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1 Introduction

Power law relaxation is of widespread occurrence in complex materials. Thus
one often encounters algebraic relaxation functions

B (t) ot 1)

with 0 < a < 1. Examples are the transport of charge carriers in amorphous
semiconductors [1,2], the behavior of electrical currents at rough blocking elec-
trodes [3], the dielectric relaxation of liquids [4] and of solids [5] and the at-
tenuation of seismic waves [6]. Especially the microscopic and macroscopic
dynamical behavior of macromolecular systems (such as linear polymers or
gels) is often characterized by the algebraic patterns of Eq. (1) [7].

For such systems fractional expressions come naturally into play as a result
of the superposition principle. Consider an arbitrary history of the external
perturbation ¥ (¢), and let us denote by ®, (t) the response of the system to
steplike external perturbations ¥ (t) = © (t), where O (t) is the Heaviside step
function. Then we obtain the response of the system by the causal convolution:

/ dr'o, (t — ) L L) @)

dt’

since the (Boltzmann) superposition integral, Eq. (2), holds for linear systems
which are homogeneous in time. Specifically, let ®; obey:

N 0

where I' (z) denotes the Gamma function. Eq. (3) is chosen in such a way as
to match the forthcoming definitions. Now we find the response @ (t) to an
arbitrary ¥ (¢) by inserting Eq. (3) into Eq. (2):

/ dat' (¢ — )" d‘I;t(,tl). 4)

q’(t)_r(l

The right-hand-side of Eq. (4) is nothing but a fractional integral. This is most
readily seen by recalling the definition of Riemann’s fractional integral [8,9]:

D) = Ty )/ ?a (5)
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where v > 0. Equation (5) embraces two special cases: (1) The case ¢ = 0
corresponds to a fractional integral of Riemann-Liouville type. (i) ¢ - —o0
leads to Weyl’s version of fractional calculus. Fractional differentiation of order
v > 0 is now obtained by first picking an integer n, n > < , then performing
a fractional integration of order n — v , followed by an ordinary differentiation
of order n, i.e.

dr —n
DI f(8) = gz [ DI F ()] (6)
We work in the following within Weyl’s formalism, i.e. ¢ & —o0 , and use the
shorthand notation d7/dt” = _D]. In Weyl’s version the composition rule

for differentiation and integration obeys the simple form
de d° dot+8 .
diw diP ~ qe P @)

for arbitrary a and g [9].
Using Egs. (5) to (7) we can rewrite the causal convolution, Eq. (4) as:
de! d¥ (¢ d*v (t
o(t)=Cr" ey —dt( ) =Cr* —dt“( ) (8)
Thus we find that here the system’s response, ® (t), follows by the fractional
differentiation of the external perturbation, ¥ ().

We consider now the same system, but exchange the roles of ® and ¥,
i.e., view ¥ as being the response to a prescribed ®. Such a reversal can be
achieved experimentally for systems in which both quantities can be controlled
(for instance, the stress and the strain in a rheological experiment). In order
to find the corresponding fractional expression we have simply to apply the
fractional operator d~®/dt~“ to both sides of Eq. (8), which leads to

4% (t)

— -1l _—a
v(t)=C'r prra 9)
By rewriting Eq. (9) as
d*1dd (C-lr@ do (t')
—n-1_—a el ! AN
YO =Crt T g Ti+a) | @ D (10)

—00

we can infer immediately that the response ¥, to a steplike perturbation

®(t) = O () is
c! t\*
T, (t) = Tita) (;) (11)
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2 Applications to Microscopic Models of Polymer
Dynamics

Macromolecular systems show in many cases viscoelastic behavior, which com-
bines the characteristic features of solids (elasticity) and of liquids (viscosity).
Traditional rheological methods measure the materials’ properties at large
length scales, and we will discuss applications of fractional calculus to this
class of experiments in Sec. 3. Recent optical developments allow, however, the
micromanipulation of macromolecules so that one has means at hand to mea-
sure local mechanical properties. Thus Perkins et al. [10]~ [12] and Wirtz [13]
have dragged individual fluorescent DNAs with optical or magnetic tweezers
at one end; Amblard et al. [14] have performed similar experiments with indi-
vidual magnetic beads in actin networks. In this section we focus on such a
class of experiments on polymer chains and networks. We prefer here not to
take all experimentally relevant factors into account, such as the excluded vol-
ume, the finite extensibility, the bending rigidity, the hydrodynamic coupling
(such effects were discussed, for instance, in Refs. [14] [17]), but to focus on
the rather simple Rouse model for polymer dynamics [18,19]. Thus, using the
Rouse model we demonstrate how, as a result of the superposition principle (or
equivalently of simple scaling relations) fractional expressions such as Eq. (9)
come into play, and we determine the local dynamics of polymer chains and
networks.

2.1 Pulling a Rouse Chain at One of its Ends

In the following we show how a prototype model of polymer dynamics, the
Rouse model [18,19], leads rigorously to a fractional differential equation of
the form of Eq. (9). We demonstrate this for an external force which acts on
one end-monomer of the chain.

The polymer is modeled as a Gaussian chain consisting of N monomers,
connected by harmonic springs to a linear chain. The chain’s configuration is
given by the set of vectors {Ry, (t)}, where Ry, (t) = (Xn (t),Yn (), Zn (t)) is
the position vector of the nth bead at time ¢, n = 0,1,...N — 1. The potential
energy U ({R, (¢)}) has to account for the elastic contributions and for the
influence of the external force F (t), which is assumed to act on the monomer
n = 0. Thus one has

N-1
U({Ra () = 5 Y Ra() ~Rus OF ~FORo(). (12

In Eq. (12) K is the (entropic) spring constant K = 37'/b%, where T' denotes the
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temperature in units of the Boltzmann constant kg, and b is the mean distance
between neighboring beads (in the absence of an external perturbation). The
chain’s dynamics is described by N coupled Langevin equations [18,19]

dRy, (t) _ _OU({Rn()})
dt OR, (1)

¢ +1r (n,1) (13)

and the hydrodynamic interaction between the beads is disregarded. In Eq. (13)
¢ is the friction constant and fg (n,t) is the random thermal-noise force which
mimics the collisions of the nth bead of the chain with the solvent molecules.
The thermal noise is Gaussian, white, with zero mean, so that one has:

fi (n,t) = 0, fi (n, t) fj (n', t') = 2(T¢5,vj6,m/5 (t - t') . (14)

In Eq. (14) 7 and j denote the components of the force vector, i.e. i,j =
X,Y,Z and the overbar stands for thermal averaging, i.e. averaging over the
realizations of the Langevin forces fg (n,t).

Taking the variable n to be continuous (i.e. considering the chain as an
elastic string) and setting F (t) = (0, F (t),0), it follows from Egs. (12) and
(13) that:

0X,(t) . 0%°X, ()
o — Kz thx (n,1), (15)
0Zn(t) . 0%Zy(t)
(¢ =K—73z +1z (n,t) (16)
and
2
caygt(t) _ k92 ;Zz(t) +6,0F () + fy (n,1). (17

At the chain’s ends the Rouse boundary conditions [18,19] hold:

0Xn (1)

on

_ OYa(t)
n=0,N on

_9Z) _o

n=0,N on n=0,N

Since the X- and Z-components of the R,, are force-independent and follow
the standard Rouse behavior [18,19] we can restrict ourselves to the behavior
of the Y-component, Eq. (17). This equation contains two types of forces: the
thermal noise term fy (n,t) and the external force F (t) which acts on the first
monomer.
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The solution of Eq. (17) with the boundary conditions, Eq. (18), can be
given in the form of a Fourier series [19]

Yo (t) =Y (0,¢) +2iY(p, t) cos (’%) (19)
p=1

where Y (p,t), p=0,1,..., denote the normal coordinates:

Y (p,t) /dn cos Y, (t). (20)
In terms of the coordinates Y (p,t) Eq. (17) can be rewritten as
Ho - Py 0+ 3580+ por (o). @
Here 7 denotes the Rouse time
TR = %g_\;‘i (22)

which is the longest internal relaxation time of the harmonic chain. The sym-
bol gy (p,t) in Eq. (21) denotes the Fourier transform of the thermal noises
vy (p,t) = N~1 fON dncos (prn/N) fy (n,t).

