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Force responses of strongly intrinsically curved DNA helices

deviate from worm-like chain predictions
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Abstract – DNA sequences with nontrivial intrinsic curvature are of interest for a range of bio-
logical and artificial DNA systems. We design both intrinsically strongly curved and intrinsically
straight sequences. We find that such sequences with opposing curvatures can be designed even
under constraints that would naively lead one to assume that those sequences would be highly
similar in their mechanical properties. We then characterize the force response of those sequences
and find that their force-extension curves deviate significantly in the low-force regime, and that
the standard worm-like chain description is inadequate to describe the low-force response of the
strongly bent sequences. We propose a modified description that takes the intrinsic curvature into
account, making the DNA act, in the low-force regime, like a nanoscale helical spring. We find
strongly improved agreement between the model and the simulated force-extension curves.

Copyright c⃝ EPLA, 2016

DNA with intrinsic curvature plays an important role in
biological systems, influencing, e.g., the positions of nucle-
osomes [1–3] and plectonemes [4–6] and the propensity for
stretches of DNA for loop formation [7–9]. DNA molecules
can intrinsically encode their preferential spatial organisa-
tion through their underlying base pair sequence. This is
the first step of many layers of spatial DNA organisation
on larger and larger scales, the latter steps only now be-
ginning to be accessible to a qualitative and quantitative
understanding [10].

The standard description of DNA as a Worm-Like Chain
(WLC) assumes the mechanical properties of DNA to be
isotropic, and hence does not account for intrinsic cur-
vature. Previous work has shown that, in general, this
assumption is reasonable as long as the intrinsic curva-
ture does not build up [11]. Here, we turn our attention
to DNA molecules in which this assumption does not hold.
Since strongly bent sequences occur in real organisms [12],
it is not out of the question that long stretches of DNA
with coherent curvature naturally occur, and we wish to
know how this may cause predictions based on the WLC
model to go wrong.

Artificial sequences with specific patterns of intrinsic
curvature are also of interest. Tandem repeats of the

Widom 601 sequence [13] have been used as templates
for reconstituting chromatin fibers [14–16]. This sequence
is intrinsically curved in one specific direction, and tan-
dem repeats of this sequence have the potential to form
superhelical structures, see fig. 1(a).

Here, we design sequences with such superhelical intrin-
sic curvature in silico and characterize them by simulating
their force response. Such structures have been studied
theoretically (e.g., [17–19]) and it is known that the su-
perhelical geometry influences their force response, if the
curvature of the helix is strong enough so that the persis-
tence length of the polymer is at least comparable to the
contour length of a superhelical turn [19].

The question is then whether there exist DNA se-
quences with an intrinsic curvature strong enough to
influence their force response. It is not a priori clear
whether we should expect this to be the case. The tan-
dem repeats of curved sequences like 601, are not gen-
erally assumed to feature such effects, but the 601 se-
quence is unlikely to be the most strongly bent sequence,
because it is experimentally difficult to access the en-
tirety of the space of sequences of substantial length. To
do this, and find the limits of how strongly curved a
DNA sequence can be, we need computational methods
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Fig. 1: (Colour online) The ground-state structures of tandem repeats of (a) the Widom 601 sequence, (b)–(d) our artificial,
highly bent DNA sequence, as predicted by the rigid base pair model, and (e) the natural (in its singular form) kinetoplast
sequence. Helices with various shapes can be produced by varying the number of additional nucleotides between copies of the
sequence. The numbers of additional base pairs in these figures are (a) 0; (b)–(d) 0, 1 and 2, (e) 2. For the geometric parameters
corresponding to these structures, see table 1.

like those presented in [2], as described in the next
section.

It turns out that strong, coherent intrinsic curvature can
indeed be achieved for DNA molecules. Molecules that
feature such curvature act like nanoscale helical springs,
which intrinsically resist stretching. The force response
predicted by the WLC model provides a poor fit in the
low-force regime for these sequences. We suggest an al-
ternative description, in which we take the superhelical
structure into account.

Some study has been made of the finite-temperature
force response of intrinsically curved polymers, but the
problem has only been fully solved in two dimensions [20].
Here we employ a discrete description [21] of a flexible he-
lix, coarse-graining the DNA to the same level as done by
the Rigid Base Pair model [22], which we use to numer-
ically assess the force response. For low forces, the force
response of this discrete superhelix can be described by
an extensible WLC model [23,24] with effective values for
the bending and stretching moduli. This model leads to a
significantly improved prediction for the low-force regime
of the force response over the naive WLC model.

