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The differential real space renormalization theory of Hilhorst et al. is applied to Ising models 
on square lattices with nearest-neighbour interactions only. The renormalization flow equations 
for these two interaction parameters contain two auxiliary parameters; these parameters have to 
be determined by solving two additional equations, one partial differential equation and one 
ordinary equation. The necessity of introducing these additional parameters is explained by 
arguing that for the present formulation of differential real space renormalization theory in d 
dimensions, at least d + 1 parameters are required. The concept of local fixed point is introduced; 
this fixed point can be determined by solving algebraic equations. The linearized flow around it 
describes local properties of the system and is therefore related to the critical properties of 
homogeneous Ising systems. We study temperature-like perturbations around the local fixed point 
and find a unique eigenvalue yT = 1, in agreement with the known exact result. 

I. Introduction 

The  i n t r o d u c t i o n  by  Hi lho r s t ,  Sch i ck  and Van  L e e u w e n  L2) (to be r e f e r r ed  to 

as H S L )  of  a s c h e m e  tha t  y ie lds  e x a c t  r e n o r m a l i z a t i o n  equa t i ons  in d i f feren-  

t ial  fo rm for  the  t w o - d i m e n s i o n a l  Is ing mode l ,  has  had  i m p o r t a n t  m e t h o d o l o -  

gical  va lue .  Fo r ,  whi le  the  mere  e x i s t e n c e  of  such  equa t ions  is a l r e a d y  

surpr i s ing ,  the  d i f fe ren t ia l  real  space  r e n o r m a l i z a t i o n  s c h e m e  of  H S L  has  

p r o v i d e d  a m e a n s  to c h e c k  the ideas  of  r e n o r m a l i z a t i o n  t h e o r y  for  the  mos t  

c e l e b r a t e d  m o d e l  in the  t h e o r y  of  c r i t ica l  p h e n o m e n a .  

The  ideas  of  H S L  have  in r e c e n t  yea r s  been  e x t e n d e d  in va r ious  d i rec t ions .  

M o s t  i m p o r t a n t l y ,  the  r e n o r m a l i z a t i o n  g roup  (RG) equa t i ons  for  the  Is ing 

mode l  have  been  a n a l y s e d  more  t h o r o u g h l y  by  seve ra l  w o r k e r s .  K n o p s  and 

H i l h o r s t  3) have  s tud ied  these  equa t i ons  in the  cr i t ica l  subspace .  In  add i t ion  to 

an e x a c t  so lu t ion  of  the  non l inea r  flow equa t i ons  in this  s u b s p a c e ,  t hey  a lso  

f o u n d  a new c lass  of  f ixed -po in t  so lu t ions .  The i r  so lu t ion  of  the flow equa-  

t ions  was  r e c e n t l y  r ewr i t t en  in a s imple  c lo sed  fo rm by  Ray4). P a y a n d e h  and 

Van  L e e u w e n  5) have  set  up  a ca l cu la t iona l  s c h e m e  to ob ta in  s u c c e s s i v e  

a p p r o x i m a t i o n s  for  the  magne t i c  cr i t ica l  e x p o n e n t ,  and  H i l h o r s t  and  Van  

L e e u w e n  6) used  the or ig inal  t r a n s f o r m a t i o n  of  H S L  as  a s ta r t ing  po in t  for  a 

p e r t u r b a t i o n  e x p a n s i o n  tha t  y ie lds  i n f o r m a t i o n  a b o u t  the  cr i t ica l  b e h a v i o u r  of  
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the Ashkin-Teller  model. The applicability of differential real space renor- 
malization theory to other lattice models has proved to be possible too: Van 
Leeuwen 7) showed that the q-state Potts  model may be analysed in the q ~ 0 
limit, Yamazaki et al. ~-I°) studied the d-dimensional Gaussian model, and van 
Saarloos et al. H) the one-dimensional Ising chain in a magnetic field or with 
quenched random interactions, while Dekeyser  and Stella t2't3) adapted the 
theory so as to analyse both the equilibrium and the dynamical properties of 
the Van der Waals spin system. 

For the construction of their RG equations H S L  considered the Ising model 
on a triangular lattice in the absence of a magnetic field. It is inherent to 
differential real space renormalization theory that spatially varying inter- 
actions should be considered. Consequently,  H S L  had to take the three 
different nearest-neighbour interactions of the triangular lattice into account.  
In a way, their equations then contain a redundant  variable, since it is well 
known that a general Ising model on a triangular lattice is thermodynamical ly 
equivalent (in a sense to be specified later) to an Ising model on a square 
lattice, which has just two interaction parameters.  The question therefore 
arises whether  it would be possible to formulate a renormalization trans- 
formation directly in terms of the two interaction parameters of a square 
lattice. In this paper we will indeed derive exact  differential RG equations for 
the Ising model on a square lattice, without achieving however  the reduction 
in the number of parameters.  In fact,  we will argue that it is an artifact of the 
presently known formulation of differential real space renormalization theory 
that in d dimensions at least d + 1 parameters  are needed in order to study the 
critical properties pertaining to homogeneous systems. This, of course,  
excludes the possibility to formulate differential RG equations for square 
Ising models in terms of the two nearest-neighbour interactions alone. 

Our RG equations are derived in section 2 on the basis of a restructuring 
transformation by Hilhorst 14) for square Ising models. The restructuring 
transformation is based on the repeated application of star-triangle trans- 
formations,  and is quite similar in spirit to a transformation Baxter  and 
Enting tS) used, to demonstrate,  in an elegant way, the relation between Ising 
models on hexagonal,  triangular and square lattices. As a result of the 
similarity of these two transformations,  the above relation is still implicitly 
present  in our equations. 

In section 3 we briefly discuss a symmetry property of the RG equations. In 
section 4, we analyse the fixed-point equations and obtain two fixed-point 
solutions. Due to the complexity of our equations, the linearized flow around 
an arbitrary fixed point is difficult to analyse. However ,  as argued in section 5, 
one would hope that there should exist one so-called local fixed point, the 
analogue of the one originally found by HSL,  for which the linear flow 
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problem simplifies. We actually find this fixed point by solving simple al- 
gebraic equations and obtain a unique eigenvalue yT = 1, in agreement with 
the well-known exact  result for square Ising models. In section 6 it is 
demonstrated that the renormalization transformation can be applied to 
square lattices with an oblique edge too. Finally, we discuss in section 7 some 
properties of differential real space renormalization theory connected with the 
concept  of local fixed point, such as the relation between the dimensionality 
of the system and the number of parameters needed to set up the theory.  

2. Construction of the RG equations 

In this section we derive the RG equations for the Ising model on a square 
lattice. In subsection 2.1 we recapitulate some essential properties of the 
star-triangle transformation. In subsection 2.2 we describe the restructuring 
transformation that enables us to map the Hamiltonian ~ of a square Ising 
model onto the Hamiltonian ~ '  of an Ising model with fewer  degrees of 
f reedom on an identical square lattice. The actual derivation of the renor- 
malization equations is performed in subsection 2.3. The boundary conditions 
are discussed in subsection 2.4. 

2.1. The s tar - t r iangle  t rans[ormat ion  

The well-known star-triangle transformation for Ising models, for a dis- 
cussion of which we refer  to ref. 16, can be summarized by the equation 

e ~'¢p'''+p~':+p~'~> = e q''~+q:'~''+q''''~+~, (2.1) 
s ' = ± l  

which holds for  any value of the Ising spins s~, s2 and s3, provided that qt, q2, 
q3 and g are given by 

qi = F(pi,  pj, Pk), i, j, k cyclic, (2.2) 

where 

1 in[COSh(p, _+ P2 + P3) cosh ( -p ,  + P2 + P__2)] (2.3) 
F ( p b  P2, P3) : =  4" [ cosh(pl - P2 + P3) cosh(pl + P 2 -  P2) J '  

and 

g = In 2 + 41 ln[cosh(pl + P2 + P3) cosh ( -p l  + P2 q- P3) cosh(p~ - p,_+ P3) 

× cosh(pl + p~ - P3)]. (2.4) 

In eq. (2.2) and throughout  the rest of this paper, i, j, k cyclic stands for i = 1, 
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j = 2, k = 3 or any cyclic permutat ion.  The star-triangle relation states that  the 
contribution to the partition function f rom the summation over  the states of 
the spin s '  in the centre of the ' s tar '  in fig. 1, can be accounted for by 
introducing interactions q~, q2 and q3 of appropriate  strength be tween the 
spins sl, s2 and s3. 

As in the analysis of HSL,  we will f requently employ the symmetr ic  matrix 
Q, the elements  of which are defined by 

Qit := OF(pi, pp Pk) i, j, k cyclic. (2.5) 
Opl 

Explicit  expressions for  the matrix elements,  some of which are given later in 
this paper,  can be found in appendix A of HSL.  

2.2. A restructuring transformation consisting of star-triangle transformation 
cycles 

The basic idea of RG theory is to construct  a mapping of the Hamiltonian 
of a spin system, defined on a given lattice 37 onto a new Hamil tonian ~ '  of a 
similar spin system on a lattice 37', that contains fewer  degrees of f reedom. 
The mapping should be such that the free energies of the old and new sys tems 
are the same,  and that the Hamil tonians ~ and ~ '  are similar in form. The 

lattices 37 and 3?' we will consider in the first part  of this paper  are semi- 
infinite strips. In fig. 2a, the strip 3? has width L and lattice spacing a ;  the 

spins on this lattice are indicated by  open circles. The new lattice .~', the spins 
of which are indicated by crosses,  has a somewhat  larger lattice spacing 
a L / ( L -  a),  so that its boundaries  coincide with those of 3?. Obviously,  it is 
possible to obtain the lattice 3?' by uniformly and isotropically stretching the 
lattice ~? of fig. 2b with respect  to the spin that lies in the centre of the lowest  
row. According to the phi losophy of differential real space renormalizat ion,  
the interactions be tween the spins on the lattices are supposed to be slowly 
varying in space, i.e. to vary  only appreciably over  distances of the order L. 

q:F(p} 

p:F-1(q) 

q3 
Fig. 1. The star of bonds p~ is converted by the star-triangle transformation into a triangle of 
interactions qi. The relation between the p~ and qi is expressed by eq. (2.2). 
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Fig. 2. (a) The lattices ~# (circles) and L#' (crosses), which occupy the same spatial domain; (b) 
the lattices ~ (circles) and ~ (crosses). The lattice ~ goes over into ~" by stretching it uniformly and 
isotropically with respect to the centre of the bottom row. All lattices are unbounded at the upper 
side. 