We assume that the chain is at ¢ = 0 in thermal equilibrium, i.e. it
has a Gaussian conformation. This can be accounted for automatically by
stipulating the polymer to have been subjected to the thermal forces since
t = —oo. Furthermore, switching on the external force at ¢ = 0, i.e. having
F (t) = FyO (), the normal coordinates are given by

Y (pt) = ! / droy (p,7)exp (—p? (t — 1) /7R)

/dT exp ( (t—7)/7R). (23)

From Eqgs. (19) and (23) one can obtain readily the explicit time dependence
of several different quantities such as the end-to-end distance, the displacement
of the chain’s center of mass (CM), or that of a tagged bead (cf. for instance
Refs. [20,21]).
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Consider first the CM’s motion. The Y-component of the trajectory of the
CM is given by the Oth normal coordinate, i.e. by Your (t) = N1 j;)N dnYy, (t)
=Y (0,t). Using Eq. (23) with p = 0 we find for the mean averaged position
of the chain’s CM in the Y -direction:

- _ K

You () = et (24)
i.e., the chain drifts with a constant velocity Fo/N¢. From Eq. (24) one can
infer that the friction constant of the overall chain is N¢, which is the sum
of the friction constants of the individual monomers: Due to the neglect of
hydrodynamic interactions in Eq. (13), the Rouse chain is free draining,.

The behavior of a tagged bead, say one of the chain’s ends, is more com-
plicated. Using Eq. (19) with n =0, i.e.

Yo (t) =Y(0>t)+2§:Y(p,t) (25)

p=1

we obtain from Egs. (23) and (25) for the MSD of the Oth bead

Yo (t) = —t+ %i/drexp —-p’r/TR) . (26)
p=1p

From Eq. (26) the short-time behavior, t € 7g, follows by converting the sum
over p into an integral; this leads to:

2Fo_app_ 2 Fo_ap
/3nCT TR

In Eq. (27) we have omitted the first term on the rhs of Eq. (26), which is
of the order of \/t/7r smaller than the second term. In the long time regime
t > 7R one finds the second term of Eq. (26) to be of the order of 75/t smaller
than the first one. Thus one has

Yo (t) = (27)

F
Yo (1) = -2t 28
Yo (t) = Ne» (28)
i.e. the bead’s motion mirrors the motion of the CM of the chain, Eq. (24).
Now Eq. (27) is a nice example which shows how fractional relationships
come into play in polymer dynamics. Assume the chain to very long, N >
1; since the Rouse time obeys 7p o« N2, the range of validity of Eq. (27)



339

becomes very large. One may even consider the limit N — oo, where Eq. (27)
becomes exact for all positive times. Assume now an arbitrary history F (t)
of the external force. Then, due to the linearity of the system one finds the
convolution integral

A0 dr  dF(7) 1 d3/? [dF(t)

1 1 t
:mma/z)_/ e e Ca] @

which represents Weyl’s integral (cf. Eq. (5) with ¢ = 00). Using the compo-
sition rule, Eq. (7), leads finally to:

1 dY2F (1)

Thus the mean position of bead n = 0 (which is subjected to the external
force) follows from the semiintegration of the force history F' ().

We close this section by showing how Eq. (27) can also be derived using
scaling arguments. Consider the tagged bead n = 0. After switching on the
force at ¢t = 0, the number g (¢) of monomers which move together with the
tagged bead increases with ¢. This number follows from the Rouse time asso-
ciated with a subchain of g monomers, namely from 7, ~ (b?¢*/T. Inverting
this relation leads to:

ﬁtl/?
Vb

Eq. (31) describes the short time behavior, t < 7g, whereas at longer times,
t > Tgr, one has

g(t) = (31)

g(t)=N, (32)

i.e. the whole chain moves collectively. The mobility of the set of g beads
decreases with time as p (t) = (g (t)) . The average velocity vy in the Y-
direction of the tagged monomer is given by the velocity of the set of monomers
moving together with it; hence vy (t) = u(t) Fo = (Cg(¢))”' Fo, where g is
given by Eq. (31) for ¢ « 7g and by Eq. (32) for t > 7r. The average
displacement of a single bead can be estimated from the average displacement
of the corresponding blob of g monomers, i.e. Yg (t) = vy (£)t = (Cg ()" Fot.
For t « 7R one finds from Eq. (31)

o)~ i, (33)
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i.e., we recover (up to numerical coefficients of order unity) Eq. (27), the result
of the previous, exact calculations. For longer times the PA drifts as a whole,
and we find from Eq. (32) Yp (t) ~ (N¢) " Fyt, which corresponds to Eq. (28).

In Sec. 2.2 we will discuss how Eq. (30) can be generalized to an arbitrary
order a of integration, with o obeying 0 < a < 1/2. This is achieved by pulling
a monomer which belongs to a branched structure (fractal network); then « is
directly related to the connectivity of the network.

2.2 Pulling One Monomer of a Fractal Network

Consider again the scaling arguments which led us to Eq. (33). The t!/2-
subdrift displacement follows from the increase in the number g (t) o« t'/2 of
monomers which are moving collectively: this slows down the tagged bead. It
is evident that pulling a monomer of a macromolecular network (which is more
tight than a linear chain) involves an even slower subdrift. Examples of such
networks are the generalized Gaussian structures (GGS), which were considered
by Sommer and Blumen [22]. We investigate here some of the dynamical
properties of such GGS, especially isotropic and locally homogeneous fractals,
which may be seen as prototypes for membranes, gels and polymer networks.

In order to obtain g (t) for the GGS it is useful to rederive Egs. (31) and
(32) in a slightly different way. Note that Rouse dynamics leads to Eq. (17)
which is a one-dimensional equation of diffusion-type. As it is well-known, its
Green’s function is a Gaussian, whose width increases with time as ¢1/2; stated
differently, the number of monomers g (¢) which are involved in a collective
motion obeys g (t) o< t1/2.

Consider now the Rouse dynamics of a fractal GGS. This leads to a dif-
fusion equation on the corresponding fractal lattice. It is well-known that the
number S (¢) of different sites visited by a random walker during time ¢ goes as
S (t) oc t%/2 for dy < 2 and as S (t) o< t for dg > 2. Here dy denotes the spec-
tral dimension of the network (see, for instance, Refs. [23,24]); in the case of a
regular lattice ds; equals the Euclidian dimension. Now, the dynamical process
has a single parameter combination with the dimension of time, namely (b?/T;
we thus find:

d.!/
9(t) ~ —43:,2,,3, t4:/2 for d, < 2 (34)
C%t for d; > 2.

Eq. (34) is valid as long as the network does not move as a whole; at later
times g (t) = N holds. The crossover time 7 follows by setting g (7¢) = N in
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Eq. (34). For ds < 2 this leads to
16 ~ (b N?/4 T (35)

For a linear chain, d; = 1, one recovers the Rouse time, Eq. (22). We proceed
now as in Sec. 2.1. The domain which moves collectively has the velocity
vy (t) = (Cg(t)) ™" Fy. For dy < 2 this leads to the following displacement of
the tagged monomer

Y (+) Fobd’ tl——ds/2'

The displacement due to an arbitrary force F' (t) is thus given by
d, ds/2-1 ] (4
PO e 10 (37

~ Cl—d,/sz,/2 dtds/2—1

Thus we have suceeded in deriving an expression with a fractional integral of
order a =1 —d,/2, where 0 < a < 1/2.

We close this section with a short discussion of the case d; > 2. Sommer
and Blumen [22] showed that the corresponding GGS (without an external
force) is then in a collapsed state. Using a Langevin-type approach Schies-
sel [25] showed that in this case one has a very weak time-dependence of Y (t),
which results from the fact that the external force is unable to unfold the col-
lapsed structure. In Sec. 2.4 we show how more general perturbations which
act on the whole GGS are able to unfold structures whose spectral dimensions
are less than 4.

