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ABSTRACT: We consider the unwinding of a tethered, flexible, and weakly charged polyelectrolyte in a
salt-free poor solvent under an externally imposed strain. Using scaling arguments, we predict that the
restoring force of a stretched polyelectrolyte shows a sawtooth pattern as a function of the externally
imposed end-to-end distance. This nonmonotonic behavior arises from a cascade of conformational
transitions between necklace-like structures with different number of beads. The transitions result from
the interplay between the unscreened Coulomb repulsion of charged monomers and the short-range
attraction of the backbone.

1. Introduction

Various water-soluble polymers, including essential
biopolymers such as DNA and proteins, carry ionizable
groups, which dissociate upon contact with a polar
solvent. The solubility of these charged polymersscalled
polyelectrolytes (PE)sis significantly enhanced by the
presence of the charged groups. The electrostatic repul-
sion between the charged monomers improves the PE
solubility in solvents that would be poor for the un-
charged backbone, providing a stabilizing mechanism
against collapse and eventual precipitation. From the
theoretical point of view, the challenge represented by
the long-range Coulomb interaction makes the analyti-
cal description of PE more difficult than that of their
neutral counterparts. (For a review on scaling ap-
proaches to PE, cf. ref 1 and references therein.)

Especially, the widespread case of a PE in a poor
solvent shows an intricate behavior resulting from the
competition between electrostatic repulsion and surface
tension. The shape that minimizes the free energy of
such a chain is usually the necklace configuration, which
consists of compact charged globules connected via thin
strings (see Figure 1). Such a conformation was first
proposed by Kantor and Kardar2 for polyampholytes
(polymers with positively and negatively charged mono-
mers) and was then extended to uniformly charged PE
in poor solvent by Dobrynin, Rubinstein, and Obukhov.3
Besides the first analytical study by Dobrynin et al.,3
based on scaling arguments, this scenario is also sup-
ported by a variational approach4 as well as Monte
Carlo3 and molecular dynamics simulations5 of dilute
solutions of weakly charged PE. Small-angle neutron
and small-angle X-ray scattering experiments per-
formed with polystyrenesulfonate in water6 are at least
consistent with the picture of necklace structures in
semidilute solutions,7 although they do not represent a
direct proof. We note that for a finite concentration of
counterions (always present for a finite concentration
of chains) a part of the counterions condense on suf-
ficiently highly charged chains. This may lead to a chain
collapse as demonstrated in a molecular dynamics

simulation for multivalent counterions,8 consistent with
scaling theories.7,9-11 Necklace configurations are, how-
ever, observed in molecular dynamics simulations of
highly charged PE with partially condensed monovalent
counterions.12,13 It still remains an open question whether
and under which circumstances thermodynamically
stable necklaces with condensed counterions really
exist.

Besides recent theoretical progress in the understand-
ing of charged polymers, there are also new experimen-
tal methods on-hand that allow the manipulation of
individual macromolecules.14 Force measurement ap-
paratus, including the atomic force microscope (AFM)
and optical tweezers, allow to observe the stretching of
single polymer chains. Experiments were performed on
a variety of systems, including DNA,15-18 single chro-
matin fibers,19 the polysaccharide dextran,20 and the
protein titin.21-25 In particular, in the case of the giant
protein titin, responsible for the elasticity of muscles,
the force-extension profile obtained under stretching
exhibits a prominent sawtooth pattern,24,25 which is
attributed to the successive unfolding of immunoglobu-
lin domains. This effect may be well explained as
stepwise increases in the contour length of a polymer
whose elastic properties are described by the wormlike
chain model (WLC). In fact, Monte Carlo simulations
combining WLC elasticity with a thermodynamical two-
state model26 reproduce the experimental data very
well. A similar two-state model has also been proposed
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Figure 1. Necklace configuration composed of Nbead spherical
beads with diameter dbead joined by (Nbead - 1) cylindrical
strings (Nbead ) 6 in the figure) with length lstr and diameter
dstr. Each bead (string) contains mbead (mstr) monomers, re-
spectively. The monomer density of the beads and the strings
is the same and follows from the densely packed thermal blobs
of size êT, i.e., F ) 6τ/πb3.
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to explain the stress-induced transformation of DNA
between the B and S forms.27 Both treatments focus on
the elastic properties of the chain and do not discuss
the role of the Coulomb interactions in the stress-driven
transitions.