As usual, it is convenient to construct  the mapping from ~ onto ~ '  in two 
steps: 

I) a transformation of ~ onto the Hamiltonian ~ defined on ~ ;  

II) a dilation of the coordinate system which yields ~ '  from ~.  

The use of semi-infinite strips rather than finite lattices as the starting point 

for the introduction of a renormalization transformation will entail some 
conceptual difficulties. We therefore emphasize that the only reason for doing 

so, is that the RG equations to be derived will turn out to fit this particular 
lattice shape better than other ones, which will be considered later. 

We now proceed to show how sequences of star-triangle transformations 

can be used to perform step I explicitly. We successively transform one row 

of ~ into one of ~.  The transformation of one row consists of essentially two 
steps and is sketched in fig. 3. We start in (a), where there are spins of  both 5# 
and (~, connected to each other in one row by dashed bonds. First (step 1), by 
applying a star-triangle transformation to the spins of 5# in this row (circles), 
we obtain lattice (b), where the two square lattices are connected via dotted 
interactions which are drawn as the sides of downwards pointing triangles. 
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i Ii - -a lmm, , .  
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(b) 

! 

tit STEP 2 ..".. ./", .':". .."".. 

(d) (c) 

Fig. 3. Various stages in the t ransformat ion  of one row: (a) initial si tuation; (b) a row of stars  has  
been t ransformed into a row of triangles; (c) the interactions in the triangles have  been 
regrouped;  (d) by an inverse s tar- tr iangle t ransformat ion  a new row of stars has  been obtained. 

Next ,  the bonds are regrouped by drawing the dotted bonds as the sides of 
upwards  pointing triangles, as in (c). Finally, we per form an inverse s t a r -  
triangle t ransformat ion to the triangles of (c) to obtain (d) (step 2). Com- 
parison of figs. (a) and (d) shows that in each cycle we construct  one row of 
out of one of ~f. Obviously,  by applying these cycles of star-tr iangle trans- 
format ions  repeatedly,  we can row by row build up a nearest  neighbour Ising 

model on ~ out of that  on ~g. 
One may wonder  how the above t ransformat ion can start. To see this, 

imagine for  the moment  that we start  with a large but finite strip of size 
L × Lv where Lv is the length in the vertical direction. We assume Lv-> L. 
Then,  at the upper  row, we can start the t ransformat ion as indicated in fig. 4, 
by using a decorat ion t ransformat ion (a " t runca ted"  inverse star-tr iangle 
t ransformat ion)  for  the horizontal  interactions in the upper  row. This yields fig. 
4b, which is essentially the same as fig. 3a, and one may proceed as in the 
latter figure. The infinite strip is then obtained by taking the limit Lv ~ oo while 
keeping L fixed. Of course,  we can also start  with the t ransformat ion depicted 
in fig. 4 at the bot tom row and then move upwards  through the semi-infinite 
strip. However ,  the latter procedure  is beset  with new problems which will be 
discussed later (section 7, remark  1). 
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(o) (b] 

Fig. 4. Initial stage of the transformation at the upper row of a finite lattice: (a) initial situation; 
(b) the horizontal interactions of the upper row have been transformed by a decoration 
transformation, Kx = F(0, pl, p:). 

We will denote the interactions on 5f (multiplied by -1/kT) by Kx and Ky, 
the interactions in the horizontal and vertical direction respectively. Similarly 
/~x and /~y are the interactions on ~.  These quantities will be labelled by the 
position coordinate of the centre of the spins between which the respective 
interaction takes place. The dashed bonds will be denoted by Pl and P2 and 
the dotted ones by ql and q2, and these will be labelled by the position 
coordinate of the cross-spin to which they belong; pl is the dashed bond 
which goes out from the cross-spin to the left, while q~ is the dotted bond 
which goes out of a cross-spin to the right. With the aid of these conventions 
and the formulae given in subsection 2.1, step 1 of fig. 3 leads to the equations 

ql(R)=F(p,(R+aex),p2(R),Ky(R a a -~-ey + ~-ex)), (2.7) 

q2(R) = F(p2(R -ae~), Ky(R - 2 e ~ -  2ey) ,  p,(R)). (2.8) 

Here,  ex and ey are unit vectors in the horizontal and vertical direction. 
Similarly, one finds that the following equations correspond with step 2 in fig. 
3: 

The equations for g (cf. eq. (2,1)) have not been given, since we will not 
discuss the differential equation for the free energy in this paper. 

If we take the origin of the coordinate systems at the centre of the bottom 
row of spins, the renormalized interactions K" and K ;  on ~ '  are obtained by 
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means of a dilation of the coordinate system of ~ in the form 

K ' ( [ L / ( L -  a)]R) = / (~(R) ,  a = x, y. (2.12) 

Eqs. (2.6)-(2.12) are the fundamental  equations of this renormalization trans- 
formation for square lattices; they will be analysed in the limit a lL~O in the 
next  section. 

The above restructuring transformation was found by Hilhorstl4). It is 
intimately related to a transformation introduced at about the same time by 

Baxter  and Enting~5). The common feature of these two transformations is 
that they both employ the star-triangle transformation repeatedly and proceed 
through the lattice. However ,  there are some striking differences too. Hil- 
horst 's  t ransformation modifies one row at a time and each row only once. Its 
most obvious al~plication is in differential RG theory since it appears to be of 
hardly any use for homogeneous systems. The transformation of Baxter and 
EntinglS), on the other hand, changes different rows a different number of 
times, and is therefore less easy to apply as a starting point to derive RG 
equations. 

From the sequence of star-triangle transformations of Baxter and EntinglS), 
it follows that the free energies of homogeneous hexagonal and triangular 
Ising lattices can be expressed in terms of the free energy of a homogeneous 
square Ising lattice, 

hexagonal, square, triangular 
interactions interactions interactions <----) 

Pt, P2, P3 P3, F(p3, Pl, P2) qi = F(pi, Pi, Pk)" 
(i, j, k cyclic) 

(2.13) 

This result, which will be reflected by our RG equations, will be of great help 
in guiding us in later stages of our calculations. 

We finally remark that, although eqs. (2.6)-(2.12) relate interactions in the 
immediate neighbourhood of each other, we intuitively expect  that, if the 
interactions Kx and Ky are changed in some region, p~ and p2 will be affected 
in that same region as well as (roughly) in a cone going out "downs t ream"  
from that region. Hence  the transformation is expected to exhibit some 
non-local behaviour.  

2.3. Derivation oI the differential equations 

We will now derive the flow equations for K~ and Ky in the limit a / L ~ 0 ,  
assuming that all functions can be expanded in a Taylor  series in alL. As 
usual, we introduce the scaled coordinates r := xe~ + ye~ = R[L. From eqs. 
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(2.6) and (2.9) we obtain the "macroscopic  equat ion" 

Kx = F(Ky, Pl, P2), (2.14) 

and, from the terms of order alL, 

SKx + Q338Ky = L [ - Q 3 3 ~ +  l Q31~-~-l Q32aa-P-~I. (2.15) 

In this equation, SKx : = / ~ x -  Kx and SKy ;= /~y- K r, while the matrixele- 
ments of Q were defined in eq. (2.5). After elimination of ql and q2 from eqs. 
(2.7), (2.8), (2.10) and (2.11), one obtains from the terms of order a l l  in these 
equations 

= Q12- '~  T QII~-"-X dl-2(~13 OX ] '  (2.16) LL oy 

a rLr~ Opl -L 1 ~23aO~.K 1 
Q23SK, = - £ [ T w , - - g f  - ax J (2.17) 

Elimination of SKy from this equation yields the differential equation 

(QI, Q23 - Q21Qi3)~y 1+ (Q,zQ23- M22c~ vc~13)--~-y'aP2 

r~ r~ op, + o22o;fa_~ + O,3Q2303_~= o. "~- v,~11~,~23~ X (2.18) 

To write this equation in a compact  form, we define the vectors 

ex + ey ex --  ey 
b l : = -  2 ' b2:= 2 ' (2.19) 

2 
Mi :=~-~ (-1)JQi.iQ(3-j)3(bi + bj), i = 1, 2, 3. (2.20) 

j=l 

(The undefined vector  b3, appearing in the definition of Mi, drops out after 
performing the summation over  j. Hence b3 may be any vector). It is also 
convenient  to use the definitions 

q3 := K~, P3 := Kr, (2.21) 

With these conventions,  eq. (2.18) can be written as 

3 
~, M, • •p, = O. (2.22) 
i=l 

It is convenient  to combine eqs. (2.15), (2.16) and (2.17). If one multiplies eq. 
(2.15) with Q33 l (the 3 3 -  element of Q-I, the inverse of Q), eq. (2.16) with Q311 
and eq. (2.17) with Q3 l,  and adds the resulting equations, one obtains 
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SKy+Q~SK =L[(Q~]Qu +1~_,~ \ o p , _ /  , +1 , \002 ~Q 33 Q31 )--~-- ~Q32 Q22 ~Q ~-~ Q32) ~--~ 

+ ~(Q~-~ Q~3 - td32 td2# ox 

~_,~ Op, ~-'¢n op2_Q~]Q33°K__~]. 
- 

oyl  (2.23) 

Upon elimination of the derivatives of the p~ (p~, p2 and Ky) in favour  of those 
of the q~ (q~, q2, Kx) by means of the relations 

3 3 
Vqi = E QiJVPh Vpi = ~ Q~Vqj, (2.24) 

j=l j=l 

eq. (2.23) reduces to 

a [ c~-lOKy l~_lOql 1~_19q21 
SKy + Q~3~Snx = ~[-, ,e33 0y +2Q3 ' -~x  - 2Q32-~-x ]" (2.25) 

Let  us write St := a/L; according to eqs. (2.12), (2.15) and (2.25), we then find 

for the total change (K ' -K~) /S t  in the limit St ~ 0  

OK~ 4- Q330z-~K t.~ 0Ky + 1 ~ Opi 1 r~32Opz 
at ~ ,  = -,~33 0y ~ v 3 , - ~ - - ~ , ~  ~ - x -  r .  VKx - Q33r" VKy, 

(2.26) 

OK~ot + t2.  ot = - t 2 " - ~ - ~ -  2 w ' - ~ - x  - 2 t 2 ~ 2 - f f -  ~" V K , -  Q ~ - V K x .  