2.3 Polyampholytes in External Electrical Fields

We turn now to the dynamics of polyampholytes (PAs) in external electrical
fields. This allows us to obtain relations similar to Eq. (30), with orders of
integration a within the range 1/2 < a < 1. PAs are heteropolymers carrying
positive and negative charges along their backbone, forming quenched (random
or regular) patterns. The conformational and dynamical properties of PAs
show interesting features: (i) The interactions between the different positive
and negative charges lead in many cases to the collapse of the chains into
spherical globules [26,27]. (i) For PAs with a sufficiently high total charge the
globular state is not stable; one has then a random necklace structure with
globular and stretched parts [28,29]. (i) In a sufficiently strong external field
a PA globule is unstable and stretches out [29] [32].

This plethora of static (conformational) features has its counterpart in the
dynamics, and the situation is very complex. Here we restrict the analysis to an
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important, limiting case, namely to the weak coupling limit (WCL), in which
the interaction between the charges can be neglected and where the behavior
of PAs in external fields can be handled with some ease [20] [21} [29] [36]. This
WCL can be realized through weakly charged PAs. As an example consider a,
PA with N monomers, with fN positive (+¢) and fN negative (—q) charges,
randomly distributed along the backbone of the chain; f < 1/2 denotes the
fraction of positively (as well as negatively) charged monomers. In this case the
interaction between the charges can be neglected if b > N'/2flg, where lg =
¢?/ (eT) denotes the Bjerrum length and e the dielectric constant [26,27,31,32];
in water at room temperature one has lg ~ 7A .

We now follow Refs. [20,21] and model, similar to Sec. 2.1, the PA as a
Rouse chain. We denote the charge on the nth bead by ¢, and take it to be a
quenched variable, i.e., the set {g,} stays fixed for a given PA. The potential
U ({R, (t)}) in an external electrical field E is then given by

K N-1 N-1
U ({Rn (t)}) = 5 Z [Rn (t) - Rn—l (t)]2 -E Z Qan (t) . (38)
n=1 n=1

In order to calculate the dynamics of the PA one can now follow Sec. 2.1. The
equations of motion are given by Eq. (13) which again decouples in Cartesian
coordinates. For E = (0, E, 0) this leads to Egs. (15) and (16) for the X- and
the Z-component, whereas the dynamics in field direction is given by

Y (t) 0%V ()
ot K on?

By transforming to Rouse normal coordinates (as in Sec. 2.1) one can read-
ily evaluate several PA properties for different charge distributions {g,}: see
Ref. [21] for an explicit calculation of the position of the CM, of that of par-
ticular beads, as well as for the evaluation of the PA’s end-to-end distance.
We dispense here with giving the explicit derivation of the formulas and only
present a result which again leads to a fractional expression.

Consider a PA with a random, uncorrelated charge distribution, i.e. (gngm)
= ¢*8,m (the brackets denote the average with respect to different {g,} real-
isations). At short times, ¢ € Tg, and neglecting the thermal contributions,
the mean-squared displacement of bead n = 0 obeys:

<(M)2> _ quggz(\/\g% 1) 32 (40)

(see Refs. [20,21] for the full expression). Hence, from Eq. (40) the mean-
squared displacement of the bead follows a t3/2-subdrift behavior. On the

¢

+@E + fy (n,t). (39)
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other hand for ¢t > 7p (and again neglecting the thermal contributions) one

has
<(Y0—(t))2> = ’Z—E;tz. (41)

Here the displacement of the tagged bead mirrors the CM’s motion (note that
the average total charge is of the order of gv/N).

Eq. (40) is again an example of a power law: After switching on the field,
the displacement of the zeroth bead is given by Ys (t) ~ (b'/2qE/¢3/4T/ 4) ¢3/4,

as long as t < 7g; here the hat denotes the averaging procedure f(t) =

o\ 1/2
<( f (t)) > . For large N the Rouse-time 7g is very large (TR o< N2) and

one has

i
S oo b dr  dE(r) = b'/%q d73/E(t)
Yo(t)"‘cs/4T1/4 (t_T)1—7/4 dr NC3/4T1/4 dt—3/4

—00

(42)

i.e., for an arbitrary history of the electrical field E (t) the displacement of the
bead is given by a fractional integration of E (t) of order 3/4.

What leads to an exponent of 3/4? And can the exponent also assume
other values? To clarify this we apply scaling arguments (as in Sec. 2.1) to PAs
with random, uncorrelated charge distributions. In the following we consider
general charge patterns, namely random, long-range correlated sequences of
charges [31]. For such sequences the net charge of the PA is given by (Q7,,) =
¢®?N?" with 0 < 7 < 1. The case ¥ = 1/2 corresponds to the uncorrelated
distribution discussed above, whereas for v > 1/2 the charges are positively,
and for v < 1/2 negatively correlated. The extreme cases v = 1 and v = 0
are realized by polyelectrolytes (¢, = q or ¢, = —q) and by alternating PAs
(gn = (=1)" q), respectively.

Consider now a single bead. We know from Sec. 2.1 the short- and long-
time behavior of the total number g of neighboring monomers which are
involved in a collective motion with this tagged bead (cf. Egs. (31) and
(32)). The excess charge @ of this collectively moving set of beads grows
with time as (Q?) = ¢2(g(t))*”, whereas its mobility decreases with time
as p = (Cg(t))”"'. The average velocity of the tagged monomer in the Y-
direction, vy, equals the velocity of the collectively moving set around it.
Hence 9% (g) = p? (Q*) E? = ¢2E?(2¢%7~2, where g is given by Eq. (31) for
t < 7r and by Eq. (32) for t > 7 . The average displacement ?(t) of a
single bead, follows from the average displacement of the corresponding group
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of g neighbors, i.e. Y2 () 252 (g) 2 = ? E2(~2¢?7~2¢2. For t < 7g one finds
from Eq. (31)

b2—27q2E2 Lty

2 (4) o
YO = i

(43)
For the uncorrelated case, v = 1/2, this reproduces (up to a numerical constant
of order unity) the field induced short-time behavior of the exact calculations,
i.e. Eq. (40). At longer times the PA drifts as a whole, and from Eq. (32) we
find that Y2 () = (¢>E?/¢2N2-27) 2, which for v = 1/2 reproduces Eq. (41).
Note that for polyelectrolytes, v = 1, the drift becomes independent of N.

With Eq. (43) we have found a power law of the form Y (¢) oc t(147)/2]
which leads us to a generalization of the fractional relationships Eqgs. (30) and
(42), namely to:

- bl—'rq d-+/2E (?)
YO~ somara—z —gearre

(44)

In Eq. (44) the order of integration ranges from 1/2 (alternating case) to 1
(polyelectrolyte).

2.4 Polyampholytic Networks in External Electrical Fields

Consider a GGS where each monomer carries a charge, so that ¢, = =gq.
Assume that the charges are distributed in such a way that (Q%,,) = ¢>N?".
Note that the cases v = 1/2 and v = 1 can be simply realized, whereas
long-ranged (anti)correlations cannot be simply induced for many non-trivial
connectivities. Using Eq. (34) one finds with oy = QE/ (9¢) ~ ¢E/ (¢'7¢)
for d; < 2:

? (t) ~ (CbZ/Jﬂ)(1-"/)'1«9/2 q_'f_tl—(l-—’)‘)d;/2. (45)

The equilibrium value of the typical size R of the PA in the external field is
reached at 7g; one has for y =1/2

~ 2
R T (rg) m DEE NU-a /o), (46)

a relation which was derived by Sommer and Blumen [22].

Interestingly, the range of validity of Eq. (45) extends — depending on the
value v — to larger ds-values. Consider, for instance, the uncorrelated case
v = 1/2. Then the exponent of ¢, namely 1 — (1 — ) ds/2 is positive as long as
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ds < 4. One can show using more refined arguments [25] that here Eqgs. (45)
and (46) remain indeed valid also for 2 < d; < 4. Note, however, that for
ds > 2 g(t), Eq. (34), is independent of ds, so that our simplified argument
does not work here.

