
Physica 108A (1981) 557-566 North-Holland Publishing Co. 

A CANONICAL TRANSFORMATION RELATING 
THE LAGRANGIAN AND EULERIAN 

DESCRIPTION OF IDEAL HYDRODYNAMICS 

W. VAN SAARLOOS 

Instituut-Lorentz, Rijksuniversiteit te Leiden, Nieuwsteeg 18, 2311 SB Leiden, The Netherlands 

Received 12 March 1981 

We derive by means of a canonical transformation the variational principle of Seliger and 
Whitham for the Eulerian description of ideal hydrodynamics from the more familiar variational 
principle that yields the equations of motion of an ideal fluid in the Lagrangian description. 

1. Introduction 

In fluid mechanics,  two ways exist to specify the fields. The one most often 
used is the Eulerian description, in which the fields are considered as 
functions of the position in space, and time. The Lagrangian description, on 
the other hand, is based on the observation that many quantities specifying 
the fluid refer  more fundamental ly to small identifiable pieces of matter, the 
"fluid particles". In the Lagrangian description one therefore considers a~ll the 
fields as functions of the time and the label of the fluid particle, to which they 
pertain. 

As the fluid equations for ideal flow in the Lagrangian specification reflect 
quite closely the equations of motion for ordinary point particles, it is not 
surprising that a variational principle for  these equations is already known 
since and resembles the one for point-particles. In fact,  the formulation 
of this variational principle is due to Lagrange himself. The formulation of a 
variational principle for the Eulerian way to specify the fields, however,  has 
proceeded in steps and spanned a long period. Clebsch l) was the first to 
introduce in 1859 a variational principle for the case of incompressible flow. 
His analysis however  applies to other cases of constrained flow as well, such 
as the case of compressible isentropic flow, which was investigated in detail 
by Bateman 2) in 1929. It was only in 1968 that Seliger and Whitham extended 
Clebsch's variational principle to the most general case of compressible,  
nonisentropic flow. The Lagrangian they introduce is of a somewhat  un- 
expected form; yet the corresponding Hamiltonian is just the energy and is 
therefore  the same as the one found in the variational principle for  the 
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Lagrangian description, as one might expect.  Hence the question forces itself 
upon us whether  the variational principles for either of the two ways of 
specifying the fields are not in fact  one and the same, so that they may be 
t ransformed into each other  by means of a canonical transformation. It is the 
purpose of this paper to show that such a canonical t ransformation actually 
exists, and that it enables us to derive Seliger and Whitham's 3) variational 
principle f rom the more familiar variational principle of Lagrange. Our 
derivation will clarify the variational principle of Seliger and Whitham, in that 
the so called Clebsch representat ion and the new fields, introduced by Seliger 
and Whitham in order to arrive at a proper  variational principle, will turn out 
to emerge in a natural way. 

The plan of this paper is to treat the variational principle for the Lagrangian 
description first in section 2. We then discuss the canonical t ransformation 
that will yield the variational principle for the Eulerian description in section 3. 

2. Variational principle for the Lagrangian description 

In the Lagrangian description of ideal fluid mechanics,  one brings out the 
fact that the fluid motion may be viewed as the motion of small identifiable 
fluid particles. Accordingly one considers the positions q of these fluid 
particles as a function of the time. If we label the fluid elements with their 
Cartesian coordinates m --(ml,  m2, m3) at some initial time to (which we will 
take equal to zero), the positions q thus become functions of m and t. Other 
fields are given as functions of m and t as well. 

Before  we discuss the equations of motion of an ideal fluid in the Lagrange 
description, it is instructive to realize that the transition from the Lagrangian 
to the Eulerian description can be viewed as a t ime-dependent  coordinate- 
transformation.  For, in the Eulerian description, the fields are given as a 
function of a fixed position in space and of the time. A fixed position in space, 
however ,  can not only be given by the three Cartesian coordinates rl, r2 and r3 
of the position vector  r, but also by the label of the fluid particle which is at 
that moment  at r. This is expressed by the relation 

r = q ( m ,  t ) ,  (1) 

or, equivalently, 

m = t~(r, t), (2) 