Motivated by these experiments, we perform a scaling
analysis of the stretching of a weakly charged PE under
poor solvent conditions, i.e., of a necklace. The process
of unwinding such a structure may be of some impor-
tance for the denaturation of biopolymers under defor-
mation or mechanical stress as well as for the stretching
of synthetic PE. It is known that globular uncharged
polymers subject to external forces undergo an abrupt
(first-order) coil-stretched transition.28,29 Similar effects
might be expected in the case of a necklace structure.
Because most biopolymers, particularly DNA and pro-
teins, are in fact electrically charged, it is important to
investigate how the Coulomb repulsion affects their
conformation and response to mechanical stress and
strain (cf., e.g., ref 30). In fact, we will demonstrate in
this paper that the necklace undergoes a stepwise
unfolding under an externally imposed strainssimilar
to the behavior observed for titin mentioned above.
Thus, a PE in a poor solvent represents a simple
nonmicroscopic system to study this phenomenon.

The paper is organized as follows: In section 2 we
review and refine the scaling arguments that lead to
the necklace configuration for weakly charged PE under
poor solvent conditions. In section 3 we obtain the
steady-state configuration and the static restoring force
of a stretched PE when the end-to-end distance is
externally imposed. In section 4 we consider the effect
of friction forces when a tethered PE is stretched from
the rest at constant drift velocity. We conclude in section
5 with a discussion of the relevant mechanisms that lead
to stepwise unfolding and give further examples of
polymeric systems that may exhibit similar features. In
Appendix A we obtain the contributions to the free
energy of the necklace structure. In Appendix B we give
the free energy of the tadpole configuration. In Appendix
C we show the validity of the quasi-static steady-state
approximation.

2. Scaling Theory for Weakly Charged PE
We consider a dilute solution of flexible PE under poor

solvent conditions at a temperature ∆T below the Θ
temperature. This is the temperature at which the
second virial coefficient between polymer segments
vanishes so that the conformation of each chain corre-
sponds to that of an ideal random walk. The chains
contain N . 1 monomers of size b, and a fraction φ of
the monomers are charged. To avoid the phenomenon
of counterion condensation, which decreases the effec-
tive charge of the PE and may change its conformational
properties,10,11 we restrict our analysis to the case of
weakly charged PE (u2φ , 1), where u ) lB/b is the ratio
of the Bjerrum length lB ) e2/εkBT to the monomer size
b (e is the electronic charge, ε is the dielectric constant
of the solvent, kB is the Boltzmann constant, and T is
the temperature). Highly charged PE and the effect of
counterion condensation, which may lead to an instabil-
ity of the necklace structure, will be discussed in a
forthcoming paper.31 Furthermore, we will assume a
salt-free environment, so that there is no screening of
the Coulomb repulsion between the charged monomers
due to excess ions.

For uncharged polymers (u2φ ) 0) and close to the Θ
temperature (τN1/2 < 1), where τ ) ∆T/Θ denotes the

relative deviation from the Θ temperature (a measure
for the solvent quality), the chain behaves like an ideal
Gaussian coil32 of size

where the symbol ∼ is used to state a scaling relation,
which ignores numerical prefactors. On the other hand,
under poor solvent conditions occurring for tempera-
tures sufficiently below the Θ point or sufficiently large
chains (τN1/2 > 1), the short-range attraction between
monomers of the backbone results in a collapse of the
chain into a spherical globule32,33 of radius

and density

On length scales smaller than the size of the thermal
density fluctuations, êT ) b/τ, the attractive interactions
can be neglected, and the chain obeys Gaussian statis-
tics. On length scales larger than êT the collapsed chain
may be pictured as composed of close-packed thermal
blobs of size êT containing gT ) (êT/b)2 ) 1/τ2 monomers.