This example shows that the interplay between the connectivity of the
network and the charge distribution is not in every case multiplicative, i.e.
does not subordinate (cf. the similar phenomenon discussed in Ref. [37]). In
order to obtain the exponents for all ds- and +y-values one is forced to use a
more detailed analysis, which is given in Ref. [25].

We close by giving the corresponding fractional relation for an arbitrary
time-dependence of E (t):

(1=7)d, /2 q d1~M4/271E (1)
Z dt(1-7ds/2-1

Y () ~ (¢0*/T) (47)
a relation which generalizes the fractional Eqgs. (37) and (44). The order of
integration extends now from 0 to —1; note, however, that Eq. (47) is only
valid for sufficiently small d,-values, namely ds < 2/ (1 —7) [25].

2.5 Rouse Dynamics of Generalized Gaussian Structures:
Connection to Macroscopic Properties

Until now we have considered the local dynamical properties of Rouse chains
and of GGSs; now one may raise the question in how far the local dynamics
influence the macroscopic properties of, say, a solution of GGSs. We will show
in this section that the microscopic dynamics also determine the macroscopic
viscoelastic properties of a GGS-solution; thus fractional force-displacement
relationships translate into fractional stress-strain relationships of the whole
sample.

We follow here the general treatment of viscoelasticity for polymer solu-
tions, for suspensions etc. which is given in chapter 3.7 of Ref. [19] and apply
it to GGS solutions. Let us assume to have a solution of identical GGSs and
denote with ¢ the concentration of the monomers, i.e. ¢/N is the concentra-
tion of the GGSs. The problem is now to find a microscopic expression for the
stress tensor 0,3, say for the component o, (for its definition cf. Ref. [38,39]).
To this end let us consider a volume V in the CGS solution (cf. Fig. 1). We
divide the volume by a hypothetical plane perpendicular to the Z-axis. The
component o,, of the stress tensor is now given through the following defini-
tion:

O = Sz /A. (48)
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Figure 1: Microscopic derivation of the stress-tensor of a solution of GGSs (see text for
details)

Here S,, denotes the force which the upper part of the volume exerts on the
lower part through the plane A; the dash denotes the configurational average
with respect to the monomers. If we neglect the contribution of the solvent
fluid to the force, S, is given by [19]

Sz (h) = ZFWO (h=Zm)© (Zn = h), (49)

which depends on the height h of the dividing plane. In Eq. (49) the sum-
mations extend over all monomers in the volume V and F,(,f,z denotes the X-
component of the force F,,;, which monomer n exerts on monomer m. Thus
0.z can be written (for short-ranged forces):

L
_ 1 (@)
O = o7 / dhS., (h Z / dhFi)® (h — Zm) O (Z, —h).  (50)
0

nmo

Eq. (50) can be transformed to the simple form [19]

N
__° (2)
O == SN Rz, (51)

n=1
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where the summation now extends over the monomers of one arbitrary repre-
sentative of the GGSs, and F,, = En F,n is the total sum of the forces acting
on monormer m.

For a GGS F,, is the sum of all forces exerted by the monomers which are
connected to the bead n via a spring (of spring constant K = 3T'/b%). Thus

F® = _K Zm My Xm. (52)

Here M, denotes the generalized Rouse matrix [40] of the GGS which can be
constructed as follows. Start with all matrix elements set to zero. Then account
for each bond between the monomers n and m by increasing the diagonal
components M,, and M,,,, by +1 and M,,, and M,,, by —1. For a linear
structure (i.e. a polymer chain) this procedure leads to a tridiagonal matrix
which is the well-known Rouse matrix. Inserting Eq. (52) into (51) leads to

Grz = %i—f nz;n Zn Mo X (53)
Now we switch from the {R,} coordinates to the normal coordinates {R. (p)};
these two sets are related to each other through, say for the X-component,
Xn =23, X (p)my, (p). Here m, (p) denotes the nth component of the pth
eigenvector of M, corresponding to the eigenvalue A, i.e. ), Mpzmy (p) =
Apmy (p). We normalize m, (p) as follows: > my, (p) mn (q) = 28p/N. In
terms of these normal coordinates Eq. (53) takes the following form:

02 = 2 3 NN X D Z () (54)

Now let us perform a steplike deformation of the GGS solution at t = 0,
i.e., let the strain tensor be of the form e, (t) = O (¢t) (see Ref. [39] for a
definition of €,3). Then for t > 0 the relaxation of the stress o, is given
by the relaxation modulus G (t). Microscopically, the step deformation means
that at ¢t = 0 each monomer gets displaced by Z, (¢t = 0) in the X-direction.
Solving the corresponding Langevin equation (see Ref. [25]) it follows that

X (p,t) Z (p,t) = exp (—2K A\pt/() (55)

T
2KN),
Thus we find for the relaxation modulus of the CGS solution

G(t) = %T 3 exp (—2K0,t/¢) (56)
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Now the behavior for t < 7g can be calculated by converting the sum over p
into an integral; this leads to

G(t)=cT / dn (A) exp (—2KAt/C) = T (¢/K)%/? =4/, (57)
0

Here n (\) denotes the spectral density of the eigenvalues of M which for
N~%d: < X\ < 1is given by n (\) = nds/2-1 cf. Refs. [23,24]. This result was
also found by Cates [41].

For an arbitrary strain history e,; (t) the stress o, (¢) is given by the
causal convolution

t
0ur () = / arG (¢ —r) L2 T) (58)
—00
Using Eq. (57) we find the following fractional stress-strain relationship
dds/2%e, (t
02 (1) 2 e (¢/ )/ T2z ) (59)

dtds/2

3 Applications to Rheological Constitutive Equations

In the last subsection we have shown how the (fractional) stress-strain re-
lationship, Eq. (59) which describes the macroscopic mechanical properties
of GGS solutions emerges from the microscopic dynamics of its constituents.
The viewpoint of the current section is different: We attempt to find stress-
strain relationships which properly describe the rheological properties of wide
classes of materials. This phenomenological approach will lead us to rheolog-
ical constitutive equations (RCE) with fractional derivatives. We note that
the description of viscoelastic properties of materials by means of fractional
calculus has a long history, which is discussed in detail in Ref. [42].

In the next section we describe the classical approach to viscoelasticity by
exemplarily introducing the Maxwell model; furthermore we show that this
model may be generalised by simply replacing the ordinary derivatives in its
RCE by fractional ones. A word of caution is here necessary; arbitrarily replac-
ing in RCE ordinary derivatives by fractional ones has its pitfalls: as a general
procedure it can easily lead to physically meaningless results: It is therefore
indispensable to have procedures at hand which automatically guarantee that
the resulting fractional expressions are physically correct. To achieve this we
start from mechanical analogues, a topic which is the subject of investigation
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of Sec. 3.2. Using this method large classes of physically meaningful fractional
RCEs can be formulated; in Sec. 3.3 we present a list of RCEs based on frac-
tional elements (FEs) for which all important material functions are known in
analytical, closed form. Finally, we demonstrate in Sec. 3.4 the usefulness of
fractional RCEs, by applying them to several viscoelastic materials, by deter-
mining the corresponding response functions and by comparing these to the
experimental results.

3.1 Viscoelasticity: Classical Approach and its Fractional General-
ization

The usual phenomenological viscoelastic models are based on springs and dash-
pots [38,39]. The springs, Fig. 2(a), obey Hooke’s law

o(t) = Ee(t) (60)
whereas for dashpots, Fig. 2(b), Newton’s law holds:

de (t)

o(t)=n o

(61)

Here o and € are the stress and strain of the corresponding mechanical model
and E and 7 denote the spring constant and the viscosity. Now the stress o
and the strain € in Egs. (60) and (61) may be interpreted as being components
of the stress and strain tensors, say o,, and €,; of a macroscopic object.
Then Hooke’s law represents the RCE of an ideal solid, whereas Newton’s law
corresponds to an ideal fluid.