(2.27) 

These are the differential equations for the renormalization flow, written in a 
symmetric form. One may also show that eqs. (2.14) and (2.18) are equivalent 
to the equations obtained by replacing the p~'s by the q :s ,  F by F -~ and Q by 
Q-~. Nevertheless,  we will from now on write the flow equations in a compact  

form that obscures this symmetry.  We define 

1 1 cl:=~ex, c2:=_~ex, c3 := -ey ;  (2.28) 

3 
Dyi "= (1 - Q31Q33) -1 E Q~XQji(c~ - S3jci), i = 1, 2, 3; (2.29) 

j=l 

Dxi := (1-Q33Q33) -Q33 Q~:Qjicj , i = 1,2,3.  (2.30) 
j=l 

Eqs. (2.14), (2.22), (2.26) and (2.27) are now equivalent to the following set of 
equations (henceforth,  a summation over a or/3 runs over  the values x and y, 
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summat ions  over  i, j, etc. run f rom 1 to 3, unless specified otherwise) 

Kx = F(Ky, pl, P2), (2.31) 

~i Mi • •pi = 0, (2.32) 

OK~ot - ~'i" ]Dai • V p i -  r • VK~, a = x, y. (2.33) 

Although the flow equation (2.33) is of the standard form found in differential 

renormalizat ion,  in that it relates OK JOt to the gradients of the interaction 
parameters ,  the present  renormalizat ion t ransformat ion is mathematical ly  

more intricate than that of HSL.  For,  in order to determine the flow for  given 
functions Kx and K ,  we first have to solve eqs. (2.31) and (2.32) for Pl and p2; 
only after  that  OK JOt is known explicitly. Note  also that since p~(r) and pE(r) 
have to be determined f rom a differential equation (supplemented with eq. 
(2.31)), they will not only depend on the values K~ and Ky at r, but also on the 
whole shape of these functions.  This entails the kind of non-locality already 
envisaged at the end of subsection 2.2. 

As in the case of HSL,  the number  of degrees of f reedom per unit area p 
decreases  along a renormalizat ion t ra jectory as p(t) = p(O) e -a t ,  where d (=  2) 
is the dimension. The eigenvalue yT", to be determined,  is therefore  related to 
the critical exponent  of the free energy 2 -  a by 2 -  a = d/yr. 

2.4. Boundary conditions 

Eqs. (2.31)-(2.33) have to be supplemented with boundary  conditons in 
order to ensure that the t ransformat ion is also infinitesimal at the boundaries  
of the lattice. Since there is no f reedom to choose Pl and P2 at will if we 
consider  Kx and Ky to be given functions,  the boundary  conditions have to be 
formulated in terms of the latter interactions. Consider fig. 3a at the left 
boundary.  In summing over  the left boundary-spin of ~ (a circle) of the row 
to be t ransformed,  the q2 bond is obtained f rom a dedecorat ion trans- 
format ion (a t runcated star-tr iangle t ransformation):  q2 = F(0,  Ky, P0. 
Nearby ,  in the bulk, we have (to order a/L) q2 ~- F(p2, Ky, pl). Hence  no 
discontinuities arise if F(0, Ky, pl) ~- F(p2, Kr, p0.  One may  check that this 
equation (and the analogous one at the right boundary)  is obeyed in each of 
the four  following cases 

a) K~ = 0 
b) Kx = oo 

at the left and right boundaries (x = -+I). (2.34) 
c) Ky = 0 
d) Ky = oo 
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Fig. 5. The last stage of the transformation of the bottom row consists of summing over old spins 
(circles) which are only connected via bonds pl and p2 to new ones. 

The situation at the lower edge is somewhat  different (see fig. 5). In this case,  
we have to formulate  the boundary  conditions such that one always has 
F(K,  p~, P2) ~ F(0,  p~, P2). This equation is not fulfilled if Ky ~ o% p~, P2 finite. 
On similar grounds,  the case Kx = 0 has to be rejected,  and we therefore  only 

allow the following two cases,  

a) Kx = ~ /  
b) Ky = 0 / at the lower edge (y = 0). (2.35) 

Before,  we discussed how we can start  the t ransformat ion on a finite strip 
of size L × Lv. In the first step, we then have a decorat ion t ransformat ion with 
Kx = F(0,  p~, P2). Clearly, in this case there is still a f reedom to choose Pl and 
p2. We can e.g. prescribe the ratio p~/p2 at the upper  row. This f reedom may 
still be present  after  taking the limit L v ~  o¢, in that we obtain different 

t ransformat ions  for different ratios p~(x, ~)/p2(x, ~). The possible dependence  
of the t ransformat ion on this ratio will not be investigated fur ther  in this 

paper,  however .  

3. A symmetry property of the RG equation 

In this section we closely follow H S L  in using the symmetr ies  of the RG 
equations to locate the critical subspace  of these equations. We define/5i and 

t]j, the variables dual to qj and pj respect ively,  by 

sinh2/5j := l /sinh2qj,  sinh2pj =: 1/sinh2~j, j = 1,2,3.  (3.1) 

We will also use /~x := t]3,/(y :=/53. It  is well known that the (/j are again the 
star- tr iangle t ransforms of the /sj. H S L  express  the relations between these 

variables symbolical ly by writing 

q = Rsv(p), p = RD(t]), ( /=  Rsv(/5), /5 = RD(q). (3.2) 

As discussed by HSL,  points that are invariant  under RsvRo satisfy 

q i=~ i ,  i = 1 , 2 , 3 ,  (3.3) 

pi=/s i ,  i =  1,2,3,  (3.4) 
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Vl + V2 + U3 = 1, 

u~+u2+u3 =1,  

where 

vi := (sinh 2pj sinh 2pD -1, 

(3.5) 

(3.6) 

ui := sinh 2qj sinh 2qk (i, j, k cyclic). (3.7) 

These equations are all equivalent. Note also that eqs. (3.1) and (3.4) imply 
that points which are invariant under RsTRD also satisfy 

sinh 2K~ sinh 2Ky = 1. (3.8) 

Upon transforming eqs. (2.31)-(2.33) along the lines set forth by HSL,  one 
finds* 

/(x = F(/(y,/~1, P2), (3.9) 

Mi(l~) • Vpi = 0, (3.10) 

D~i(10) V / ~ -  r • Vk~, a = x, y. (3.11) 
3t 

As in the case of HSL,  the fact that the barred variables /(~ obey the same 
equations as the variables Ks implies that the renormalization operator 
commutes with the transformation RsTRD. Consequently, in the space of pairs 
of functions (Kx(r), Ky(r)), the subspace ~¢s, 

(8 s := {(Kx(r), Ky(r)) [ sinh 2Kx(r) sinh 2Ky(r) = 1}, (3.12) 

is not only invariant under RsTRD but under the renormalization operator as 
well. It is the general picture of RG theory that there should exist a subspace 
of the parameter space that is invariant under the flow and of which the points 
are attracted under the flow by a fixed point. Accordingly, we associate the 
space ~s with the critical subspace of the renormalization operator in the 
space of pairs of functions (Kx(r),Ky(r)). Indeed, since eq. (3.8) is the 
wellknown criticality condition for infinite homogeneous square Ising models, 
a pair of functions (Kx, Ky) ~ ~* describes an inhomogeneous system which is 
locally critical for all r. 

It will be convenient to introduce also the class %" of triplets of functions, 

~h := {(p,(r), p2(r), p3(r) ] ~ v, = 1}. (3.13) 

* It should be noted that eq. (3.9) is already contained in eq. (3.2) and that the symmet ry  of the 
flow equat ions  of Kx and Ky can in fact mos t  easily be establ ished if they  are written in the form 
(2.26), (2.27). Eq. (3.10) is derived in appendix A. 
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In view of the result of Baxter and EntinglS), described in subsection 2.2, ~h 
will be taken as the critical subspace of the "corresponding" hexagonal 
lattice. Note that the fact that (Kx(r), Ky(r))E ~s implies that the triplet 
(pl(r),pE(r),p3(r))E ~b, and vice versa. Which particular element of ~h 
corresponds to a given element of ~s can, however, be determined only by 
solving eq. (2.32). 

4. Derivation of two fixed-point solutions 

In this section, we derive two fixed-point solutions. It should be mentioned 
that the analysis given below is not needed to arrive at the local fixed point 
(see section 5), but is included to illuminate some properties of the fixed-point 
equations and to show that there are fixed points other than the local one. 