For weakly charged PE (u2φ , 1) and close to the Θ
temperature (τN1/2 < 1), the length scale below which
the chain preserves its ideal shape, remaining unper-
turbed by the Coulomb repulsion, is the electrostatic
blob size,34 êel ) b(uφ2)-1/3. On length scales larger than
êel, the electrostatic repulsion dominates and extends
the chain into a linear array of electrostatic blobs of size
êel containing gel ) (êel/b)2 ) (uφ2)-2/3 monomers. In close
analogy to the Pincus blob picture for a stretched chain
under external forces,35 the chain assumes a rodlike
shape of length

For weakly charged PE (u2φ , 1) under poor solvent
conditions (τN1/2 > 1), the conformation of the chain is
governed by the competition between the long-range
Coulomb repulsion of charged monomers and the sur-
face tension originated from the short-range attraction
of the backbone (poor solvent condition). Khokhlov9

suggested that, to optimize its free energy, the collapsed
chain deforms into an elongated cylindrical globule of
length

and thickness

However, the cylindrical geometry is locally unstable,
analogous to the classical problem of a charged liquid
droplet, considered by Lord Rayleigh36 more than one
century ago. He predicted that a charged liquid droplet,
above a certain critical charge, spontaneously deforms
and splits into smaller droplets separated by an infinite
distance, each droplet carrying a lower charge than the
critical one. Because of the covalent bonds of the
backbone, it is not allowed for the monomers to dissoci-
ate, and this equilibrium state is unreachable for a PE
chain. However, the system can reduce its energy by

R ∼ N1/2b (1)

R ∼ (N/τ)1/3b (2)

F ∼ τ/b3 (3)

L ∼ N
gel

êel ) Nb(uφ
2)1/3 (4)

Lcyl ∼ Nb(uφ
2)2/3/τ (5)

D ∼ b(uφ
2)-1/3 ) êel (6)
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rearranging into a set of smaller compact charged
globules (beads) connected by narrow stringssthe neck-
lace configuration.3

Consider now the necklace configuration with Nbead
spherical beads of size dbead joined by (Nbead - 1)
cylindrical strings of length lstr and width dstr, depicted
in Figure 1. The total length of the necklace is given by

The number of monomers per bead is denoted by mbead
and the number of monomers per string by mstr. Since
the electrostatic repulsion between charged monomers
does not affect significantly the volume occupied by the
PE, we assume that the beads as well as the strings
are still composed of close-packed thermal blobs, i.e.

resulting in a monomer density F ) 6τ/πb3. (One has gT
) 1/τ2 monomers per spherical thermal blob of radius
b/2τ.) Introducing the total number of monomers inside
all the strings,

we are led to

The total free energy of the necklace configuration
may be split into five terms,

where the different terms account for intra-string, intra-
bead, inter-bead, inter-bead-string, and inter-string
interactions, respectively. In contrast to previous simple
scaling arguments,3 we perform here a more detailed
calculation taking all numerical and geometrical pref-
actors into account. These refinements are required here
because the energy barriers between the different
necklace structures are smaller in the stretched states
under investigation than in the unstretched case. We
also mention that the optimum lowest energy necklace
structure for a given number of beads is not comprised
by identical subunits, but rather contains slightly
polydisperse nonequidistant beads. This effect follows
from the long-ranged nature of the Coulomb interaction
and finite-size effects. A necklace composed of mono-
disperse beads would correspond to the optimal config-
uration only if the beads would not interact. Neverthe-
less, since the determination of the exact lowest energy
polydisperse-bead structure is hardly feasible and leads
only to minor deviations from the monodisperse-bead
necklace, we assume in the following that all beads have
the same size and are equally spaced.

The different contributions to the free energy of the
necklace, eq 13, are rather complicated and are rel-

egated to Appendix A. The minimization of the total free
energy, eq 13, with respect to Nbead, Mstr, and dstr leads
to the optimal values of the necklace configuration. In
a previous calculation, Dobrynin et al.3 neglected all
numerical prefactors, treated Nbead as a continuous
variable, and made additionally two approximations.
The total length of the necklace structure was obtained
in the limit of a string much longer than a bead, lstr .
dbead,

and the sum of the three inter-energy repulsion terms,
given by eqs A.11-A.13, was approximated by

