d (x" ( ( ,  w): every time a domain wall passes a 
particular site, the spin at this site is flipped and 
X"(w) is dominated by this dissipation source. 
It is easy to see that  the domain wall scale F, 
Eq. (2), should appear as a characteristic scale 
in X": (a) when w > >  F the domain wall sys- 
tem appears as static and the frequency depen- 
dence should be similar to that  of the pure spin 
system, (b) when w ~ 0 the spin-flip rate is non- 
zero as long as the domain walls are in a fluid 
state (even when ~T ~ c~) and on hydrodynamic 
grounds X"(w) "~ w. In ref.[6] we present a more 
detailed hydrodynamic argument showing that  in 
fact X"(W, T)  N w / T .  The crossover regime be- 
tween the high- and low frequency regimes should 
be governed by the single scale parameter F, and 
X"(•,T) ~ F ( ~ / r )  = F ( w / ( # k B T ) ,  and this 
is the scaling observed in neutron scattering [8]. 
Hence, we suggest that  this crossover regime is ac- 
tually probed in the inelastic neutron scattering 
experiments. As an interesting ramification, the 
prefactor # in Eq. (2) is also the dimensionless 
quantum of action of the incommensurate fluid: 
the characteristic energy scale for quantum fluc- 
tuations hrQ = (hcw/a )  exp(-1/#)[6].  If, and 
only if, # is of order unity a crossover is expected 
at a reasonable temperature from a high temper- 
ature classical fluid to a low temperature quan- 
tum regime (like in 4He) and this appears as a 
consistency requirement in the present context. 
Experimentally, # - 1 [8]. 

A little more can be said regarding the spatio- 
temporal appearance of the magnetic fluctua- 
tions. Assuming the near decoupling of the 
transversal- and domain wall dynamics, the spin 
wave (transversal mode) spectrum of the static 
striped phase appears as a sensible zeroth order: 
the goldstone modes attach to the incommensu- 
rate wave vectors and the branches should come 
together at the (Tr, ~r) point, while gaps ,-~ J - J '  
are found at the new Brilliouu zone boundaries at 
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smaller momental13]. When the domain walls are 
disordered, one expects that the spin waves start 
to propagate when their wave length becomes of 
order of, or less than the disordering length of the 
domain wall fluid. Longer wavelength spin waves 
will be overdamped. Hence, as a function of fre- 
quency a crossover has to occur from an over- 
damped response at low frequencies to an under- 
damped spin wave response at higher frequencies. 
The frequency where this occurs is wc ~ cr/ lm.L,  
where the mean-free path of the spin waves is 
expected to be proportional to the domain wall 
disordering length: lmj. ~- a~c, where a is a 
spin wave-domain wall scattering cross section 
(0 < a < 1). At frequencies much less than w~, 
the width in momentum space should be set by 
7¢/lm.f.. As long as the spin-wave cones are unre- 
solved, the width of the peaks in S(~', w) should 
behave gs a simple geometric average of the in- 
verse domain wall disordering length (1 / (a~))  
and the apparent w dependent width coming from 
the unresolved spin-wave cone ( ~  = w/c).  The 
domain wall disordering length is nothing else 
than the collision length (Eq.1) and we expect 
for the frequency- and temperature dependence 
of the width of the incommensurate peaks, 

i (kBT)2 ~2 
a(w,T) = (a~d2)--------- ~ + ~ (5) 

where c is the spin-wave velocity. 
Except for a residual width, this is the behavior 

found in the experiment[9]. Interestingly, Aeppli 
et al find that temperature and frequency appear 
with common prefactors. Together with # _ 1 
this implies that aCw ~- c: the product of the 
spin wave-domain wall cross section and the wall 
transversal sound velocity is of order of the spin 
wave velocity (c ~- 0.2 eV ~). This observation 
might hint at the microscopic mechanism of stripe 
formation. 

Further experimentation is needed to see if the 
above physics is the correct one. Central to our 
analysis is the assertion that the collective dy- 
namics in the normal state is in a classical regime. 
General arguments indicate that the difference 
between Eqs. (3,4) acquires a different mean- 
ing in the quantum system, and it is tempting to 

speculate that the coherent spin mode observed 
by Mason et al [14] reflect the onset of quantum 
coherence in the domain wall fluid upon entering 
the superconducting regime. 
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