where t~ is the inverse of the function q. Eqs. (1) and (2) show that for the 
specification of fixed positions in space, m may be viewed as a set of 
non-Cartesian, t ime-dependent  coordinates.  
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For the discussion of the fluid equations in the Lagraugian description, we 

will. need the Jacobian 

~(q,, q~, q3) (3) J(m, t) 8(mt, m2, m3)' 

and JEj, the co-factor of 3q~]Om s in J. We also note the useful identity 

(a~ , ( r , t ) )  - -J~i (m, t ) l , t (m, t )  (Cramer 's  ru le)  (4) 
3ri , = ~ ( . , , 0  

and the fact the gradient operator may be written as 

0 3 
= a m ~ '  (5) 

Let us consider a fluid element with mass p0(m) din1 dm~ din3, where p0(m) 
is the mass density at t - -0 .  In the Lagrangian description, the equation of 
motion for such a fluid element is given by Newton's law as 

po(m )~i(m, t) = - ~, J~i itp(ra, t) = - J ( m ,  t)Vip(m, t). (6) 
i Omi 

Here partial derivatives with respect to time are indicated by a dot. In order 
to get a closed description, the pressure p, which is a function of the 

mass-density p and the entropy per unit mass s, must be known. For ideal 
fluid motion, only the volume of a fluid element changes, whereas its mass 
and entropy remain the same. One thus has for the density 

p(ra, t) = po(m )lJ (m, t ). (7) 

a n d  fo r  the  e n t r o p y  p e r  uni t  m a s s  

s(m, t) -- soCm). (8) 

Eqs. (6), (7) and (8), together with the function p(p, s) form a closed set of 

equations. 
The variational principle leading to eq. (6) is 

~2 ~2 

I d,. f l d. f atbo(m)q=(., t) 
- po(m)u(p(m, t), s0(m))] = 0. (9) 

This equation should hold for arbitrary variations 8q that vanish at t~ and t2 
and at the boundary of the region of integration. In eq. (9), the internal energy 
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per unit mass u is a function of p and s, with derivatives 

~-s p 

where T is the temperature. 
As p(m, t) depends on the derivatives aqJamj through eq. (7), the Euler-  

Lagrange equations corresponding to eq. (9) are 

+ ~'i amjkO(aqJami)] = 0. (12) dt \ OOi ] 

By using the explicit form of 3? and the thermodynamic relation (10) this 

equation becomes 

a [po(m)p(m, t) 
po(m)Oi(m, t ) -  ~ -~mi[ p2(m, t) 

From eq. (7) we obtain 

Op(m, t) po(m) OJ(m, t) 
O(Oq~/Omj) J2(m, t) 3(Oq~/am~) 

ap(m, t) ] 
a(~qjO~)J = O. (I 3) 

p2(m, t)Jq(m, t) (14) 
po( m ) 

Upon substitution of eq. (14) into the Euler-Lagrange equation (13), one gets 

po(m)ifli(m, t) = - ~'i a , "m, • -~m~Pt t)J~;(m, t)). (15) 

With the aid of the identity 

~ = 0, (16) 
• Omj 

which may easily be proved using eq. (4), eq. (15) finally reduces to 

po(m )ifli(m, t) = - ~ Jij(m, t) Op(m, t) (17) 
i c3mj 

Comparison of eqs. (6) and (17) shows that the variational principle (9) is 
indeed consistent with the equations of motion for the ideal fluid in the 

Lagrangian description. 
The transition to a Hamilton-formalism can be accomplished in the stan- 

dard way. In terms of the generalized co6rdinate*) q and generalized momen- 

* In order to contrast the field q(m, t) with the vectors r, which denote points in a Cartesian 
coordinate system, we call q(m,t) a generalized coordinate and r a position-vector with 
position-coordinates r,, r_~ and r3. 
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turn p, defined by 

ale 
p(m, t)=- Oil(m, t) = po(m )gl(m, t ), (18) 

the Hamiltonian H reads 

(19) 

The Hamilton equations read 

6H 6H 
il(m, t) = 6p(m, t)' [~(m, t ) -  6q(m, t)" (20) 

The functional derivatives used here are defined in the standard way (see e.g. 
Goldstein4)). Using the explicit form of the Hamiltonian, these Hamilton 
equations become 

ill(m, t) = pi(m, t) po(m) ' (21) 

°P(m't) 1 
-~ iL  \ffpl.~ a(aqJami)J (22) 

These equations are equivalent to the Euler-Lagrange equations (13); as was 
already discussed, eqs. (13) are in turn equivalent to the equations of motion, 
eq. (6). 