With these approximations, Dobrynin et al. were able
to show that, for a certain range of parameters,3 the
equilibrium configuration of a weakly charged PE in the
absence of external forces is a necklace structure with
number of beads

and length (at rest)

As we will consider the transitions driven by the
competition between the different terms by stretching
the PE, it is important to keep all numerical prefactors.
Especially, as mentioned earlier, the distinct necklace
configurations with different number of beads have
small free energy differences under external forces,
because all structures converge to a stretched cylinder
upon strong strain. Therefore, we will use the more
refined approximations given by eqs A.11-A.13, which
yield a repulsion energy that depends on the number
of beads, instead of eq 15. Therefore, in our formulation
the unstretched equilibrium configuration is not given
by eqs 16 and 17, but rather follows from the numerical
minimization of the total free energy (13).

Up to now we considered just necklace structures with
Nbead g 2. However, by stretching a PE, we may also
find structures with just one bead (Nbead ) 1). Figure 2
sketches two of these configurations: a half-dumbbell
(tadpole) and a symmetrical double-tadpole. In the
tadpole configuration, we have just one single rod
attached to a spherical globule. In the symmetrical
double-tadpole configuration, we have two identical rods
pointing in opposite directions, radially aligned with the
center of the spherical globule. It turns out that the free

L ) Nbeaddbead + (Nbead - 1)lstr, Nbead g 2 (7)

dbead ) b(mbead

τ )1/3

(8)

lstr )
2b3mstr

3τdstr
2

(9)

Mstr ) N - Nbeadmbead (10)

mbead )
N - Mstr

Nbead
(11)

mstr )
Mstr

Nbead - 1
(12)

F ) Fs + Fb + Fbb + Fbs + Fss (13)

Figure 2. Two stretched conformations with Nbead ) 1: the
tadpole and the symmetrical double-tadpole configurations.

L ≈ (Nbead - 1)lstr ) b3

τdstr
2

Mstr (14)

1
kBT

(Fbb + Fbs + Fss) ≈ lBφ
2N2

L
(15)

Nbead
0 ≈ Nτ2(êT

D)3

) Nuφ
2

τ
(16)

L0 ≈ Nbτ(êT

D)3/2

) Nb(uφ
2

τ )1/2

(17)
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energy associated with all possible double-tadpole con-
figurations is always higher than that associated with
the tadpole configuration. This is due to the bead-string
repulsion, which is smaller for the tadpole configuration.
The free energy of the tadpole configuration is discussed
in Appendix B. Although the tadpole configuration is
energetically not favorable in the absence of applied
forces, we will show in the next section that it occurs
when a necklace chain becomes highly stretched.

Further stretching of the PE (after the unraveling of
the last bead of the tadpole configuration) yields a highly
stretched cylindrical globule, similar to that found under
Θ conditions. In the same spirit of the approximations
performed for the strings of the necklace structure (see
Appendix A), we compute the free energy of the cylin-
drical configuration of length L ) êTL̂,

where N̂ ) Nτ2, ω(x) ) arccosh(x)/x1 - x-2, and recall-
ing that D ) êTD̂ is the thickness of the Khokhlov
unstretched cylindrical globule, eq 6. The crossover
length Lcross ) êTL̂cross with

is the length at which the thickness of the stretched
cylinder becomes of the thermal blob size êT. At PE
lengths L < Lcross the free energy of the cylinder has a
surface tension contribution, whereas for L > Lcross the
main contribution of the free energy comes from the
entropic stretching of a Gaussian coil. At this length the
free energy of the cylindrical and the tadpole configura-
tions should be the same, although we observe a very
small difference due to the approximations performed.
In fact, the free energies of all necklace structures
should also reduce to the cylinder value at the crossover
length. Despite the approximations, we are able to
obtain this convergence within fractions of kBT. We
observe that, for L < Lcross, the cylindrical configuration
has always a higher free energy than that of the
necklace/tadpole. Only after the last bead is unfolded,
which occurs around the crossover length Lcross, we
expect that the lowest energy configuration of the PE
is a Θ solventlike cylinder with thickness smaller than
the thermal blob size êT.