Up to now, we considered Kx and Ky to be given functions. In searching 
for fixed-point solutions, i.e. pairs (K*(r), K*(r)) and triplets 
(p~(r), p~(r), p~(r)) associated with them, for which 

~iD*i • Vp~ - r • VK*a = 0, o~ = x, y, (4.1) 

it is, however, more convenient to use the variables p~ and p~. Let  us define 

Sl := sinh 2pl, $2:= sinh 2p2, $3 := sinh 2p3. (4.2) 

Then, since fixed-point solutions lie in the critical subspace, p3( = Ky) can be 
obtained, once Pl and p: are known, from the equation (cf. eq. (3.5)) 

Si + $2 (4.3) 
$3 = $1S2- 1' 

while Kx follows from the criticality-relation (3.8). Upon elimination of Kx 
and Ky from eq. (4.1), one finds (see appendix B) that the fixed-point equation 
becomes 

(S~2+l)((x ~.aS~' . OS~ ~.aS~+ a S ~  

~_~ OS~f OS'~ ~_00@~=0" (4.4) 
+ + Oy Ox 

In appendix B, we also show that eq. (2.32) reduces in the critical subspace ~h 
to 

0 In $1S2 0 In S2/SI = 0. (4.5) 
Ox Oy 
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Of course,  fixed-point solutions of  eq. (4.4) should also obey this equation. To 
arrive at the proper  boundary  conditions for  S~ and $2, we note that  for pairs 
of functions (K~(r), Ky(r ) )~  q~s, boundary  conditions (2.34a) and (2.34d) are 

equivalent,  and so are (2.34b) and (2.34c). In the first case, we a s sume t  

S~ = oo, $2 = O, f o r  x = 1 ;  St  = O, S2 = oo, 

whereas  in the second case, we need to have 

Sl=OO, S2=o% f o r x = _ + ~ .  

for x = ~, (4.6) 

(4.7) 

At the lower edge, (2.35a) and (2.35b) are again equivalent. The boundary  
condition therefore  is 

S1=o% S2=o% for  y = 0 .  (4.8) 

We first analyse eq. (4.5). If  we consider In S1/S2 and In SIS2 as the 
components  of a vector  (In S2/St, In StS2), eq. (4.5) shows that the curl of this 
vector  should be zero. Consequent ly,  $I and S2 can be expressed in terms of a 

single "potential" V by writing (In $2/S~, In S~$2) = 2((gV/Ox, aV/ay), so that all 
functions St and $2 in the critical subspace are of the form 

/ O V + O V \  e x p ( ~ x V + 0 V  S l = e x p ~ - - ~  - -~-y], $2 = -~--y). (4.9) 

As I have not been able to find the general solution of the partial differential 
equation for V* one gets by substitution of the expressions (4.9) into eq. (4.4), 
we will, instead of analyzing this general equation, derive fixed-point solutions 
starting f rom the ansatz  

S~f = m(y)Ml(x  - y)n(x),  S~ = m(y)M2(x + y)/n(x).  (4.10) 

These function are obvious solutions of eq. (4.5). The functions M~ and M2 
will eventual ly be set equal to 1 for the semi-infinite strip. They are retained 
for  the time being in the discussion, however ,  with a view to a later analysis 

of lattices with an oblique edge (section 6). Note that if Mt = M2 = 1, the 
ansatz  (4.10) appears  to be the simplest one that is compatible  with boundary  
conditions (4.6) and (4.8), and that eq. (4.7) can not be obeyed by functions of 
this form. It  is also clear f rom eq. (4.8) that m(y)--,oo for y ~0. Let  us 
therefore  assume that m(y)  behaves  as r e ( y ) =  mn,(y)/y v where mn,(y) is a 
nonsingular function with finite limit for y = 0, and where 7 is positive. If  we 
substitute these expressions into eq. (4.4), we can order the various terms in 

1" There are more possibilities, all consistent with eqs. (2.34a), (2.34d) and eq. (4.3). Anticipating 
later results, we have left the case Si = 0, S2 oo for x i . . = = = -~ and slmdar conditions for x out of 
consideration, as well as the case St, $2 finite, S~$2 = 1. 



80 WIM VAN SAARLOOS 

powers of y-L Clearly, it is necessary that the pre-factor  of the most  divergent 
terms vanish in the limit y $ 0. For  0 < "y < ½, this turns out to be impossible, 

whereas for 3'/> ½, this is indeed the case provided that 

1 (x l ' ~ d N , ( x ) ( x + l ~ d N 2  
I) 3 '>~:  3"(NI(x)+N2(x))+ - ~ } ~ +  2/--d-~= 0, (4.11) 

1 l (N l ( x )+  N2(x)) 1 -2 II) 3' =2 :  L. +~mn~(0) 

× (N (x)N2(x) + + (x l dN (x) + (x - 2 } T  + ~)-d~-x = 0, (4.12) 

where we have defined 

Nt(x) := lim(Mt(x - y)n(x)) -1, N2(x) := lim(M2(x + y)/n(x)) -1. (4.13) 
y~0 y~0 

I) We first investigate eq. (4.11). Since it allows classes of solutions, we 

define 

R(x)  := N2(x)/Nl(x), (4.14) 

and consider R(x)  to be a given function. Upon elimination of N2 from eq. 

(4.12), one gets 

1 (x + l \ n ,  , \ dNl (x )  

(4.15) 

This equation is most simple if 3' = 1, and we will therefore restrict the 
analysis to this case. For 3' = 1, eq. (4.15) admits two different types of 

solutions: 
a) If R(x)  = (½-x)/(½+ x), eq. (4.15) with 3' = 1 is obeyed whatever  Nl(x) is. 

Hence,  every  set of functions N~(x) and N2(x) for which 

N2(x)/Nl(x) = (½ - x)/(½ + x), (4.16) 

constitutes a solution of eq. (4.11). 
b) If R ( x ) ~  (½-x)/(½+ x), the solution of eq. (4.15) with 3' = 1 is 

N~(x) = c/Ix - ½ + (x + ½)R(x)[, (4.17) 

where c is an arbitrary constant. 
Let  us now put Mi = M2 = 1, so that N2(x) = N i l (x )  = Rt/2(x) = n(x). It 

turns out that in this case solutions of the type (4.17) are not compatible with 

the boundary conditions (4.6); however,  eq. (4.16) now yields 

[½-x  "2 
n(x) = ~r-~x ) , (4.18) 

2 

and with this function the boundary condition (4.6) is obeyed.  
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II) Next ,  we investigate eq. (4.12). If we again put MI = ME = 1, so that 
Nl(x)N2(x)= 1, we find that eq. (4.12) reduces to eq. (4.11), provided that 
re,s(0) = 1. Hence,  eq. (4.18) is also a solution of eq. (4.12) in case re,s(0)= 1. 

If S'f and ST are of the type (4.10) with M1 = M2 = 1, then S~fS~ = m 2. Since 
S~ must be positive, eq. (4.3) shows that it is therefore necessary that m > 1. 
If we substitute the expressions (4.10) with n(x) given by eq. (4.18) and 
Mt = ME = 1 into eq. (4.4), this equation reduces to 

din(y) l x ) m [ m ( y ) ( m 2 ( y ) - l ) + { y ( l + m 2 ( y ) ) + l ~ ] = O .  (4.19) (½- x)~/2(½ + 

Hence,  fixed-point solutions can now be found by solving an ordinary 
differential equation for re(y) with the boundary-condit ion m(0)=  oo. Using 
the fact  that r e ( y ) >  1, it follows from eq. (4.19) that re(y) decreases mono- 

tonically and that re(y) approaches 1 asymptotically as re(y)~- 1 + const/y for  
y--, oo. If we substitute re(y) = mn,(y)/y v in this equation, it turns out that only 
the cases 7 = ½, mns(0) = 1 and ~ = 1 are allowed, as expected.  We found two 
simple solutions in agreement with these asymptotic results, viz. 

m(y) = 1 + 1/y (4.20) 

and 

re(y) = (1 + l /y)  tt2. (4.21) 

The corresponding fixed-point solutions are 

S~ f = (y + 1)(½- X) 1/2 ST = (y + 1)(½ + x) 112 
y(~ + x)  ~12 , y ( ½ -  x),t2 , 

Y(Y +1)  
(2y + 1)(~-- x x'12'!1 ' 2  + X "t 112'1 

(4.22) 

and 

T ,',+' y( l  + x )  y(½ - x )  [(½ - x)(½ + x ) J  " 
(4.23) 

In the next  section, it will turn out that the solution (4.23) constitutes the 
so-called local fixed-point solution. 

5~ The linearized flow operator and the critical exponent 

In this section we study the linearized flow around fixed points in the 
unstable (temperature-like) direction. The analysis of the linearized flow is 
complicated by the problem that we have no explicit expression for the 
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linearized flow operator  at our disposal as long as we have not solved the 
linearized equations corresponding to eqs. (2.31) and (2.32). In subsection 5.1 
we state this problem in more detail and argue that there should be one 
particular fixed point, the " local"  fixed-point of the renormalization trans- 
formation, for which we may circumvent  solving eq. (2.32) explicitly to obtain 
the linearized flow. In subsection 5.2 we collect all the necessary formulae on 
the basis of which we obtain the local fixed point and the critical exponent  yr 
in subsection 5.3. 

5.1. The general approach 

For the discussion of the evolution of small deviations ~b~(r):= ~K~(r) 
form the fixed-point solution K*(r ) ,  it will be convenient  to write the 
linearized flow-equations in the form 

atk~ - ~ T~(r, V ) 0 0 ,  a = x ,  y, (5 .1 )  
0t 

where T(r, V) is a linear operator.  The linearized version of eq. (2.33) reads 

= E o* , .  v + ,  + E   j-pj / • Vp ,+j- r .  V o, = x, y. (5.2) at 

From here on, ~ ( r ) : =  @i(r)  (i = 1,2,3) denotes the deviation from the 
fixed-point solution p~ corresponding to the deviation ~O~(r) from K*(r) .  By 
identifying the right-hand sides of eqs. (5.1) and (5.2), we only get a formal 
expression for T, since Vi is still unknown. To obtain an explicit expression 
for T, we have to determine 8pt and @2 for arbitrary/SK~ from the eqs. (2.31) 
and (2.32), iinearized around the fixed-point solution. This set of equations is 
of the form 

2 

I~j(r, ¢)@j( r )  = ~ H~(r, V)SK~(r), i = 1, 2. (5.3) 
i = l  a 

Here  I and H are known linear operators.  For arbitrary 8K~, the solution of 
this equation is 

/~p,(r) = ~ ~ f dr 'Gi,(r  I r')H,~(r', W)8K~(r'), i= 1,2, (5.4) 
i=1 

where the Green's  functions Gij are the solutions of 

2 

j__~t Ii~(r, V)Gjk(r I r') = $ikS(r - r'), i = 1, 2. (5.5) 

A direct attack along these lines looks rather cumbersome.  To get round the 
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above program, we make the following observations: 
1) As discussed K := (K~(r), Ky(r)) E qCs implies that 

p := (pl(r), pE(r), p3(r)) ~ ~h. Consequently,  if ~b(r) lies in the linear subspace 
tangent to U s at K* then W(r) lies in the linear subspace tangent to ~h at p*. 
There  should then be a linear relation between the projections 0P(r) of 0 ( r )  
and W~(r) of W(r) onto the subspaces orthogonal to the above tangent spaces, 
that enables us to calculate q~P(r) for given OP(r) without analysing eq. (2.32). 