Designing sequences. – To design sequences with
specific properties, we modeled the DNA using the Rigid
Base Pair (RBP) model parameterized by crystallography
data [22], and we employed the Mutation Monte Carlo
(MMC) method to search the space of all possible se-
quences. The original method [2] introduces mutation
moves to a standard Monte Carlo simulation of a DNA

molecule. We employed a simplified version, which per-
formed only mutation moves and searched (through simu-
lated annealing) for the most strongly bent sequence. The
strength of the instrinsic curvature of the sequence was
measured by calculating the ground-state configuration of
the sequence and taking the inner product between the
first and last tangent vectors to the DNA backbone.

We ran this algorithm on a DNA molecule consisting of
84 base pairs, and created a tandem repeat of the most
bent sequence thus found. In order to create sequences
with different superhelical properties, we created repeats
with additional homogeneous (sequence-averaged) DNA
between the repeats, to interfere with the alignment of the
direction of curvature between successive copies of the se-
quence. This led to DNA sequences with various values for
the superhelical radius and pitch angle, see fig. 1(b)–(d).

We also designed a sequence with low intrinsic curva-
ture by taking our tandem repeat sequence and applying
an MMC algorithm similar to that described above, but
which maximizes the sum of the inner products between
the first tangent vector, and a number of tangent vectors
along the rest of the DNA molecule, at intervals of 50 base
pairs (roughly 1/3 of the persistence length of DNA). This
algorithm ensures that the resulting sequence has low in-
trinsic curvature both locally and globally.

A major difference between this MMC simulation and
the previously described one, however, is a constraint on
the allowed mutations. Starting with the strongly curved
sequence, we mutated it such that the distribution of din-
ucleotides in the sequence remained the same, and only
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Fig. 2: (Colour online) Simulated force-extension curves, WLC fits and predictions of the two-angle model for the low-force
regime, for (a) repeats of the Widom 601 sequence with various numbers of additional base pairs; (b) the kinetoplast sequence
(kDNA); (c) the straightened artificial sequence; (d)–(f) repeats of the artificial curved sequence with various numbers of addi-
tional base pairs. The inset pictures show the intrinsic shapes of these sequences. For the geometric parameters corresponding
to these sequences, see table 1.

their order was allowed to change. We achieved this by
performing mutation moves that swap pieces of the se-
quence that both start and end with the same nucleotides.
For example, ATA might be swapped with ATTA, but
not with ATT. By imposing this constraint, both the
nucleotide and dinucleotide contents are kept identical.
This means, for example, that the GC content of the se-
quence, which is generally thought to be a good indicator
of the mechanical properties of a sequence, is invariant.
Even more strongly, keeping the dinucleotide content con-
stant means that (in the RBP model) the resulting DNA
molecules contain the exact same elastic components, only
in a different order. Even under this constraint, we find
that we can design sequences that seem similar, but in
fact have vastly different intrinsic curvature properties,
and, therefore, different force responses.

Force responses. – In order to measure the force
response, we ran a Monte Carlo simulation of a DNA
molecule with the given sequence under a number of fixed
forces and in each case sampled the extension. This led
to the force-extension curves presented in fig. 2. In the
case of the intrinsically straight sequence, the data can be
fitted with the prediction from a simple WLC model [23]
to good agreement, see fig. 2(c).

For an example of sequences with superhelicial intrin-
sic curvature, we first looked to the Widom 601 sequence.
A repeat of this sequence indeed forms superhelices, as
can be seen in fig. 1(a). Pulling on the helix displayed
there as well as three other variants with various numbers
of additional base pairs added between repeats, we obtain
the force responses depicted in fig. 2(a). The different

Table 1: Geometrical parameters (superhelical radius R and
distance along the backbone between successive base pairs s0)
and number of times the persistence length of DNA fits into a
single helical turn (l being the contour length of a single helical
turn and lp the persistence length) for the superhelices depicted
in fig. 1.

Sequence R (nm) s0 (nm) l/lp
Artificial + 0 bp 14.60 0.00537 1.96
Artificial + 1 bp 13.37 0.0826 1.86
Artificial + 2 bp 11.09 0.164 1.72
kDNA 26.02 0.0309 3.52
601 113.34 0.152 17.1

responses strongly overlap and do not deviate apprecia-
bly from the WLC fit. The intrinsic curvature of the 601
sequence is not strong enough to have a significant ef-
fect on the force response. This has also been observed
experimentally, see supplementary fig. 2 in ref. [15], and
can be understood from the geometry of the superhelix:
the contour length of a superhelical turn is larger than
the persistence length of the DNA at room temperature
(see table 1) meaning that the intrinsic curvature is lost
to thermal fluctuations over distances at which its magni-
tude becomes significant [17,19]. The result is that at this
temperature, the relatively weak superhelical nature of the
601 repeat is not distinguishable from a straight molecule.