E J— n n
(a) (b) (c)

Figure 2: (a) The spring and (b) the dashpot are the structural parts of ordinary viscoelastic
models. An example is (c) the Maxwell model where the spring and the dashpot are arranged
in a sequential manner.
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In general, real objects (such as macromolecular materials) show a behav-
ior which combines characteristic features of solids and liquids, i.e. they are
viscoelastic. In order to derive RCEs for viscoelastic materials one often starts
from mechanical arrangements which combine a small number of springs and
dashpots in suitable ways; by this method one arrives at several standard vis-
coelastic models. To give an example, let us combine a spring and a dashpot
in series (Fig. 2(c)); this leads to the classical Maxwell model [38,39]. Here the
two components obey the stress-strain relations o, (t) = Ee;(t) for the spring
and o3 (t) = nde; (t) /dt for the dashpot. Due to the sequential construction of
the arrangement the stresses are equal for both structural parts, o =02 =0
whereas the strains add, €; + €2 = €. This leads to

do(t) _de(t)
& -
which is the RCE of the ordinary Maxwell model.

The relazation modulus G (t), i.e., the stress response of the system to a
shear jump ¢ (t) = O (¢) follows from Eq. (62) to be exponential, namely

G (t) = Eexp(—t/7) O (t). (63)

o(t)+ (62)

Thus the Maxwell model leads to an exponential stress decay; real materials,
however, show in many cases a more general behavior. This is also the case
for microscopic models of polymer dynamics, such as the Rouse model: In
Sec. 2.5 we showed that — as a result of the linear superposition of normal
modes — the stress relaxation is non-exponential, obeying an algebraic decay,
namely G (t) oc t77 (with 0 < v < 1; cf. Eq. (57)). Such algebraic patterns
occur for wide classes of polymeric materials over many decades in time. It is
thus natural to ask how the classical viscoelastic models have to be extended
in order to be able to reproduce such decay patterns.

A direct approach to create fractional RCE is to replace the regular deriva-
tives of ordinary RCE by fractional derivatives (d” /dt"*) of non-integer order
(0 < 7; < 1) [43]. In the case of the Maxwell model, Eq. (62), this procedure
leads to

o (t) _ ., pd7e ()

5
g (t) +r dtm dt2

(64)
with 0 < 73 < 1 and 0 < 2 < 1. The relaxation modulus of this generalised
Maxwell model can be calculated analytically using different methods [43]~ [45].
Interestingly, Eq. (64) is physically meaningful only for -y;-values in a restricted
range: An analysis of the RCE shows (see Sec. 3.3) that G (¢) behaves like
tMm~72 for short times, t <« 7. Thus for 74 > 72 the relaxation function
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increases, which is in general not reasonable [43,44], and one has to require
that 1 < 72.

This example shows that constructing fractional RCEs through direct re-
placement (d/dt — d" /dt") is unsatisfactory: Only after an in depth analysis
of the solutions of such fractional RCE can one decide, a posteriori, whether
the solutions are physically meaningful or not. In the next section we describe
another method which is easy to implement and which has the big advantage
that it guarantees automatically that the fractional RCEs obtained through it
are physically correct.

3.2 Mechanical Analogues to Fractional Rheological Equations

Let us start by constructing a simple RCE which is physically sound. We
assume a given, linear system, which displays the following response function:

with 0 < v < 1. We already know a physical model which leads to such
a decay pattern, namely solutions made of Rouse-type GGS, cf. Eq. (57).
By comparing Eq. (65) with Egs. (3) and (8) we obtain the fractional RCE
corresponding to this state:

_ oA de(t)

o(t)=ET - (66)
Note that Eq. (66) is an interpolation between Hookes law, Eq. (60) (y = 0)

and Newton’s law, Eq. (61) (y = 1).
Schiessel and Blumen [46,47], Schiessel et al [45,48], Heymans and Bauwens
[49] and Heymans [50] have demonstrated that the fractional relation, Eq. (66),
can be realized physically through hierarchical arrangements of springs and
dashpots, such as ladders, trees and fractal networks. In the limit of an infinite
number of constitutive elements these arrangements obey Eq. (66). We sketch
here two examples, namely the ladder structure introduced in Ref. [46] and the
fractal arrangement discussed in Ref. [47]. In Fig. 3 we display a ladder-like
structure consisting of springs (with spring constants Ey, E, E»,...) along one
of the struts and dashpots (with viscosities 79, 71, 72,...) along the rungs of
the ladder. We have shown in Ref. [46] that for equal spring constants and
viscosities, i.e. for E = Eg = E; = ... and n = 19 = 7; = ..., this arrangement
obeys Eq. (66) with 7 = n/E and v = 1/2. Moreover, the sequential structure
of Fig. 3 also allows to attain other y-values, by choosing Ej and n; with k



352

Figure 3: Spring-dashpot ladder: A sequential realisation of the fractional element.

in a suitable way. Thus it suffices to let the spring constants and viscosities
obey [46]

Ei, < k'7?7 and ny, o k' 27 (67)

in order to have an arrangement which obeys Eq. (66) with 0 < v < 1.

In Ref. [51] we have shown that the linear Rouse-model and the simple
ladder model (all E and 7 are equal, v = 1/2) are closely related. Indeed, the
similarity between Eqs. (30) and (66) is not accidental. The physical situation
of the Rouse chain is, in fact, very close to the ladder arrangement in Fig. 3:
In both cases one pulls at the end of an object which is connected by springs
and exposed to a velocity dependent friction.

Here an interesting question arises, namely whether it is possible to con-
struct spring-dashpot arrangements which correspond to the GGSs discussed in
Sec. 2.2. Such fractals were indeed analysed by us in Ref. [47]. As an example
consider the Sierpinski-like structure depicted in Fig. 4. Such a model obeys
v =1-4ds/2 (cf. Ref. [47]), i.e., the connectivity of the network determines
the order of derivation in Eq. (66).

As a next step we introduce now the concept of fractional element (FE); we
define a FE as being a mechanical arrangement which obeys Eq. (66) (without
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Figure 4: Sierpinski-like network of springs and dashpots: Here the connectivity of the
structure controls its rheological properties.
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Figure 5: Single elements: (a) elastic, (b) viscous and (c) fractional element.
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caring about its specific inner structure). A FE is specified by a triple (v, E, )
and we symbolize it by a triangle, as shown in Fig. 5(c), where also its classical
counterparts, the spring and the dashpot, are depicted. In the following we
will treat a FE on the same footing as a spring or a dashpot, namely as being
an elementary building block of mechanical arrangements.

E X(B,EZ’TZ)

n &(oc,El,tl)
(a) L’_' (b)

Figure 6: (a) The Maxwell model and (b) its fractional generalisation.

Now we have a method at hand to carry out a proper generalization of
the classical Maxwell model, which we depict again in Fig. 6(a): We sim-
ply replace the two classical elements by FEs with the parameters (o, Eq,71)
and (B8, E,,72), cf. Fig. 6(b). The FEs obey the stress-strain relations
01(t) = Eymd®e,(t)/dt* and o2(t) = Ez'rf dPe,(t)/dtP. Due to the sequential
construction of the arrangement one finds

Eym¢ d*Po (t)

d%e (t)
E2 Tzﬁ dta-ﬁ .

dte

o(t) + (68)

p— (03
- E].T]

Let us assume without loss of generality a > . Equation (68) can be further
simplified by setting

1/(a—p)
T= (Elrf'/Eng) and E = E; (r1/7)*. (69)
This leads to
_zd*Po(t) d%e (t)
B —
o(t)+7¢ e T e (70)

which is the RCE of the fractional Maxwell model [43,45,52]. Now compare
Eq. (70) with Eq. (64): The parameter 7; has to be identified with a— 3 and 72
with a. Note that due to the mechanical construction, our fractional Maxwell
model obeys automatically 73 < 5. A further advantage of our method is
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that the schematic representation of the model, Fig. 6(b), is much easier to
grasp than the corresponding RCE, Eq. (70). This advantage increases with
the number of FEs involved, as the next examples will show.