We notice that the equation of motion for the fluid particles, eq. (6), 
resembles quite closely Newton's equation for point particles. Accordingly, 
the variational principle discussed above is completely analogous to the 
variational principle for point-particles. For we have seen that the Lagrangian 
just assumes its familiar form, namely "kinetic energy minus internal (poten- 
tial) energy". Moreover, we remark that the Hamilton equations for q (eq. 
(21)) is the same as the equation defining the generalized momentum p; this 
one usually finds too. These analogies will be lost if we perform a trans- 
formation to the Eulerian description, as will be discussed in the next section. 

3. Canonical transformation to Eulerian description 

Instead of using the Lagrangian description, in which case one specifies 
fields with the label of the fluid particle to which they pertain, it is usually 
more convenient to employ the Eulerian specification of the fields. In the 
latter case, one considers the fields as functions of their position in space r 
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and time. In the Eulerian description, the fluid flow is completely charac- 
terized by the five physical fields, the density p(r, t), the velocity v(r, t) and 
the entropy s(r, t). 

We have already discussed at the beginning of section 2 that the transition 
from the Lagrangian to the Eulerian description and vice versa may be 
viewed as a time-dependent coordinate-transformation. This transformation, 
which is expressed by eqs. (1) and (2), enables us to relate the density and 
entropy in the two types of specifications as 

p(r, t)It-O",')= p(m, t), or p(r, t) = p(m, t)Im-~r,,), (23) 

s(r, t)]r-q~m,,)= So(m), or s(r, t) = so(m)I,,-~r,,)" (24) 

As the velocity at the position r at time t is just equal to the velocity of the 
fluid element which is at r at that particular moment,  we also have 

Oq(m, t) Oq(m, t)[,,=~r,t). (25) v(r, t)Ir=q~-,,~- at ' or v(r, t) = a------i---- 

We will now show that the variational principle discussed in the previous 
section can be transformed by means of a canonical transformation into a 
variational principle for the fields p(r, t), v(r, t) and s(r, t). In particular, we 
will look for a Hamiltonian formalism in which p, ps (-s~, the entropy per 
unit volume) and the function pO3 play the role of the new generalized 
momenta Pi(r, t). 

To be specific, we will consider a generating functional 
F([q(m, t)], [Q(r, t)]), where Q(r, t) is the new generalized coordinate. The 
theory of canonical transformations for fields, which e.g. has been discussed 
in detail by Kobussen and BroerS'6), proceeds along the same lines as the 
familiar theory of canonical transformations for point-particles (see e.g. 
Goldstein4)). For a generating functional of the above form, the generalized 
coordinates p(m, t) and P(r,  t) are given in terms of q(m, t) and Q(r, t) by 

6F 
pi(m, t) = - -  (26) 

6qi(m, t)' 

8F 
Pi(r, t ) -  6Qi(r, t)' (27) 

whereas the Hamiltonian is invariant since the generating functional F does not 
depend explicitly on time. 

The following form turns out to be appropriate 

= - dr f dm t ) +  po(m )so( m )Qz( r, t) 

+ po(m)m3Q3(r, t)}6(r - q(m, t))]. (28) 
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We will first evaluate eq. (27). By making use of  the identity 

8(r - q(m, t)) = J- l (m,  t )8(m - gl(r, t)), 

we obtain with the aid of  eqs. (7) and (23) 

Pl(r, t ) =  ~F _ po(m) I 
~Qt(r, t) J(m,  t) ls=~(r,t) 

Similarly we get 

P2(r, t) = p(r,  t)s(r,  t) = s~(r, t), 

P3(r, t) = p(r,  t)t~3(r, t). 
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= p(m, t)l,=~tr.t ) = p(r, t). 