2) H S L  showed that it is convenient  for the study of unstable (tem- 
peraturelike) perturbations, to consider the eigenvalue problem for the 
(properly defined) adjoint operator  T(r ,  V) of the iinearized flow operator 
T(r,V). Though the T(r ,  V) of H S L  was at first sight a differential operator,  it 
turned out to reduce to the unit operator  when acting on temperaturelike 
perturbations around their particular fixed point (which implied that the 
spectrum of eigenfunctions was infinitely degenerate with eigenvalue y~ = l). 

However ,  one may turn the argument around. Without already knowing a 
fixed-point solution, one may require that the gradient terms in the expression 
for T (which now depends on the unknown function p'~, p$, etc.) drop out, so 
that 7" is not a proper  differential operator  any more. This requirement will 
lead to simple algebraic equations for the functions p$, p$, etc. One then just 
has to check whether the set of functions solving these equations does indeed 
constitute a fixed-point solution of the flow equations. If it does, we will call 
this fixed point the local fixed point of the renormalization transformation. 
This name stems from the fact that, as we will see, we can study the 
linearized flow around this fixed point in the temperature direction locally so 
that we may identify the resulting critical properties with those of homo- 
geneous systems. Following this line of argument, one can indeed check for 
the equations of H S L  that their original fixed point is, in fact, the only local 
fixed pointt .  

3) If the linearized flow in the temperature direction around the local fixed 
point is to be associated with the critical properties of homogeneous systems, 
then the knowledge of WP of W alone (cf. observation l) should suffice to 
calculate the eigenvalue YT at the local fixed point. To see this, consider a 
small perturbation OA at position rA in the temperature direction. In general, 
the corresponding perturbation xttA will have a non-zero component ,  'tt~ say, in 
the linear subspace tangent to cch at p*. We compare this situation with the 
one in which there is in addition another perturbation at rB that lies in the 
subspace tangent to ~* at K*. By virtue of the differential equation, obtained 

tThus, the fixed-points found by Knops and Hilhorst 3) are non-local ones, and it may be of 
interest to study temperaturelike perturbations around these fixed points; cf. remark 4 in section 
7. 
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by linearizing eq. (2.32) around the local fixed-point solution, the perturbation 
at rB changes ~ k  by an amount  xt'kB in comparison with the first situation. 
The connect ion of the flow in the temperature  direction at rA with the critical 
properties of a homogeneous system is only possible if this flow does not 
depend on ~ .  For, if it did depend on ~ ,  it would also depend on ~ ,  and 
consequently the eigenvalue y~ at rA would be modified by the presence of 
the perturbation at rB; obviously, such a dependence would prevent  us from 
identifying YT at rA with the critical properties of a homogeneous Ising system 
that has at criticality interaction parameters Kx = K*(rA) and Ky = K*(rA). 

In conclusion, the above observations suggest to search for the local 
fixed-point solution in order to circumvent  solving eq. (2.32), linearized 
around the fixed-point solution. This local fixed point should be signaled by 
the fact that t neither is a proper  differential operator,  nor is determined by 
g'~. We actually carry out this program in subsection 5.3. Some results needed 
in that analysis are derived in the next  subsection. 

5.2. Some properties of  D 

In this subsection we derive a number of results that are related to the fact 
that U s is invariant under the flow. Of main importance are eq. (5.25) and two 
properties of D, expressed by eqs. (5.23) and (5.30). We first list the expres- 
sions for the elements of Q and its inverse, valid in the critical subspace. 
According to eqs. (A.9), (A.11) and (A.12) of HSL,  these are 

Q, =:  Q0 = - 1]StS2S3, Vp E ~h, i = 1, 2, 3, (5.6) 

Qjk = -QoCi, Vp E ~h, i, j, k cyclic, (5.7) 

Q ~ = Q o S  2, VpEq~h, i = 1 , 2 , 3 ,  (5.8) 

Q~I = -QoCISjSk, Vp E ~h, i, j, k cyclic. (5.9) 

The variables S~ were defined in eq. (4.2), and the Ci are defined 

Ci := cosh 2pi, i = 1, 2, 3. (5.10) 

Two useful relations that follow from eqs. (3.5) and (3.7) are (cf. eq. (A.7) 
of HSL)  

Si = (Sj + Sk)I(SjSk - 1), Vp ~ ~h, i, j, k, cyclic, (5.11) 

C~ = CjCk/(S~Sk -- 1), Vp E ~h, i, j, k cyclic. (5.12) 

The normal vector  ~=(£x,~y) of the critical surface with equation 
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sinh 2Kx sinh 2Ky = 1 is defined by 

a 
~ := A l - f ~  sinh 2K~ sinh 2Ky I~inhEKx ~inhEr,=l, a = X, y. (5.13) 

Here  At is a normalization constant.  As it is convenient  to write all quantities 

in terms of Pl, P2 and p3( = Ky), we write ¢ in the form 

1 1). (5.14) 

Similarly, the normal  vector  ~ = ('0~, "02, 73) of the surface with equation 
E~ v~ = 1 is defined by (A2 is another  normalization constant)  

a ~ , i = 1,2,3.  (5.15) ~i :-- A 2 ~ /  vj ] ~ v  =1 

With the aid of eq. (5.12), one finds for  

,r B = --A-tCiCk, i, j, k cyclic, (5.16) 

where 

A := (C2C 2 + C2C~ + t-~ 31--" 11/'~2/-'2X112" (5.17) 

From eqs. (5.6), (5.7), (5.14) and (5.16) it is found that ¢ and ~/ are related by* 

~xQai + ~y~3i =/./,0~i, V p  E q~h, i = 1, 2, 3, (5.18) 

:= - AISIS2C]. 

K E ~s and all p E ~h, we have  

(5.19) 

~ V K ~  = 0, VK ~ c~, (5.20) 

~iVpi = 0, Vp E ~h. (5.21) 
i 

where 

bL0 

For  all 

E 
a 

The fact  that  ~s is invariant under the flow (cf. section 3) implies that 
~ ~aK~/at = 0 for all K E ~s. From eqs. (2.33) and (5.20), we see that this is 

only possible if 

~ ~ D ~  • Vp~ = 0, Vp E qCh. (5.22) 

* The corresponding relation between "O and the normal of the critical surface of the triangular 
lattice is given in eq. (4.29) of HSL. 



86 WIM VAN SAARLOOS 

We emphasise that this result should hold for all triplets of functions p E ~gh, 
irrespective of whether they satisfy eq. (2.32) or not. For, eqs. (2.33) and 
(2.31) form a consistent set of equations that leave ~g~ invariant if sup- 
plemented with any extra equation for the p~ which is unchanged by trans- 
forming the p~ to the l~i. Eq. (5.22) can only be obeyed for all p ~ ~gh if there is 
a vector/~ such that 

Z ~a Dai = ~L0P'I~ i, V p  E ~ h ,  i = 1, 2, 3. (5.23) 
a 

The factor P,0 in the right-hand side of this equation is introduced for con- 
venience. On the basis of the explicit expressions for ~,-q, D, Q and /~o, one 
finds for p 

1 $2-  $1 + $3 
/1 - 2 $1 +-~2 ex S1----+-~ ey" (5.24) 

The property of D expressed by eq. (5.23) is the analogue of the result (4.22) 
of HSL.  

We decompose small deviations t~ from a fixed-point solution by writing 
= ~P + t~ t, where O p is parallel to ~* and ~t perpendicular to it. Similarly we 

decompose the corresponding • into ~P and ~ ' ,  the components parallel and 
perpendicular to ~*, respectively. The linear relation between OP and ~P, 
alluded to in the previous subsection, reads (cf. eq. (5.18)) 

• ~ = / ~ - ' ( ~  ~ * ~ ) ' 0 ' ,  i =  1,2,3. (5.25) 

For later reference, we derive a relation involving ~ t ;  in the linear subspace 
tangent to ~h at p*, one has according to eq. (5.23) 

- \ 0p~ / ~ i  = 8(/~0/~)~ + /~*8-q~ ,  i = 1, 2, 3. (5.26) 

Here ~i~ denotes the change in ~ due to the variation ~t,  etc. If we contract 
this equation with Vp~ and use eq. (4.1) as well as eq. (5.21), specialised to the 
fixed point solution, we get 

..,/c)D~i\* ,~ t_ 

Similarly, eq. (5.18) yields for these variations 

~ Q ~  +/~y~3i + ~'8Q3i =/~p~on ~, +/~Sn~, i = 1, 2, 3. (5.28) 

By eliminating 8vt~ from eq. (5.27) with the aid of this result and using also the 
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fact  that 

 o3,vp; =  rV(°2F(p3'P"P2)) - -  

one finally obtains 

. [ t3D~i\. ~ t 

87 

(5.29) 

(5.30) 

5.3. The local fixed point and the critical exponent 

For  two arbitrary deviations th and ~ f rom the fixed-point solution K* we 
define an inner product  