3.3 Overview over Exactly Solvable Fractional Models

Here we list FE based models for which all relevant response functions are
known analytically, namely the relaxation modulus, the creep compliance, the
complex modulus and the complex compliance. Now, the relaxation modulus
G (t) was already introduced. The shear creep compliance J (t) is the response
of the strain to the shear o (t) = ©(t). G(t) and J(¢) are the so-called
step response functions. On the other hand, the so-called harmonic response
functions are defined as follows: The complex shear modulus G* (w) describes
the response of the stress to a harmonic strain excitation € (t) = exp (iwt),
i.e. o(t) = G* (w)exp (iwt); from G* (w) the storage and the loss moduli,
G' (w) = Re(G* (w)) and G" (w) = Im(G* (w)), follow. The complex shear
compliance J* (w) is the response of the strain to a harmonic stress excitation
o (t) = exp (iwt); the storage and loss compliances are defined by J' (w) =
Re (J* (w)) and J" (w) = —Im (J* (w)).

In the context of fractional RCEs, the dynamical response functions are ex-
tremely useful: (i) In many rheological experiments they are measured directly
(cf., for instance, Ref. [42] and subsection 3.4) and (ii) for a given fractional
RCE they can be easily derived. This can be inferred from the behavior of
fractional derivatives under Fourier transformation. The Fourier transform

fwun=ﬂm=/dwmwM4m) (71)

turns the operation d”/dt” into a simple multiplication [8,9]

P {210

dt”

b= i), (72)
For a given fractional RCE the complex modulus follows directly from
G* (w) =7 (w) /€ (w) (73)

by using the multiplication rule (72); the complex compliance is then given by
J* (w) = 1/G* (w).
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Fractional Element

A single FE leads to Eq. (66), which is the simplest fractional RCE. The
corresponding mechanical analogue is depicted in Fig. 5(c). The relaxation
modulus is given by Eq. (65); the creep compliance follows in analogy to the
discussion in Sec. 1, cf. Eq. (11):

-1 v
J(t) = % (;) . (74)
Fourier transforming Eq. (66) leads to o (w) = E (iwT)” £ (w), from which
G* (w) = E (iwr)” (75)
and
J* (w) = E7! (iwr) ™" (76)
follow.

Fractional Maxwell Model

In Sec. 3.2 we have already derived the RCE of the fractional Maxwell model,
cf. its RCE, Eq. (70), and the mechanical analog, Fig. 6(b). Fourier trans-
forming Eq. (70) and using Egs. (72) and (73) leads to the complex modulus:

E(iwt)*

The complex compliance J* (w) = 1/G* (w) obeys
J*(w) = B~ (iwr) ™% + E~ (4wr) P. (78)

Eq. (78) mirrors the fact that for serially arranged elements the compliances
of the FEs, Eq. (76), simply add; similarly, the creep compliance is the sum of
the compliances of the corresponding two FEs:

e (7 _1 (t/7)P
It =E I'(l+a) + r'(1+p) (79)

for all 0 < 8 < a <1, aresult also reported in Ref. [43] (see also the discussion
in Refs. [44,45]).

On the other hand, the determination of the relaxation function G (¢) is a
difficult task; it can be performed using a power series ansatz [43], a Laplace-
Mellin [44] or a Fourier-Mellin method [45]. For the detailed calculations we
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refer the interested reader to the original works; here we restrict ourself to the
presentation and discussion of the results. The relaxation function is:

E t| (a5 a7
G(t)=——H} [=| »*7 %] (80)
a- 'B T &—_%, a—iﬁ ) (Oa 1)

or, written differently

G(t) = E (;) Y Bepis (- (;) M) . (81)

Equations (80) and (81) are two equivalent representations of G (¢): Here
the H}'™ (z) denote the Fox H-functions [53], which are defined via modified
Mellin-Barnes integrals; a detailed discussion of the H-functions can be found
in Ref. [45] and in chapter 8 of this book. The E, , (z) stand for the Mittag-
Leffler functions [54], which are defined via power series [43,45].

The H-functions may be written in terms of alternating power series, a fact
which is convenient for computations. For fractional RCEs we often encounter
the form H}1 (z) (see Eq. (80) and the other models, discussed below). The
power series around z = 0 and z = oo are given by

L[| (a,4) 3 zltra)/4
HY [a: o ] zzj 1+ £ (82)
and
(a, 4) 1y (SDF (/)
Y [x @8 0 ] Z Mol

A combination of Egs. (82) and (83) allows the numerical evaluation of Hi3 ()
over the complete range of z-values, z > 0. Furthermore, from the power series
the asymptotic behavior for small and for large arguments can be immediately
derived:

(a,A) ~ 1 o
for x € 1 and
12 (. 4) = —-—-1—1"%—1
AH;, [-’17 (a, A); (0,1) ] -r (1 + a;l) (85)
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for z > 1.

Now, the behavior of G (t), Eq. (80), for the fractional Maxwell model can
be inferred readily. In the parameter range 0 < 8 < @ < 1 G(t) obeys at short
times, t < 7, cf. Eq. (84):

E AN
0= i3 (5) )
whereas at long times (¢ > 7) one has asymptotically, cf. Eq. (85)
E AN

Equation (80) also includes the special cases 3 = 0 and/or a = 1; a discussion
of these cases can be found in Ref. [45].

Fractional Kelvin-Voigt Model

|
E =k (B,Ez,kz)l X(OL,E,,N)

(a) (b) |

Figure 7: The (a) ordinary Kelvin-Voigt model and (b) its fractional generalisation.

By arranging the spring and the dashpot in parallel one arrives at the
standard Kelvin—Voigt model, depicted in Fig. 7(a); its generalisation with two
FEs is shown in Fig. 7(b). Because of the parallel construction the individual
stresses add. Following the procedure used for the fractional Maxwell model
we find the following RCE

d*e(t)

B8
Jra +E7‘ﬁd £(t)

dtP

o(t) = ET¢ (88)

where the parameters 7 and E are defined as in Eq. (69). By Fourier trans-
forming Eq. (88) we obtain from Egs. (72) and (73) the complex modulus

G*(w) = E(iwT)® + E(iwt)?, (89)
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a result that mirrors the additivity of the moduli in parallel arrangements.
Similarly, one finds for the relaxation modulus

_ (/) (t/m)=*
G) = Br—o + B =gy (90)

On the other hand, the parallel arrangement of the Kelvin-Voigt model causes
the complex compliance
(iwT) =P

* — -1
W =8 1+ (iwr)2—8

(91)

to be more involved than for the Maxwell model. For the calculation of the
function J(t) methods similar to the determination of G (t) for the fractional
Maxwell model can be used. This leads to [45]

a1
a=hr o= (92)
225, 555 )5(0,1)

or, equivalently, to

() = B (;) Fapiita (— (%) H) . (93)

From Eq. (84) we obtain for ¢t <« 7 the short time behavior of J(t):

E-1 t
J(t) = a—ﬂHll% [;

E-1 t\*
) ——— (= 4
whereas for ¢ > 7 we have asymptotically, cf. Eq. (85):
E1 [t\*
Jt) 2 —+ | -] .
0=+ () %9)

A discussion of the special cases & = 1 and/or # = 0 can be found in Ref. [45].

Note the symmetry of the step response functions, G(t) and J(t), in the
fractional Maxwell model and in the fractional Kelvin—Voigt model, the two
possible arrangements of two FEs. Depending on the construction (sequential
for Maxwell or parallel for Kelvin—Voigt) one of these response functions is sim-
ply a sum of two algebraic terms (i.e. J(t) in the Maxwell model, Eq. (79), and
G(t) in the Kelvin—Voigt model, Eq. (90)). Then the other response function is
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a Mittag-Leffler function (i.e. G(t) for the Maxwell model, Eq. (81), and J(t)
for the Kelvin—Voigt model, Eq. (93)). Furthermore, one finds in each case
a crossover between two algebraic regimes: For a sum of two algebraic terms
this is obvious; in the case of the Mittag—Leffler function this follows from its
expression through power series (vide supra and Egs. (84) and (85)).

Fractional Zener Model

I

E, E}(OC,E,,XI) l l('y,Eb)w)
n L‘J_rg (B,E.\) x
(a) (b)

Figure 8: (a) The Zener model and (b) its fractional generalisation.