(29) 

(30) 

c3Ql(r, I t)  
= -po(m)  I o~r I 

-po(m)so(m)  OQ2(r, t) I 
r =q(m, t) ~ r  r=q(m, t) 

aQ3(r, t)  I 
- po(m)m3 I • (33) 

~ r  j r=q(m, t )  

By using eq. (21) and the identification (25), eq. (33) can be rewrit ten in a more 
t ransparent  way,  viz. 

v(r, t) = - VQI(r, t) - s(r, t)VQ2(r, t) - q3(r, t)VQ3(r, t). (34) 

This is the form of the so-called Clebsch representat ion* for  the velocity field 
which was first used by Seliger and Whitham3). 

I f  we write the Hamil tonian as a functional of  the new fields with the aid of  
eqs. (30)-(33), the new Hamil ton density turns out to be equal to the energy 

* Clebsch ~) introduced his way of representing the velocity field for the case that the term s~'Q2 
may be omitted. 

+ po(m)m3Q3(r, t)[,=qt,,, o] 

p(m, t) = ~Sqi(m, t) dm[oo(m)Ql(r,  t)Ir=~m.t)+ po(m)so(ra)Q2(r, t)Ir=q(m,t) 

Indeed the mass  density and the ent ropy density are two of the new general- 
ized momenta .  We will commen t  on eq. (32) later. 

Next  we evaluate eq. (26). By first performing the r-integration in the 
express ion (28), we obtain 

(31) 

(32) 
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density in the Eulerian specification, 

f dr ~(Q(r ,  t), P(r, t)), H 

f dr[~p(r, t)v2(r, t )+ p(r, t )u(p(r ,  t), s(r, t))]. (35) 

The variational principle for the Eulerian description of ideal fluids that we 
derived thus consists of the Hamiltonian (35), together with the Clebsch 
representation (34) and the identifications (30)-(32). The corresponding 
Hamilton equations are (since from now on all functions depend on r and t, 
we will not write these arguments explicitly) 

0, = - v "  ¢Q,-½v2+/x, (36) 

~H 
0 , = ~  0 z = - v ' V Q z + T ,  (37) 

03 = - v .  VQ3, (38) 

P i =  8H [ P I = - V ' P l v ,  o r { 9 = - V . o v ,  (39) 

- ~Q----~i -~" P2 = - V"  P2v, or ~ = - V"  svv, (40) 

/53 V P3v. (41) 

In eq. (36) we introduced the chemical potential per unit mass, defined by 

p~ = u - Ts + P[O = (OOu~ (42) 
\ Op/,1" 

Eqs. (39) and (40) are just the well-known mass and entropy conservation 
equations. With the aid of eq. (39) and the identification (32), eqs. (40) and (41) 
may also be written in the form 

d__~s = 0, (43) 
dt 

d~3 = 0, (44) 
dt 

where the total time derivative d/dt  is defined by 

d 0 
- -  --- - - +  v • V .  ( 4 5 )  
dt Ot 
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Eq. (43) expresses  the fact  that if we follow a fluid element,  its en t ropy per 

unit mass  remains constant.  In view of the relation m3 = q3(r, t), we can 
similarly conclude that  eq. (44) gives express ion to the fact  that the third label 
also remains constant  in following a fluid particle*. 

For  the equat ion of motion for  the velocity-field we obtain with the aid of  

eqs. (34), (43) and (44) 

dv ~ ~ -dQ3 
d--[ = - V - s V  - (13V - - ~  + ( V v ) "  ( V Q ,  + s V Q :  + tt3~TQ3). (46) 

The fourth term in the right-hand side of  eq. (46), which is due to the fact  that 
the gradient opera tor  and the opera tor  d/dt  do not commute ,  is equal to -1Vv2 
(cf. eq. (34)). By substituting eqs. (36)-(38) into eq. (46), and using also the 
G i b b s - D u h e m  relation, we finally get 

dv 1 
d---{ = - FIx - s VT  = - - Vp. (47) 

P 

Hence  the Hamil ton equations (36)-(41) indeed yield the Euler  equation for 
the velocity-field. We have thus shown that the canonical t ransformat ion we 
introduced yields a variational principle, f rom which the well-known equa- 
tions for p(r, t), v(r,  t) and s(r,  t) follow. In addition, a sixth equation is 
found, which expresses  the fact  that the third label is conserved.  