(~b, ~b)= f dr  ~'~ ~b~(r)~ba(r). (5.31) 
J a 

Here ,  the integral is taken over  the domain of the lattice; ~b and ~b are 
assumed to vanish sufficiently rapid at large y to ensure the convergence of 
the integral. The reason to study the adjoint operator  T is that the subspace 
consisting of functions ~b, such that 

~b~(r) = / ( r ) ~ * ( r ) ,  ct = x, y, (5.32) 

is invariant under 2r. For, in view of the fact  that qgs is invariant under the 
flow, the linear subspace tangent to U s at K*,  which consists of  all functions 

for  which 

~, ~*(r)~(r) = 0, for  all r, (5.33) 
tx 

is invariant  under  T;  since this subspace is also orthogonal to the subspace 
defined by  eq. (5.32), the latter is invariant under "F. For the study of 
temperaturel ike perturbat ions of the type (5.32), we therefore  wish to con- 
sider the eigenvalue problem 

7"~of~* = YT/~, /3 = X, y. (5.34) 

The action of T o n / ~ *  is defined through the equation <T/~*, ~> = <[~*, T~,> 
for all tk. From eq. (5.2) we obtain for  arbitrary ~0t 

t We assume that the boundary-term arising from the integration by parts vanishes. In general, 
this leads to certain restrictions on ff and [; at the local fixed-point however, these boundary 
terms vanish identically for all ~0 and/'. 
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(OD~i~* r 

• , . ,  / abe, \ * .  V p ~, (V~ + q'}) 

+ v - f f g * r ) g , ~ J .  (5.35) 

The first term between square brackets can be rewritten with the aid of eqs. 
(5.23) and (5.18), 

Upon substituting this result and eq. (5.30) into eq. (5.35), we get 

• .  / aD~i',* • V Q3*~'] + g g* oV ) g . 

The first term between square brackets contributes a factor V.f to "P.fg*. It 
drops out if and only if 

la* - r = 0. (5.38) 

As anticipated, the second term between square brackets (which is propor- 
tional to ~t) drops out at the same time. Hence,  eq. (5.38) determines the local 
fixed point. From eqs. (5.24) and (4.3), one finds that the functions S~f, S~ and 
S~ solving eq. (5.38), are those given by eq. (4.23). We have already seen that 
these are indeed fixed-point solutions! After elimination of xI*p by means of eq. 
(5.25), one arrives at the following expression for f [~* at this local fixed 
point, 

• * / 0D~D-~\* • VQ~'~] ~ ~ .  (5.39) 

Following HSL,  we label the eigenfunctions f with a parameter  p by writing 

fp(r) = 8(r  - la). (5.40) 

The corresponding eigenvalues y~ are according to eq. (5.34) given by 

• , / O D _ ~ _ \ *  • V Q ~ ] ~ I ~ ,  ~=p. ( 5 . 4 1 )  
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Upon inserting the explicit expressions for the quantities appearing in this 
equation and using the expressions for the matrixelements of oQlap given in 
appendix D of HSL,  one finds after a straightforward, though tedious, 
calculation yp = 1 for all p. Consequently,  the eigenvalue Y r -  Yp = 1 is 
infinitely degenerate.  Since f allows the eigenfunctions (5.40), the eigenvalue 
yT = 1 does not only pertain to properties of the system as a whole, but also to 
critical properties of each local subsystem, as we anticipated by using the 
name local fixed point. Indeed, in view of the relation 2 - o r  = d/yr, the 
eigenvalue yr = 1 is in agreement  with the well-known exact solution for 
infinite homogeneous Ising models. 

6. Lattices with an oblique edge 

One of the intriguing features of differential real space renormalization 
theory is the role played by the boundary conditions. First of all, while they 
are necessary to ensure the infinitesimal character  of the transformation and 
force us to consider lattices with slowly varying interaction parameters,  the 
boundary conditions should after  all play no role in drawing conclusions 
concerning homogeneous systems, because one is interested then in local 
properties of the transformation instead of global ones. Secondly,  the boun- 
dary conditions entail a very  singular behaviour at the corners of the lattice, 
and one may wonder  whether  this is not in conflict with the assumption that 
the interaction parameters are slowly varying in space. In this section we will 
try to shed some light on these points by considering two seemingly similar 
lattice-shapes. It will be argued that for one of them the boundary conditions 
are too singular to allow simple (in a sense to be specified later) fixed-point 
solutions, while for  the other lattice-shape a simple fixed-point solution is 
easily derived. Both lattice-shapes have no local fixed point, however.  

We first consider a lattice to be called a pyramid (a square lattice of which 
the bottom row contains L/a + 1 spins, the row on top of it L/a - 1, etc.). The 
transformation at the right edge is depicted in fig. 6. In each cycle we 
introduce one extra new cross spin by means of a truncated inverse star- 
triangle transformation.  In this step ( a ) ~  (b), we have some freedom to choose 
these interactions, indicated by p[ and p~ in fig. 6b. In order that the 
transformation becomes infinitesimal, we have to require that the dotted 
interactions in triangles I and II are the same (up to order alL). For the 
interactions ql in these triangles, this leads to the requirement (the inter- 
actions p'~' and p~ are indicated in fig. 6b) 

F(O, p~, Kr) = F(p'~', p~, Ky). (6.1) 
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Fig. 6. Modified restructuring transformation for lattices with an oblique edge. 

Eq. (6.1) is e.g. fulfilled if we take p~ = o~ provided that we are sure that this 
also implies p ~ o o .  It is unclear what conditions have to be imposed on Kx 
and Ky, if we consider these as given functions,  to ensure that this is the case. 
Nevertheless ,  if the search for fixed-point solutions is done in terms of p'f and 
pT, one just has to restrict  the analysis to functions PT that diverge at the 
right boundary.  Similar conclusions hold for the other interactions in the 
triangles I and II and at the left boundary,  where Pl has to diverge. As usual, 
the new lattice of cross spins has to be stretched isotropically to recover  its 
original size. The transformation is therefore  again described in the limit 
a l L  ~ 0 by equations (2.31)-(2.33), which now have to be solved in the domain 
-½~<x ~<½, 0 ~  < y ~< min{½- x, ½+x}. 

As before,  we will look for so-called simple fixed-point solutions, i.e. 
solutions of the type (4.10). As is clear from eq. (4.10), a function S'f of this 
type can not diverge at the right boundary (where x + y = -~); consequently,  ST 
can not diverge ei thert .  Therefore ,  all simple fixed-point solutions can only 
satisfy the boundary conditions 

S ' f=oo;  S T = S T  -tfinite,  f o r - x + y = ½ ,  x < 0 ,  (6.2) 

ST=oo;  S T = S $  -tfinite,  f o r x + y = ½ ,  x > 0 .  (6.3) 

At the bottom edge, we still have the boundary condition (4.8). The above 
boundary conditions are of a different type than those considered before:  in 
contrast  to all fixed points found so far by HSL,  Knops and Hilhorst3), as well 

I This is the reason that we did not discuss the case Ky--* oo or Ky ~0 in analysing eq. (6.1). 
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as in section 4, only one function is infinite in eqs. (6.2), (6.3) at the oblique 
edge. As discussed in appendix C, it appears that there do not exist simple 
fixed-point solutions. However, if we enlarge the pyramid to the domain 
-½ ~< x <~ ½, 0 <~ y ~< ½- x, to be called a triangle, there is just one oblique edge. 
In this case, the proper boundary conditions for simple solutions are, besides 
the one given in eq. (4.8), 

S ~ = ~ ,  S~ =oo, S~=0 ,  f o r x = - ½ ,  0 < y < l ,  (6.4) 

S ~ = ~ ,  ST=S~-tf ini te ,  f o r x + y = l ,  -½<x<½.  (6.5) 

The following simple fixed-point solution satisfies these boundary conditions 
(see appendix C for a derivation) 

S~ = (I + y)II2(3[2 + x -  y) S~ = (l + y)II2(12+ x)l12(~+ x + y) (6.6) 
2y(½+x) 112 ' 2 y ( ~ - x -  y) ' 

with S~ given by eq. (4.3). 
It should be noted that both lattice-shapes considered in this section have 

no local fixed-point solution, since the functions (4.23) do not obey the 
boundary condition at the oblique edge(s). 

Though the question of the presence of a simple fixed-point solution is a 
poor criterium to judge the renormalization transformation, the above analy- 
sis demonstrates that the applicability of the present renormalization trans- 
formation is not restricted to semi-infinite lattices. It also shows that it may be 
useful to investigate different lattice shapes in searching for fixed-point 
solutions. Moreover, even though the precise conditions under which eq. (6.1) 
is fulfilled are unknown, it yields an example of a proper renormalization 
transformation for which local critical behaviour can not be studied due to the 
fact that there is no local fixed-point solution. 

7. Concluding remarks 

In this paper we have derived exact RG equations for the Ising model on a 
square lattice on the basis of a restructuring transformation invented by 
Hilhorst. The equations are more involved than those found in previous 
applications of differential RG theory, in that the flow equations contain two 
auxiliary parameters; to obtain explicit expressions for the renormalization flow, 
these parameters have to be determined by solving a partial differential equation. 
To evaluate the critical behaviour, the concept of local fixed point was 
introduced. The linearized flow around such a fixed point describes local 
properties of the system and can be associated with the critical properties of 
homogeneous systems. 
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Finally, we would like to comment  further  on the concept  of local fixed 
point. 