The so—called Zener or standard solid model [38,39] depicted in Fig. 8(a)
involves three elements: It consists of a Maxwell model in parallel with a
spring. The most general fractional version of the Zener model is displayed
in Fig. 8(b) and consists of three FEs. Without loss of generality, we again
require 0 < B < a < 1 and, of course, 0 < v < 1. For this arrangement one
finds the following RCE [45]:

d*Po(t) d%e(t) de(t) drtePe(t)
a—p — aZ “\7) y2Z =\ v+a—p
P ET Jo + Eot T + Eo1 JiTap

(96)

a(t)+7

with 7 and E given by Eq. (69) and Ey = E3(r3/7)”. This RCE was given
by Tschoegl [39] for the special case 8 = v = 0; it was extended to arbitrary
0 £ B < a (with v = 0) by Friedrich and Braun [55] (cf. also the paper by
Metzler et al. [56]).

Using Egs. (72) and (73) the calculation of the complex modulus G*(w) is
straightforward and results in:

G (w) = E(iwt)*

=15 Gwn)a? " Eo(iwr)”. (07)
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In Eq. (97) the moduli of the Maxwell model, Eq. (77) and of the single FE,
Eq. (75), add; this is the direct consequence of the parallel arrangement of Fig.
8(b).

We obtain the resulting relaxation modulus from Eq. (97) by simply adding
the moduli of the Maxwell model, Eq. (80), and of the single FE, Eq. (65), i.e.

_B_ 1 _
__E gu|t| \Teprasp /™
G(t) - - 'B N T - aljﬂ’ a-l—ﬂ > (Oa 1) EOF(]' - ’Y) - (98)

Depending on the parameters, up to four algebraic time regimes may show up.
This can be seen by comparing on the RHS of Eq. (98) the generalised Maxwell
term (and its power-law behaviors, Egs. (86) and (87)) with the second term.
For instance, in the case 0 < v < 8 < a and for E > Ejy, we find three time
regimes

t=P for tLT
Git)~<¢ t™ for TLEKL N (99)
t=Y for n<t

where 71 = (E/Eo)l/(”_”’) T.
The complex compliance J*(w) = 1/G*(w), i.e.

(iwT) ™ + (iwr)™P
E + Ey(twr)"=* + Ep(iwt)Y—#

J* (W) = (100)

shows a more involved pattern. The creep compliance is known analytically
only for the special cases v = a or v = f3, cf. Ref. [45]; we present here the

result for v = 3:
co¥ g s (E+Eo)™* [t)*?
e [Cl § 3(01)]+T1+ﬂ_)<?)‘
(101)
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Here we set C; = (Eo/(E + Eo))l/(a—ﬂ). Equation (101) was given in Ref. [55]
for the special case v = 8 = 0. Note that Eq. (101) expresses J(t) as the sum of
two terms which have the same functional dependences as the compliances of
the Kelvin—Voigt model, Eq. (92) and of the single FE, Eq. (74), respectively.
This similarity follows from the correspondence between the fractional Zener
model and the fractional Poynting-Thomson model, which we discuss below.
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Figure 9: (a) The ordinary and (b) the fractional Poynting-Thomson model.

Fractional Poynting-Thomson Model

The Poynting—-Thomson model and its generalisation based on FEs are shown
in Figs. 9(a) and (b), respectively. The stress—strain relation of the fractional
model obeys

E _ . d* () E 4 . da(t) d%e(t) dPe(t)
o=y "N B — a g =\
a(t) + EOT T + EoT T Er T + ET 7P
(102)

where 7, E and Ej are defined as for the fractional Zener model. Due to the
serial arrangement of the Poynting-Thomson model we obtain immediately
its creep compliance as being the sum of the compliances of its subunits, a
Kelvin—Voigt element, Eq. (92) and a FE, Eq. (74):

a 1
a-p a-p Bl (t)"
ga%ﬁ’ 1 ;;(0,1) }+F(1+7) (T) - (109

a—p

We are able to calculate the relaxation modulus when we restrict ourselves to
v = a or to v = f. Interestingly, the Poynting-Thomson and the Zener model
lead then to the same RCEs. In order to distinguish between the material
constants of the two models we introduce the superscripts P for Poynting-
Thomson and Z for Zener. Thus for v = 8 the RCE of the Poynting-Thomson
model, Eq. (102), takes the form

o)+ EP (rP)*? go—Bo(t)  EPEP (+P) 50 | pys dPe(t)
EP +EP  dt>-f ~— EP 4+ E} dt dtP
(104)
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whereas the RCE of the Zener model, Eq. (96), for v = a reads:

o(t) + (r%)*7" % _ (57 1 B ()" d;iit) 4 B () df;ét)_
(105)

By comparing the corresponding terms of Egs. (104) and (105) we find as
transformation rules:

P = (E? + EZ) |EZ)" P 12, (106)
EP = ((E” + EZ) |EZ) /7 (B2)? |BZ (107)

and
EF = ((E? + E?) JEZ)\ PP gz, (108)

These relations connect the two models and are valid for v = §; for v = a
one has simply to exchange a and (3 in Egs. (106) to (108), cf. Ref. [45].
Using Eq. (103) and the relations (106) to (108) one recovers Eq. (101) of the
fractional Zener model.

This duality can now be invoked to establish the relaxation modulus G(t) in
the Poynting—Thomson model; one has only to replace the material constants
in the corresponding function of the fractional Zener model, Eq. (98). For
v = (3 this leads to [42]

eGP B | ¢ | (& EE, (t/7)”
a=f E P \Cr| (£, 10,1 | E+ET(1-8)
(109)

with Cy = (E/ (E + Eo))"/@#.

3.4 Application to Experimental Data

In Sec. 2 we demonstrated that some special interconnected structures, called
GGS, lead directly to power law relaxation, or, equivalently to fractional rhe-
ological constitutive equations. The unifying characteristics of different mate-
rials displaying such behaviors is the fact that their internal structural units
are interconnected and that these units move cooperatively. From this point of
view, it is interesting to test the applicability of the derived models for mate-
rials whose rheological properties are dominated by their strong connectivity.
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Figure 10: Storage modulus G’ (war) and loss modulus G (war) of crosslinked poly-
dimethylsiloxane. The shade of the symbols indicates different degrees of crosslinking. The
degree depends on the time of the reaction: t4 is the time where the gel point is reached; t;
and t2 are later times. The lines represent the fit to the data.
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Table 1: Material parameters used in Fig. 10.

time | S =E7* Pas* | a,- | Ep, Pa
tg 407 0.51 0
1 >t 572 0.45 52
to >t 2461 0.31 | 1340

Gels are obtained either by polymerization of multifunctional monomers
or by crosslinking of already formed strands [57]. Such gels correspond closely
to GGS. We display in Fig. 10 the dynamical moduli G’ and G” as a function
of the reduced frequency, war, for polydimethylsiloxane (PDMS) at different
crosslinking stages [58]. Thus the situation at which the gel structure is at-
tained for the first time is given in black symbols, whereas the situation at
two later times is indicated in gray and white. As to be expected, we find
at the gelation point in a double-logarithmic plot a linear dependence of both
moduli over the whole experimentally accessible domain. This behavior can
be fully represented by a single FE, Fig. 5(c). The corresponding expression
is Eq. (66). On the other hand, the post-gel regime is characterized by the
appearance of an elastic component, which leads to a plateau at low frequen-
cies. In this domain one has to add to the FE a Hookian spring in parallel.
This construction is a special case of the Kelvin—Voigt model, Eq. (88), where
the order of one of the fractional derivatives is zero, say 3 = 0. As also shown
in Fig. 10 this model reproduces the data very well; the parameters used are
listed in Table 1.

A second example based on interconnected structures is a polymeric matrix
(here polypropyleneoxide, PPO) in which a dibenzoylsorbitol (DBS) network is
formed [59]. Such networks emerge due to the self-organizing tendency of DBS
molecules in certain temperature ranges. Fig. 11 shows such a network. The
PPO is the bright background and the grayish threads are fibrils of DBS. The
dark points are DBS molecules which are not built in the fibrils and, therefore,
form spheres. The interconnection of the fibrils to form a network is the main
structural factor leading to the observed power law relaxation in the G' and G"
functions in Fig. 12. The data are best represented by a FE with parameters
o =0.038 and S = E7* = 119000 Pa s®. In this frequency range the stress in
the matrix is always relaxed and the observed behavior is exclusively due to
the DBS network.