In order to see the effect of the intrinsic curvature, we
need a more strongly bent sequence. Nature in fact pro-
vides such a sequence. A strongly curved section of DNA
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has been discovered in kinetoplast DNA (kDNA) [12,25].
Taking the sequence depicted in fig. 2 in [12] and repeat-
ing it with 2 additional base pairs in between, this DNA
sequence forms a much tighter superhelix than the 601 se-
quence, see fig. 1(e). For this structure, with a single-turn
contour length only 3.5 times the persistence length (see
table 1), the force response turns out not to fit the WLC
prediction well. In fig. 2(b), we see a clear discrepancy
for low forces. At high extension, the force response is
similar, but at low extension, the tendency of the DNA
to intrinsically curl up means that it acts like a spring.
Hence more force is needed to stretch it, and the slope of
the force-vs.-extension curve is correspondingly higher.

To get a better grasp on the importance of the DNA
sequence to the force response, we turn to the artificial
sequences described in the previous section and compare
the force responses of the helical sequences with that of
the straightened one. Since the average elastic properties
of the straight and the curved versions of this sequence
are identical, any difference must be due to the build-up
of intrinsic curvature. In figs. 1(b)–(d) and table 1 we
see that the artificial curved sequence forms even tighter
helices, with single-helix contour lengths not much larger
than the persistence length, so we expect an even larger
effect.

In each of the figs. 2(d)–(f), the red dotted line is iden-
tical to that in fig. 2(c), plotted for reference. In each
case there is indeed significant deviation from the WLC
prediction; the more compact the helix, the stronger the
deviation.

Modeling superhelical DNA molecules. – The
failure of the WLC model shown above is due to the as-
sumption of no significant intrinsic curvature. The WLC
force-extension curve assumes that the force response is
dominated by the ironing out of thermal fluctuations
around an intrinsically straight ground state. To cor-
rectly describe the situation under consideration, we must
include the response due to the intrinsic resistance to
stretching by the DNA molecule.

Some studies of flexible rods with intrinsic curvature
exist [17–20,26] but no analytical description at finite
temperature in three dimensions is known. Since the dis-
crepancy for DNA lies mostly in the low-force regime, we
propose a partial solution that describes this regime well.

In order to account for the intrinsic curvature of the su-
perhelical DNA molecules, we turn to a discrete model for
such structures, consisting of a series of flexible, straight
rods, each of which is connected to the next at fixed an-
gles [21,27,28]. Two such angles are necessary to describe
the orientation of one segment with respect to the next,
so that this model is generally known as the two-angle
model. These two angles, together with the length of the
connecting rods, fix the shape of the entire superhelix.

For low forces, the backbone of the superhelix in this de-
scription behaves as an extensible worm-like chain [23,24],
with effective values for the stretching (γ̃), bending (Ã)

and twisting (C̃) moduli, as well as a coupling between
stretching and twisting (g̃) [21,27]. With these parame-
ters, the linear response of the superhelix is given by
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where F , Mt and Mb are the force, torsional torque and
flexural torque applied to the system, and x, Ω and R−1

the extension, twist and curvature. We are interested in
the dependence of F on x. If we assume no torques on the
system, eq. (1) reduces to

F =

(

kBT γ̃ − (kBT )2
g̃2

C̃

)

x. (2)

The effective values of the mechanical properties of the
superhelical backbone depend on the elastic properties of
the flexible rods that make up the superhelix, as well as the
geometry of the structure, i.e., the two angles mentioned
above, as described by eqs. (96) and further in ref. [27].
In applying this model to our DNA structures, the flexible
rods represent the connections between consecutive base
pairs, so their elastic properties are those of the DNA din-
ucleotide steps in the RBP model.