I. The local fixed point is determined by the RG equations irrespective of 
the shape of the lattice and the boundary  conditions. For, one should realize 
a) that the relation X~ ~D,i  =/x0~tr/i (cf. eq. (5.23)) expresses  a fundamental  
proper ty  of the t ransformat ion in the bulk; b) that according to the program 
set forth by HSL,  the essential feature of the present  formulat ion of differen- 
tial real space renormalizat ion theory is the compar ison of two nearly iden- 
tical lattices with a different lattice constant,  so that the densities of degrees 
of f reedom of the two lattices are slightly different; as a result, stretching 
terms of the type r - V K ~  arise in the flow equations. It is on the basis of 
these two propert ies  that a local fixed point will in general be found from an 
equation of the type ~ * - r  = 0, without reference to any lattice shape or 
boundary  conditions. This observat ion has three important  consequences:  

(i) The local fixed point (if it exists) can be determined by a short-cut,  i.e. 

without solving a partial differential equation. 
(ii) The local fixed point more or less prescr ibes what  should be 

considered as the natural shape of the lattice, in that it will in general be 
compat ible  with the boundary  conditions of only one particular lattice shape. 
In our case,  the natural lattice shape turned out to be the semi-infinite strip. 

(iii) The relation la* - r = 0 indicates in our case what  should be considered 
as the right direction in which the sequence of star-triangle t ransformat ions  
should move  through the lattice. To see this, suppose we had started the 
restructuring t ransformat ion at the bot tom row of the semi-infinite strip (in 
the way indicated in fig. 4) and had then advanced upwards through the strip. 
Le t  us denote  the analogues of the vectors  D and M in the RG equations 

describing this up- t ransformat ion by D u and M u. Because the up-trans- 
format ion moves  in the +y  direction and the down-t ransformat ion in the - y  
direction, we have D u= (D.  ex)ex- (D.ey)ey; an analogous result holds for 

M ". The stretching term in this case, however ,  should be the same as before.  
From the above expression for D ~, it follows that la ~=  (la" ex)ex- (t~" er)ey, 
so that e y - ( / ~ " * - r ) = - ( S ~ [ ( S *  + 87)+ y ) < 0  (cf. eq. (5.24)). The conclusion 
therefore  is, that the up- t ransformat ion has no local fixed point. To under- 
stand this result, note that the terms E~D~.  Vp~ and - r - V K ~  should in 
general have opposi te  effects for a proper  t ransformat ion with given boundary  
conditions: one of them should have the tendency to increase the interaction 
Ks under renormalizat ion,  the other to decrease K~ ; the two terms should just 
balance at the fixed point. Apparently,  in an up- t ransformat ion this is not the 

case. 
2. For an arbi trary differential renormalizat ion t ransformat ion with flow 

equations of the type obtained by H S L  or of our equations (2.31)-(2.33), the 
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local fixed poin t  should obey  an equa t ion  of the form ia* - r = 0. Hence ,  in d 

d imens ions ,  the local fixed poin t  is in general  de t e rmined  by  d + 1 equa t ions :  

s ince I~*(p'~,p~ . . . .  ) does no t  depend  on r, the equa t ion  ~ * - r = 0  is 

equ iva l en t  to d i n d e p e n d e n t  e q u a t i o n s t ,  and the r e q u i r e m e n t  that  Pl, p2 etc. 

lie in the crit ical subspace  yields one ext ra  equa t ion ,  i n d e p e n d e n t  f rom the 

p rev ious  ones .  C o n s e q u e n t l y ,  a local f ixed-point  so lu t ion  of a r eno rma l i za t ion  

t r a n s f o r m a t i o n  can only  be found  if there are at least d + 1 pa ramete r s  to 

solve these  equations~t. C o n s e q u e n t l y ,  the fo rmula t ion  of a p roper  renor-  

mal iza t ion  scheme with isot ropic  di la t ion in te rms of the in te rac t ion  

pa ramete r s  Kx and Ky alone,  seems to be ruled out. 

3. At the local fixed point ,  one  finds in general  one un ique  e igenva lue  yT. As 

was s t ressed in par t icu lar  by  Van  LeeuwenT),  one can then,  accord ing  to the 

r eno rma l i za t ion  pic ture ,  cons t ruc t  the exact  non l inea r  scal ing fields in the 

in te rac t ion  space cons idered .  In  te rms of these fields, cor rec t ions  to scal ing 

are absent .  Hence ,  if differential  real space r eno rma l i za t ion  theory  can  be 

applied to still o ther  models ,  we expec t  to find local fixed points  on ly  for 

those models  tha t  exhib i t  mere ly  trivial (analyt ic)  cor rec t ions  to scaling. 

4. The  l inear ized  flow in the t empera tu re  d i rec t ion  a round  non- loca l  fixed 

poin ts  is more  difficult to ana lyse  with the p resen t  RG equa t ions  than  with 

those of HSL.  Wi thou t  a detai led analys is  it is clear however ,  that  the 

e igenva lue  equa t ion  for these fixed poin ts  is in the case of H S L  of the general  

form§ 

n * f  4- (la* - r ) .  V f  = YTf. 

Since the e igen func t ions  f will usua l ly  be non -ze ro  eve rywhere ,  they will 

descr ibe  proper t ies  of the sys tem as a whole.  It tu rns  out  that  one of the 

t We could get less than d equations if it would be possible to obtain a RG transformation by 
comparing lattices with lattice constants that are different in some directions, but not in all. This 
would result in non-isotropic stretching. It seems unlikely, however, that such a procedure is 
consistent. For, if we do not stretch the semi-infinite strip in the y-direction, we expect ~y, the 
correlationlength in the y-direction, to remain unchanged under renormalization. But /~y(K')= 
~r(K) implies K '=  K, in disagreement with the RG picture. 

It should be emphasized that the problem is to obtain solutions of at least d + i independent 
ordinary equations. In our analysis, we considered K~ and K r as the two completely independent 
functions, and viewed p~ and p2 as parameters depending on Kx and Kr; pt and p2 are then 
obtained from one ordinary equation, eq. (2.31), and one differential equation, eq. (2.32). The 
solution of the latter equation is not of the form f(pz(r),p2(r), Kx(r), Ky(r))= 0, but yields a 
functional relation, that can symbolically be written as h([pl(r)], [p2(r)], [K~(r)], [Kr(r)] ) = 0. 
Thus we indeed had 3 functions (e.g. pl(r), p2(r) and Ky(r)) that, though not fully independent, 
were not restricted further by an ordinary equation. 

§ In our case, the eigenvalue equation does not appear to be of the above form due to the 
second term between square brackets in eq. (5.37), which is proportional to xl,'. Nevertheless, 
since this one is also proportional to ~t* - r, an analysis, similar to the one given above, seems to 
apply. 
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components  of p * -  r vanishes at the boundaries for all non-local fixed-point 
solutions found by Knops and Hilhorst3). This might lead to divergent 
behaviour of f at the edges; if f is divergent, however,  it does not describe a 
small deviation from criticality any more, so that the use of the linearized flow 
equations becomes questionable. Maybe such behaviour should have to be 
interpreted in the light of recent  results of Hilhorst and Van LeeuwentT), who 
study Ising systems of which the interactions close to the boundary are 
weaker than those in the bulk. If the deviations from the bulk values diverge 
as l /M, where A is the distance from the boundary,  they find a non-universal 
decay of the boundary spin-spin correlation function when the bulk is critical. 

In this connection we wish to recall some analogous features of the 
differential RG analysis of the linear Ising chain with nearest-neighbour 
interactionsn). In this case, the transformation is formulated in terms of two 
parameters (cf. remark 2) as a result of which a whole class of renor- 
malization transformations is obtained. Although all t ransformations have the 
same zero- temperature  fixed-point, only one of them allows the study of 
local critical behaviour.  The spectrum of eigenvalues of other "nonlocal"  
transformations is unbounded,  but the corresponding eigenfunctions can not 
be interpreted as small deviations from criticality, since they are all divergent 
at some point. Apparently,  there is no clear interpretation of these "non- 
local" transformations.  
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Appendix A 

In this appendix we derive eq. (3.10). One has (cf. eqs. (4.11) and (4.12) of 
HSL)  

alOi _ 
ap~ 

OP__.A = 
OlOt 

tanh 2t]l ~-_t ~ tanh 210i 
tanh - t2il t--~-hnh 2qi' 

tanh 2ql ~- t  .=. tanh 2pl 
tanh - ~itt-a~nh 2~i' 

i , l  = 1,2,3,  (A.I) 

i, ! = 1, 2, 3. (A.2) 
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These equations imply for [QI := det Q 

3" tanh 2qi tanh 2fli 
toI 1-I (A.3) 

1=1 tanh 2p, tanh 2/~i" 

With the aid of eq. (A.2), eq. (2.23) can be written as 

3 3 ~ i -- ~_l tanh2qk~.  + 
-k~'=l ~',=1 I=--'1= (-1) OiiQ(3-i)3(2ik ~ "i bj)'V/~k =0. (A.4) 

On the basis of Cramer 's  rule for the matrixelements of the inverse of a 

matrix, we have 

~0, for  i = 3 ,  (A.5) 
= (-1)iQiiQ(3-i)3 = [-(-1)iQ~l_i)a[Q[, for i = 1, 2. 

We first rewrite the term proportional to b~ in eq. (A.4); upon using eq. (A.5) 
and next  eq. (A.2), we get 

3 3 2 t 1W~ ~ / ~ - l t a n h  2qk 

3 2 i I --  1 - -  t a n h  2qk. 