Let  us retrace the origin of the fact  that Q3 is also conserved (cf. eq. (38)), 
i.e. remains constant  if we follow a fluid particle. In the Lagrangian descrip- 
tion the internal energy depends on ml, m2 and m3 only via the two known 
functions p0(m) and so(m) (cf. eq. (9)). Consequent ly,  there is then a gauge- 
f reedom,  namely  a f reedom to choose,  say, the third label m3. This gauge- 
f reedom is still present  in the Eulerian description, in that u does not depend 

on 43. This in turn implies that Q3 is conserved,  and we therefore  conclude 
that the fact  that Q3 is conserved is related to the gauge-freedom. 

From the Hamil tonian density (35), the Lagrangian of Seliger and Whi- 
tham 3) may  be obtained. The Lagrangian density and Hamil tonian density are 
related by 

= ~'i P, Ol--  ~.  (48) 

If  we use the identifications (30)-(32) to write the Lagrangian density in this 

* We remark that a canonical transformation, for which the three functions ~ become the new 
generalized coordinates, was discussed by Kobussen and BroerS"7). Although in their case the 
three equations expressing conservation of label are found, no equations for p and s are then 
obtained. 
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equation as a function of p, s, 03, Q1, Q2 and Q3, we obtain 

S£ = p[ Ol + sO2+ 03Q~- ½v 2-  u(p, s)]. (49) 

This Lagrangian density, together with the Clebsch representation (34), was 
introduced some years ago by Seliger and Whitham3). One easily checks that 
the Euler-Lagrange equations corresponding to it are equivalent to the 
Hamilton equations (36)-(41). 

It was originally suggested by LinS), that equations, expressing label con- 
servation, should be added to the hydrodynamic equations for p, v and s, in 
order to be able to arrive at a proper variational principle. Later, Seliger and 
Whitham 3) argued that a variational principle can be formulated for the 
hydrodynamic equations in the Eulerian description if they are supplemented 
with an equation that expresses the conservation of only one of the labels. 
Accordingly, they introduced the field 03 and arrived at the Lagrangian 
density (49). In view of the fact that our derivation fully supports the 
interpretation of 03 as suggested by Lin, we may conclude that Lin has 
essentially made the right point. 

We finally remark that Poisson-brackets for the hydrodynamic fields may 
be introduced with the aid of the generalized coordinates and momenta given 
in this section. This is discussed in a recent paper by the author and Bedeaux 
and Mazurg). 

Acknowledgements 

It is a pleasure to thank Professors D. Bedeaux and P. Mazur for illuminat- 
ing discussions on the subject of this paper and for a critical reading of the 
manuscript. A stimulating discussion with Dr. J.M. Rubi is also gratefully 
acknowledged. 

References 

1) A. Clebsch, CreUe (J. Reine Angew. Math.) 56 (1859) 1. 
2) H. Bateman, Proc. Roy. Soc. A125 (1929) 598. 
3) R.L. Seliger and G.B. Whitham, Proc. Roy. Soc. A305 (1968) I. 
4) H. Goldstein, Classical Mechanics (Addison Wesley, New York 1977). 
5) J.A. Kobussen, Some Methods of Classical Mechanics applied to Continuous Systems, Thesis, 

University of Eindhoven, (1973). 
6) L.J.F. Broer and J.A. Kobussen, Physica 61 (1972) 275. 
7) L.J.F. Broer and J.A. Kobussen, Appl. Sci. Res. 29 (1974) 419. 
8) See footnote 2 in J. Serrin, Handbuch der Physik, vol. 8/I, (1959) p. 148, and C.C. Lin, Liquid 

Helium, Proc. Int. School of Physics, (Macmillan, New York, 1963). 
9) W. van Saarloos, D. Bedeaux and P. Mazur, Physica 107A (1981) 109. 