We will characterize a superhelix not by the two local
angles between successive rods, but by the superhelical
radius R and the superhelical rise (i.e., the distance trav-
elled along the backbone) per base pair, s0, as these are
simpler to determine numerically. The expressions for the
elastic parameters in eq. (1) simplify considerably if we
assume that R ≫ b (for our helices, R is generally larger
by at least a factor of 30), in which case we find

γ̃ =
r

kBT

C + (A − C)r2

R2
, (3)

g̃ =
r2

kBT

(A − C)(b2
− s2

0)

bR
, (4)

C̃ = r
(

A − (A − C)r2
)

, (5)

Ã =
2rAC

A + C − (A − C)r2
, (6)

r =
s0

b
, (7)

where A and C are the bending and twisting moduli of
our DNA model, R and s0 are as defined above, and b is
the length of the flexible rods, i.e., the distance between
successive base pairs, taken to be 0.34 nm. In this contin-
uum limit, the effective spring constant of the system, i.e.,
the constant coefficient in eq. (2), reduces to the standard
classical form [19,26].

The bending modulus is easily estimated by sampling
the tangent-tangent correlations in a standard Monte
Carlo simulation of a homogeneous DNA molecule with
sequence-average properties at zero force. The twist mod-
ulus can be estimated (neglecting the cross-terms in the
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RBP Hamiltonian) from the twist stiffnesses of the RBP
model [29]. The geometrical parameters of the helices were
estimated directly from the ground-state structure of the
sequences as follows.

We created ground-state structures for long sequences
consisting of 500–1000 concatenated copies of the se-
quences of interest. This gave us DNA states like those
depicted in fig. 1 but where the superhelical backbone was
much larger than the radius, reducing edge effects. We
approximated the backbones of these structures by calcu-
lating the three-dimensional straight line that best fitted
(in the least-squares sense) the positions of all base pairs
in the superhelix.

We estimated the radius of each superhelix by taking the
average distance of the base pairs to their closest point on
this backbone. We also used the backbone to calculate
for each base pair the (signed) angle between the connect-
ing line between the base pair and the backbone, and the
same for a reference base pair. These angles ran cyclically
from −π to π, and allowed us to determine the base pairs
which were an integer number of helical turns away from
the first base pair. This allowed us to calculate the average
distance along the backbone between two successive such
base pairs, and the average number of base pairs per su-
perhelical turn. Hence we calculated s0, the superhelical
rise (i.e., the distance travelled along the backbone) per
base pair. The resulting parameters are shown in table 1.

Using these values to inform eqs. (2)–(7), the force-
extension curves for these structures are given by that of
the extensible worm-like chain with our effective parame-
ters, which can be approximated by [24]

F =

(

(kBT )2
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1

4
+

x

L
−

F
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]

,

(8)
where L is the contour length of the DNA and K the effec-
tive spring constant of the backbone, written out explicitly
in eq. (2).

This equation gives us the force-extension curves rep-
resented by the dashed green lines in figs. 2(b), (d)–(f).
The agreement with the data at low forces is significantly
better than that of the naive WLC prediction.

The force-extension curves of these superhelical DNA
molecules have three regimes. At low forces, entropy dom-
inates and the force response follows from the random
walk statistics of the effective superhelical axis. Increasing
the force, the superhelical backbone is straightened out.
When the extension is approximately equal to the intrin-
sic contour length of the superhelical backbone, we reach a
regime where the superhelix acts as a spring (the energetic
regime of our effective extensible WLC) [30]. The slope of
the force-extension curve response becomes higher because
of this additional restoring force and approaches the clas-
sical result for the linear regime of a flexible helix [19,26].
Finally, the superhelix becomes so distorted that the effec-
tive model breaks down, and the normal high-force regime
of DNA takes over.

Conclusion. – We find that, while in most cases in-
trinsic curvature may not be an important factor to the
force response of a DNA molecule, it is easy to design
sequences for which the effects of intrinsic curvature are
visible. Short sequences with such strong curvature also
occur in nature, e.g., in kinetoplast DNA. In such cases,
fitting the naive WLC force-extension curve does not give
satisfactory results in the low-force regime. The intrinsic
curvature needs to be taken into account, and we have
provided a model to do so, at finite temperature in three
dimensions, and valid for low forces.

The commonly used tandem repeats of the 601 sequence
do not show appreciable effects in their force response and
experimental setups using such sequences should not be
affected. However, should more strongly bent sequences
become desirable for such experiments in the future, care
should be taken to ensure that the effects we note here are
accounted for.

We also note that the effects to the force response
of a DNA molecule can be tuned through strongly con-
strained mutations of the sequence. Surprisingly, both
very straight and strongly bent DNA molecules, with
markedly different force responses, can be obtained with-
out altering the overall GC content, or even the overall
numbers of different dinucleotides.
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