3. Steady-State Configuration of a Stretched PE
with Externally Imposed End-to-End Distance

A typical experimental setup in which a single
macromolecule is stretched by an AFM tip20,24 is de-
picted in Figure 3. In our PE model picture, we start
from a necklace configuration at rest with an initial
number of beads Nbead

0 and natural length L0, both
determined by the minimization of the total free energy
(13). The polymer chain is adsorbed at one end to a flat
(gold or mica) surface, and the other end is bounded to
an AFM tip. The flat surface is moved away from the
AFM tip (see Figure 3), imposing an external strain L
> L0 on the chain. We assumed that the PE chain is

chemically adsorbed onto a neutrally charged flat
surface and that image-charge effects due to the solvent/
surface dielectric contrast are negligible. In the case of
physical adsorption, when the chain is electrostatically
bound to the oppositely charged surface, the detachment
of single PE chains leads to a plateau in the force-
extension profile.37,38

Instead of using the approximated linear relation 14
for Mstr as a function of L, we evaluate it by taking the
real positive solution of the cubic equation

where M̂str ) Mstrτ2. For a fixed set of parameters (τ, u,
φ, N) and an externally imposed end-to-end distance L,
we minimize the total free energy with respect to d̂str
for all possible structures (necklaces with Nbead g 2, the
tadpole, and the cylindrical configurations), choosing the
conformation with the lowest total free energy. For the
range of parameters that we have explored, it turns out
that the total free energy is minimized when the string
thickness dstr assumes the thermal blob size êT, which
corresponds to d̂str ) 1. The free energy minimization
procedure allows us to construct the phase diagrams
shown in Figures 4 and 5. The phase diagrams show
the different states (characterized by the number of
beads) in two cuts through the parameter space, one in
the φ × L plane and the other in the τ × L plane (see
figure captions for details). It can be seen that, by
imposing a strain on the necklace, one induces transi-
tions between states with different number of beads.
Usually, the number of beads decreases with increasing
end-to-end distance. Note, however, that in many cases
there is an initial increase in the number of beads upon
stretching, which occurs due to the reentrant behavior
of the transition boundaries near the unstretched equi-
librium length. Although at first sight unexpected, this
reentrant behavior is required to match the Dobrynin
et al. unstretched equilibrium results3 and the highly
stretched cylinder at strong strain. Therefore, the
conformational transitions of the PE under stretching
are closely related to Dobrynin’s force-free abrupt
transitions upon variation of φ and/or τ.

In Figures 6 and 7 we present some geometrical
properties of the necklace structure upon unraveling.
In particular, Figure 7 shows that the total number of

Figure 3. Our PE model system corresponding to the
experimental setup in which a single PE chain is stretched
by an AFM tip. The adsorbed chain, immersed in a salt-free
poor solvent, takes at rest a necklace-like conformation. The
chain is attached to an AFM tip and stretched by moving the
flat surface away from the tip. In most cases the number of
beads decreases as the PE is stretched. The force exerted on
the polymer as a function of the end-to-end distance L is
measured by a small deflection δ of the cantilever spring.

F cyl

kBT
) 6N̂2

5D̂3L̂
ω[(3L̂3

2N̂)1/2] + (23N̂L̂)1/2

, for L̂ < L̂cross

) 6N̂2

5D̂3L̂
ω(3L̂2

2N̂) + 3L̂2

2N̂
, for L̂ > L̂cross (18)

L̂cross ) 2
3
N̂ (19)

L̂ ) L
êT

) Nbead
2/3(N̂ - M̂str)

1/3 + 2
3d̂str

2
M̂str (20)
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monomers in all strings Mstr has only small jumps
during the transitions. This means that the monomers
of the unfolded bead essentially redistribute between
the remaining beads. The transitions take place when-
eversafter sufficient stretchingsthe beads are so small
that one of the beads can redistribute its monomers
between the remaining beads without violating the
Rayleigh criterion (corresponding to an upper bound for
the bead size dbead). For the first transition, however,
due to the steep increase of the restoring force in the
vicinity of the unstretched length, the critical upper
bound for the bead size decreases faster than the
(shrinking) size of the beads. Therefore, even though
the size of the beads decreases, there is a Rayleigh
instability that gives origin to the reentrant behavior

described in the last paragraph and the initial increase
in the number of the beads.