3 2 1 ~ - - tanh 2p~ tanh 2p3-i tanh 2103 
= k=l ~ ~=1 ~'~ ( - )  Q(3-~)3O~k[O[ta--~nh2(l~ tanh 2~3-~ tanh 2q3 b~. VlOk 

3 2 

= J ~,  ~'~ (-1)'O<3-,)3O,kb," V#k, (A.6) 
k = l  i = l  

where 

_. tanh 2pl tanh 2p: tanh 2#3 (A.7) 
J := (21~--~-~ 2fh tanh 2f/2 tanh 2q3" 

For  the term proportional to bj in (A.4), we similarly get (in the second step 
we use eq. (A.1), in the third eq. (A.5) for the barred variables and in the 
fourth step eq. (A.3)) 

3 3 2 ~ _~tanh2qk 
- ~  ~'~ ~ (-1)QiiQo_j)3Oikt-a-~2~o k bj .  v~ok 

k = l  i=1 /=1 

3 2 . t a n h  2q~_ 
= - E E • vp , 

k=l j= l  

= - -  2 1 i---I tanh tanh tanh 2t]3_ 
( _ )  Qt3_i)3tan h 2q i 2q3-/ • v/~i, 

i=1 2/~ i tanh 2/~3-~ tanh 2p3 bj 

= () _ltanh 2ql tanh 2q2 tanh 2~3 ~-, 2 
"~ ~ tanh 2/~2 tanh ~ 3  ~ ~ ( -  l)iOiiO°-i)3bj" V~j, 
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3 2 
=1 ~'~ ~'~ (-l)iQijQ(3_i)3bj • v/sj. (A.8) 

j=l i=1 

If we substitute eqs. (A.6) and (A.8) into eq. (A.4) and divide by J, we find 

3 2 
Z Z (--1)iQii0(3-i)3( bi + bi)" VOi = 0, (A.9) 
i-1 i=1 

which is eq. (2.32) with the variables p~ replaced by ion. 

Appendix B 

In this appendix eqs. (4.4) and (4.5) are derived. To obtain eq. (4.5), we 
substitute eqs. (5.6) and (5.7) into eq. (2.18); if we employ the notation (4.2) 
and (5.10), the resulting equation reads 

(CI ' t-C2C3)00~-(C2Jc C1C3)~y2-t - Cl~xI-t - C2~x 2 -  C1C2~x3 = 0. (B.1) 

Using the result (5.12), this may be rewritten as 

0s, 0s2 OS~ + O0_~_(S1S2_ 0S3 S 2 S 3 o y -  S'S3oy + ~ x  1 ) ~ -  x = 0. (B.2) 

The terms containing derivatives with respect  to x can be combined using the 
fact that $1 + $2+ $3 = $1S2S3 (this is just eq. (4.3)). One gets 

$ 2 S 3 ~ -  S1 $300@ -}- ~ 0SI $2 5 3 ~  = 0. (B.3) 

This equation reduces to eq. (4.5) after dividing it by $1S2S3. 
At the fixed-point, the right-hand side of eq. (2.26) has to be zero; by 

eliminating K~ from the resulting equation and using eqs. (5.6) and (5.7), we 
obtain 

1 ap~' l~.Op~+OK~+ 1)(xO0~+ OK*y~ 
5C'~--~-x - 2t~To~-x Oy (S'~S~ + Y 0 y )  = 0. (B.4) 

From eqs. (5.11) and (5.12) it is easy to show that 

1 1 V  + 1 ~-~Vp~'+~-~ p~ ~-~Vp~=0.  (B.5) 

After dividing eq. (B.4) by C~'C~ and using eqs. (5.12) and (B.5), one obtains 
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after rearranging terms 

(1+ S~S~)[ ( I+  S~2){(x l~OS~f OS~f'l - ~ : - ~ - -  + Y~-y/ 
2 lOS~f 2 lOS~ +(1 + S~ )C--~--+ aa-~)- (1 + $1' )t O-x 

From eq. (4.5) it also follows that 

~,2.10S~f+ O S ~  S ~,2) ( O : :  
( l +  ~ J t ~ 7 -  x --b-7) - (1 + 

=(1+ s,s,)(~ 

+ ( 1 +  S~,2){ (x + ~}_~_ l \ aS~  + y~y~}] 

~yy = O. (B.6) 

osv 0s~+~) 
4 Oy 3x 

By combining eqs. (B.6) and (B.7), one obtains eq. (4.4). 

(B.7) 

Appendix C 

In this appendix, we first show how the fixed-point solution (6.6) was 
obtained and then argue why the ansatz (4.10) appears to break down for the 
pyramid. 

In view of the boundary conditions (6.4), (6.5) and (4.8), m(y) must diverge 
at the bottom edge, n(x) at the left boundary and M2(x + y) at the oblique 
edge. We first consider the left bottom corner, x = -½, y = 0. Since Mt(x - y) 
can not be singular along the line with equation y = ½ + x, M~ should approach 
a finite value at this corner; all other functions can in principle diverge, and 
we will therefore assume re(y) - y-% n(x) ~ (~+ x) -v, ME(X + y) --  (/+ X + y)-X. 
If we substitute this anzatz in eq. (4.4) and require that the most diverging 
terms cancel each other in this equation in the three respective limits, 
l i m x ~  - ½ 1 i m y ~ 0 ,  l i m y ~ 0 1 i m x ~  -21 and l i m y ~ 0  (x+½)/y constant, one 
finds that this is only possible if 

S'¢ - cly-'(½ + x)-"% , ,;2 -, S ~ - c l ( ~ + x )  y , y , ( { + x ) ' ~ l .  (C.1) 

Here c, is some unknown constant. Similarly, one finds 

ST = c2y -1, S~ -~ c2y-'(21- x - y)-l, y, (~ - x) ~ 1, 

• , , !  + x , - , / 2  c; ' (½ + x ) ( ~ -  x - y ) - '  ST - c3(3/2 + x - y Jr2 J S~ = 
x / ~  ' x / ~  ' 

( 1 -  y), (½+ x),~ 1, 

(C.2) 

where c2 and c3 are other unknown constants. Obviously r e ( y ) - y - i  at the 
bottom edge, and we therefore write, as in section 4, re(y) = m,s(y)/y. Upon 

(C.3) 
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substituting this in eq. (4.4), this equation becomes of the form 

y-3U (x, y) + y-2W (x, y) + t?(y -1) = 0, (C.4) 

where U(x, y) and W(x, y) are known functions of mn~(y), n(x), Ml(x - y) and 
M2(x + y). Clearly, it is necessary to have U(x, 0 ) = 0  in eq. (C.4). This 
requirement  leads to eq. (4.11). One may check that the solutions (4.17) of 
this equation are incompatible with the asymptotic behaviour (C.1) and (C.2). 
However ,  the solutions (4.16) are allowed; from eqs. (4.13), (4.14) and (4.16) 
one thus finds that 

Ml(X)n2(x) l _ x 
M2(x) = ~ x" (C.5) 

Next ,  we require that the terms of order y-2 cancel in eq. (C.4). This is the 
case provided that 

cgU (x, Y) I + W(x, 0) = 0. (C.6) Oy y=0 

With the aid of the explicit expressions for U and W, this equation becomes 
after eliminating n(x) by means of eq. (C.5) 

m ~,s(0) m.~(O) {m2'(O)M'(x)M2(x)}- '+(-1-2x) dlnMl(x)dx ~-,,.- 2x]dlnM2(x)/  dx (1 
1 1 (d In Ml(x)M2(x)'¢_ 2 d2 In M,(x)M2(x)] 

- 2 ( 2 +  x ) ( 1 -  x ) [  dx / dx 2 ] = 0 .  (C.7) 

Of course,  mn~(0) and the derivative m'~s(0) are not known. Eq. (C.7) only 
needs to hold for _1~< x < ½. However ,  neither Ml(x) nor M2(x) is singular at 
x = - ~ ;  let us therefore assume that Mi and M2 also obey this equation for 
- 3/2 < x <~ -~. For x ~ - 3/2, M1 behaves as MI - 3/2 + x, as eq. (C.3) shows. 
With this asymptotic behaviour,  the terms between square brackets in eq. 
(C.7) diverge as ( 3 /2+x )  -2, and these terms can be cancelled by the one 
between curly brackets provided that also M2 ~ 3•2+ x and that re,s(0) has a 
proper  value. At this stage, one soon realises that 

3/2 + x 
Ml(X) = 3/2 + x, M2(x) = ~r , (C.8) 

2--X 

is an exact  solution of eq. (C.7) that satisfies the asymptotic behaviour (C.2), 
provided that m,~(0)= 1 and m%(0)= ~. The function re(y) now follows from 
an analysis at the oblique edge: we substitute the expression for M2(x + y) 
into eq. (4.4), and require, as usual, that the most diverging terms (which are 
of order (½- x - y)-2) cancel. This turns out to be the case provided that 

2 2/1 2 1 M,(½- 2y)n2(~- y) (C.9) 
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After substitution of the expressions for M~ and n, we obtain by an elementary 

integration 

re(y) = (1 + y)t/2/2y. (C.10) 

On the basis of eqs. (C.5), (C.8) and (C.10), one obtains the functions (6.7), 
which indeed turn out to be fixed-point solutions of eq. (4.4). 

In analyzing the pyramid with the ansatz (4.10), we assume, as before,  that 
M2 diverges as (21- x - y)-L With this assumption, the most divergent terms at 
the right edge are of order ( - ~ - x -  y)-2~ and ( ~ - x  -y)-~-~.  Obviously these 

terms can only cancel if 7 = 1, and hence, if eq. (C.9) is obeyed.  Eq. (C.9) is, 
however,  inconsistent if n(0) is finite. For the right-hand side of eq. (C.9) 
diverges as (21- y)-i in the limit y 1' ½, since Ml(½- 2y) will diverge as (½- y)-~ in 
this limit in view of the boundary conditions at the left  edge. According to eq. 
(C.9), the argument of the logarithm should then have to vanish as 1 _ y, but  this is 
clearly impossible. The conclusion therefore is that no solutions of the type 
(4.10) exist if we assume that M2 diverges as (2 t -  x - y)-V and that n(0) is finite. 

Note added in proof 

Attempts to construct  differential real space renormalization (DRSR) schemes 
for which the lattices aT and LP' have a sublattice in common,  are beset  with 
problems even more severe than those which plague checkerboard trans- 
formationslS). For  in such a scheme the correlation of two spins of the common 
sublattice remains unchanged under renormalization, while in DRSR their 
distance measured in units of the lattice spacing is the same on L¢ and ~ ' .  
Essentially, this implies that the correlation length does not scale properly. In 
this connection,  it should be noted that the equations studied by Jezewski 19) are 
indeed not proper  RG equations. 
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