The third example also pertains to a branched structure [60]. Here a few
branches, which are subunits of a syndiotactic polypropylene synthesised with
a metallocene catalysator are randomly distributed along the backbone. From
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Figure 11: Transmission electron micrograph of a polypropyleneoxide (bright matrix) with
dibencoyl sorbitol fibrils (darker network).
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Figure 12: Storage modulus G’ (war) and loss modulus G (war) of polypropyleneoxidcon-
taining 1 % of dibencoyl sorbitol at 7' = 30°C. The lines represent fits based on a fractional

element.
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Table 2: Material parameters used in Fig. 14-16.

polymer | 7,5 | E,10™°Pa | a [¢]

EB64 0.062 | 3.47 0.69 | 0.10
EB80 0.048 | 5.68 0.56 | 0.06
EBS88 0.057 | 7.24 0.52 | 0.05

a conformational point of view, such a polymer is classified as ”long chain
branched” [61]. Such materials flow and, therefore, show a terminal relaxation
region, characterized by G’ = w? and G"” = w!. This behavior is also dis-
played in Fig. 13. In our case we were able to approach this terminal region
experimentally by judiciously combining different techniques (here: dynamic
mechanical measurements and creep measurements). On the other hand, in
the plateau and in the intermediate ranges we are able to reproduce the ob-
served relaxation by a fractional Maxwell model (FMM). The description of
the whole curve by constitutive equations with fractional derivatives is also
possible [42,62,63], but beyond the scope of this chapter. The results obtained
through the FMM are depicted in Fig. 13 by continuous and dashed lines.
Note that the fit of the model to the data is very good in the frequency range
considered. For the fit we have taken E = 4.36 x 10° Pa, 7 = 0.242 s, o = 0.610
and 3 = 0.090.

Similar features are observed for a poly(ethen-co-1-butene) (EB) copoly-
mer [60]. The storage and loss moduli of three samples with different amounts
of ethene incorporation (64, 80 and 88 mol %) are displayed in Figs. 14-16.
Only in this range of compositions such a behavior can be observed; we also at-
tribute it to long chain branching. In all three cases the data are well described
by the FMM; the corresponding material parameters are given in Table 2.

The fourth example relates to filled polymers. Here we have to use me-
chanical models composed of three fractional elements. The experimental re-
sults are taken from Ref. [64]. Here silicagel nonoparticles are immersed in a
polystyrene (PS) matrix. These particles have an average diameter of about
200 nm and are clusters of primary structural units. The primary units are sil-
ica spheres of about 15 nm. Such fillers possess an enormous specific interfacial
area, which attracts a considerable amount of matrix polymer. This polymeric
material can connect the particles, and hence may create a network at quite
high particle concentrations. Fig. 17 shows a s.e.m. image of such a compound
with 1 vol % of filler. One can recognize the aggregates sitting in the centre of
the "nests” formed by the immobilized polymer. The bright rim of the nest is
formed from polymer material which disentangles during the process of frac-
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Figure 13: Storage modulus G’ (war) and loss modulus G” (war) of syndiotactic polypropy-
lene determined by oscillatory and creep measurements. The vertical lines indicate the fre-
quency range of the corresponding technique of measurements and the reference temperature
is T'=190°C. The lines represent fits based on the fractional Maxwell element.
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Figure 14: Storage modulus G'(war) and loss modulus G (war) of ethene—co-1-
butenecopolymer with 64 mol % ethene. The lines represent the fits based on the fractional

Maxwell element.
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Figure 15: Same as Fig. 14, but with 80 mol % ethene.
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Figure 16: Same as Fig. 14 but with 88 mol % ethene.

Table 3: Material parameters used in Fig. 18.

conc.,vol % | t, s E, 107°Pa | o [¢] Ey, Pa
3 0.087 | 1.1 098 | 0.20 | 20

4 0.110 | 1.51 097 | 0.20 | 44

5 0.102 | 1.82 093 | 0.20 | 532

7 0.089 | 3.31 0.77 | 0.17 | 4460

ture. Fig. 18 shows the storage moduli, G', of polystyrene filled with different
amounts of silicagel as a function of the reduced frequency war. The mate-
rial functions of these compounds follow a power law in a range intermediate
between the plateau region (war > 10 rad/s) and the low frequency plateau.
For modelling purposes we thus have to add a Hookian element in parallel to
the two FEs of the FMM. Such a model renders the data very well, as can be
seen from the good agreement obtained in Fig. 18. The corresponding mate-
rial parameters are given in Table 3. We hasten to note that similar results
were found by Metzler et al. [56] in describing through RCEs the rheological
behavior of filled polymers.

As a last example we display in Fig. 19 the creep behavior of a polypropy-
lene exposed to a constant shear load at room temperature [65]. Under these
conditions the material is in the transitional region between the entanglement
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Figure 17: Scanning electron micrograph of a polystyrol filled with 1 vol% silicagel R974.The
image represents an area of 1 mm?
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Figure 18: Storage modulus G’ (war) of silicagel filled polystyrene at T = 190°C. The lines
represent fits based on the fractional Zener model.
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plateau and the glass region. Here only some segments of the polymeric back-
bone are involved in the relaxational processes. Now, it is well known that
such relaxational processes are highly cooperative and, therefore, may lead to
a power law behavior for J(t). To describe the experimental results by an
appropriate combination of FEs we may view the data as arising as a com-
bination of two distinct patterns. The first pattern is an S-shaped transition
from a lower plateau around Jo =~ 1.5 x 107 Pa~! to an upper plateau at
J1 =~ 4.5 x 10710 Pa—!, whereas the second pattern is a steep increase in the
compliance for times longer than 10 s. The S-shaped transition is well repre-
sented by the fractional Zener model (FZM), Fig. 8(b). The creep behavior of
the FZM is given by Eq. (101) which is valid only under restricted conditions.
The presence of the second plateau demands v = 0 and we can use Eq. (101)
when we set 3 = 0. In this case Eq. (101) degenerates to the following expres-
sion, which was already suggested elsewhere [55]:

J(@t)=J1 = (J1 — Jo) Ea [— (t/71)°], (110)

with Jo = E~! and J; = (E + Eo)~". The generalized Mittag-Leffler function
E, 1 can be calculated based on Padé-approximants [55]. The second pattern
can be represented by a simple FE whose creep behavior is given by Jptd.
The description of the whole data set is possible by combining these elements
in series. Using Jo = 1.50 x 10710 Pa~! J; = 4.21 x 10710 Pa~!, J, =
0.43x10719Pa—t 7+ =29x107%s, a = 0.282 and B = 0.351 we attain a very
good fit. This and all the other results presented here show convincingly that
models containing various numbers of FEs allow to reflect quantitatively the
rheological behavior of highly interconnected materials.

4 Conclusion

In this chapter we have discussed different applications of fractional calcu-
lus to polymer physics and rheology. Fractional expressions come naturally
into play for systems which respond algebraically to external perturbations.
We show that such situations occur on the microscopic level both for linear
polymers (Rouse chains) and for networks (generalized Gaussian structures).
Furthermore, we demonstrated rigorously how such behaviors translate into
the macroscopic level, which is usually accessible by rheological experiments.
This explains why fractional constitutive equations are extremely successful in
describing the viscoelastic properties of many polymeric materials. We pre-
sented several systems (linear, interconnected and branched structures, gels
and filled polymers), for which the fractional expressions lead to excellent fits
for the observed relaxation behaviors.



10 4 n Data
| .’y
..... first pattern 'I..I .‘
- .- second pattern .
o . ':
3 1 e pSRRTR TSR EEE
e ot
S - -
rl //,
o
-
e
1 T T T T T T T T . .
10°* 10°¢ 10 1072 10° A
toIs)

373

Figure 19: Creep curve of polypropylene at room temperature. The solid line represents a
fit using Eq. (111). The dashed lines correspond to the fractional Zener model (left branch,

first pattern) and to a simple fractional element (right branch, second pattern).
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