To keep the PE chain at the externally imposed end-
to-end distance L > L0, one needs to apply an external
force F(L). In the experimental setup, this force may be
measured by a small deflection δ of the AFM tip (see
Figure 3). In the case of a static, time-independent,
steady-state configuration, the external force F(L) coun-
terbalances simply the restoring force -f(L),

Therefore, once we have obtained the lowest energy
conformation, the restoring force may be evaluated by
differentiation of the total free energy with respect to
the end-to-end imposed length L. Typical static exten-
sion-force profiles are presented in Figures 8 and 9.
They show a prominent sawtooth pattern, associated
with the abrupt transitions between necklace configura-
tions with a different number of beads. Despite the
differences in the mechanism of unfolding, the stepwise
behavior of the force-extension profile resembles the
same effect observed in titin.24,25 For the set of param-
eters used in Figures 8 and 9, the necklace structures

Figure 4. Diagram of states in the φ × L space for N ) 5000,
u ) 2, and τ ) 0.4. The number of beads labels distinct
necklace configurations. “1” corresponds to the tadpole con-
figuration, and “0” is a stretched cylinder with thickness
smaller than the thermal blob size êT. The gray region
corresponds to compressed states, which were not treated in
this work. The rightmost boundary of the gray region corre-
sponds to the equilibrium lengths L0 in the absence of external
forces. In this case, we can clearly see the discontinuous nature
of the transitions related to the jumps of the unstretched end-
to-end distance L0, which become weaker as we increase the
fraction φ of charged monomers. Note that for many values of
φ one has first an initial increase in the number of beads upon
stretching due to the reentrant behavior of the transition
boundaries near the unstretched equilibrium line.

Figure 5. Diagram of states in the τ × L space for N ) 5000,
u ) 2, and φ ) 1.5%. The interpretation of the numbers and
the gray region are the same as in Figure 4. The inset presents
a magnification of the region near the unstretched equilibrium
line, showing the discontinuous nature of the transitions in
the absence of external forces. Contrary to the previous
example of constant τ and increasing φ, in this case the
discontinuous jump of the unstretched end-to-end length L0
becomes weaker as we decrease τ. For many values of τ there
is also an initial increase in the number of beads upon
stretching due to the reentrant behavior of the transition
boundaries near the unstretched equilibrium line.

Figure 6. Number of monomers inside each bead mbead and
size of each bead dbead, for the same set of parameters shown
in Figure 9: N ) 5000, u ) 2, τ ) 0.4, and φ ) 1.5%.

Figure 7. Total number of monomers in all strings Mstr and
length of each string lstr normalized to their final values, for
the same set of parameters shown in Figure 9: N ) 5000, u )
2, τ ) 0.4, and φ ) 1.5%. For the two last stages of the
unraveling, the dumbbell (Nbead ) 2) and the tadpole (Nbead )
1) configurations, the two normalized curves are given by the
same expression. The dashed curve represents the linear
approximation 14 for Mstr as a function of L (taking the
numerical prefactor 2/3 into account). Although this approxi-
mation describes well the behavior for high stretching, the
deviation increases for smaller strains.

F(L) ) -f(L) ) ∂F
∂L

(21)
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at their equilibrium lengths in the absence of external
forces contain initially three (Nbead

0 ) 3) and eight (
Nbead

0 ) 8) beads, respectively. After an initial increase
in the number of beads, they are successively unfolded
as we increase the length of the PE.

We also give here the restoring force associated with
the highly stretched state that follows from eq 18 with
L > Lcross,

which corresponds to the Pincus blob picture35 (if we
neglect contributions from the electrostatic repulsion).
The PE forms a linear array of blobs of size êP ) kBT/|f|
containing gP ) (kBT/|f|b)2 monomers, leading to a linear
relation between externally imposed end-to-end distance
and force,

We close this section by noting that there is a
fundamental difference between an experiment where
the end-to-end distance L is externally imposed (strain
ensemble) and a situation with a given external force F
(stress ensemble).39 In the latter case one will not find
a sequence of stepwise unfolding processes as response
to an increasing applied tension. Instead, the structure
will unfold at once when a critical value of the tension
is reached. This value can be estimated by comparing
the energy gain by stretching the necklace with the price
that one has to pay by increasing its surface. If the
necklace is stretched by a length êT (the thermal blob
size), one gains -FêT. At the same time, one thermal
blob is transferred from a globule to a string, which
leads to an increase σêT

2 ) kBT in the surface energy,
where σ is the surface tension. The critical tension is
Fc ) kBT/êT, i.e., the tension at which the size of the
Pincus blobs êP ) kBT/F equals the size of a thermal
blob êT. For F > Fc the chain can be described by a
sequence of Pincus blobs of total length L ∼ Nb2F/kBT.

4. Dynamical Force-Extension Profile for
Constant Pulling Velocity

The static restoring force -f presented in Figures 8
and 9 corresponds to an equilibrium steady-state con-
figuration. In other words, in the previous section we
assumed that the flat surface is kept fixed after one
reaches the externally imposed end-to-end length L >
L0. Most measurements, however, use a dynamical
method to measure the force, being performed at
constant pulling velocity V,24-26

Besides the static restoring force -f, we need to add a
friction contribution, ffriction(t), proportional to the prod-
uct of the diameter of the bead, dbead, by its drift velocity
Vi, i ) 1, ..., Nbead(t),

where η is the shear viscosity of the solvent. To obtain
eq 25, we have assumed a quasi-static equilibrium for
the PE chain. In this case, the velocities of the beads
are given simply by

Figure 8. Static restoring force -f as a function of the
externally imposed end-to-end distance L for the set of
parameters: N ) 5000, u ) 2, τ ) 0.4, and φ ) 1%. For these
parameters, the natural length L0 of the PE is L0 ) 48.9êT,
and the necklace structure contains initially three beads (
Nbead

0 ) 3). Using the Bjerrum length of the water at room
temperature, lB ) 7 Å, the normalizing factors are kBT/êT )
4.73 pN and êT ) 8.75 Å. The number of beads labels the
distinct necklace structures. Note the initial increase in the
number of beads, which leads to a narrow negative-force
window. The unwinding of the last bead occurs through a
tadpole configuration (a spherical globule terminated by a
cylindrical rod), labeled by “1”. After the bead size dbead reaches
the string size dstr, which turns out to be of the thermal blob
size êT, the conformation of the PE is a highly stretched
cylinder with thickness smaller than êT, labeled by “0”. As
shown in the inset, for this highly stretched regime we expect
that the force-extension relation is governed by the Pincus
blob picture, |f| ∝ L.

Figure 9. Static restoring force -f as a function of the
externally imposed end-to-end distance L for the set of
parameters: N ) 5000, u ) 2, τ ) 0.4, and φ ) 1.5%. For these
parameters, the natural length L0 of the PE is L0 ) 116.2êT,
and the necklace structure contains initially eight beads (
Nbead

0 ) 8). Using the Bjerrum length of the water at room
temperature, lB ) 7 Å, the normalizing factors are kBT/êT )
4.73 pN and êT ) 8.75 Å. Here we also have an initial increase
in the number of beads. Analogous as shown in Figure 8, the
strong-stress regime corresponding to a highly stretched
cylinder with thickness smaller than êT is governed by the
Pincus linear relation, not presented here. To allow a better
appreciation of the force-extension sawtooth pattern, the inset
shows a magnification of the end portion of the curve.

-
fêT

kBT
) 1

kBT
∂F cyl

∂L̂
) - 6N̂2

5D̂3L̂2
ω(3L̂2

2N̂) +

18N̂
5D̂3

ω′(3L̂2

2N̂) + 3L̂
N̂

(22)

L ∼ N
gP

êP ) Nb2

kBT
|f| (23)

L(t) ) L0 + Vt (24)

ffriction(t) ) -3πη ∑
i)1

Nbead(t)

dbead(t) Vi(t) )

-
3

2
πηVNbead(t) dbead(t) (25)

Vi(t) )
(i - 1)V

Nbead(t) - 1
(26)
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Since the polymer has a constant drift velocity V, the
sum of all forces on the PE must vanish, F(t) + f +
ffriction(t) ) 0. The measured force F(t), given by

is plotted in Figure 10 for some pulling velocities V. Our
treatment of the unraveling dynamics of a PE is based
on the assumption of a quasi-static equilibrium of the
necklace (see Appendix C), where the beads preserve
their spherical geometry at each instant of time. Fur-
thermore, we assume that there is a vanishing transient
time for the beads to rearrange between the abrupt
conformational transitions. Finite transient times yield
a slower relaxation to the new conformation, broadening
the troughs of the force-extension profile after the
transitions. Despite the approximations, we see that
some features resemble those experimentally observed
in the unfolding of the titin:24 (a) roughly equidistant
peaks, (b) positive slope of the peaks (for small pulling
velocities), and (c) increasing peak amplitude.

5. Discussion
In this paper we have shown that a PE in a poor

solvent unfolds in a stepwise fashion under an exter-
nally imposed strain. The underlying mechanism is the
successive unwinding of the beads of the necklace
structure. As a result, the force-extension profile shows
a characteristic sawtooth pattern. A similar profile is
found in unfolding experiments on titin.24 However,
while in titin the sawtooth pattern is due to the
unfolding of protein domains associated with specific
interactions, here they arise from conformational tran-
sitions of an initially structureless PE. This suggests
that, despite the diversity in the mechanisms of unfold-
ing, the stepwise behavior of the force-extension profile
may represent a rather general phenomenon.

What are the minimal requirements that lead to
stepwise unfolding? And are there other systems that
exhibit similar features? In fact, one should expect a
wide variety of systems that show this behavior. Espe-
cially, polymer chains that self-assemble into a chain

of subunits connected by strings are promising candi-
dates. Polyampholytes show a necklace structure with
multidisperse beads.2 Polysoaps (polymers where a
fraction of the monomers is amphiphilic) self-assemble
into a chain of micelles.40 Polyelectrolytes that complex
with oppositely charged macroions may form necklaces,
where each “pearl” consists out of a macroion with a
part of the PE chain wrapped around.41 The nucleosome
filament of chromatin, a complex of DNA with oppositely
charged histone octomers, is a famous example for this
type of structure.42 We expect that all these systems
unfold in a stepwise fashion. Important is here that the
self-assembled subunits do not condense into one big
homogeneous aggregate, like is the case for a neutral
polymer in a poor solvent. In this particular example
one expects just a plateau in the force-extension curve,
which corresponds to the unraveling of the globule, but
no sawtooth pattern.28 Thus, one needs a mechanism
that ensures an upper bound for the size of the subunits.
The other important ingredient is a mechanism that
leads to an increase in the free energy when the size of
the subunit is decreased upon stretching. The interplay
between these two competing mechanisms, which are
not necessarily of the same origin, ensures an optimal
size for the subunit. To make this more transparent,
we give in Table 1 an overview over different polymeric
systems and list the corresponding self-assembled sub-
units, the mechanisms that limit the size of these
subunits, and the penalty one has to pay when one
lowers their size as a result of chain stretching. For
proteins, the unfolding depends on their detailed struc-
ture and associated specific interactions (cf., e.g., ref 43).

The discrete stepwise character of the unfolding is not
appreciated by most of the treatments on these systems.
For polysoaps, for instance, one focuses on the coexist-
ence of free amphiphiles and amphiphiles in the micel-
les, which leads to a plateau in the force-extension pro-
file.40 Indeed, also our analysis shows roughly a plateau,
but a closer inspection reveals the sawtooth pattern on
top of it (cf. for instance Figure 8). Other investigations
are devoted to the case of an externally applied constant
force. This situation is much simpler: when the force
reaches a certain threshold value, all subunits unfold
simultaneouslysat least, for identical subunitssasso-
ciated with a jumpwise increase of the end-to-end dis-
tance. The resulting monotonic stress-strain character-
istics was studied, for instance, for the case of a poly-
ampholytic necklace in an external electric field (see ref
44 and references therein). We hope that micromechani-
cal experiments will be able to test these predictions
directly.

Note Added: After the submission of this work we
became aware of the preprint by Vilgis et al.,45 in which
complementary topics of the same subject are consid-
ered.
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Figure 10. Measured force F(t) as a function of the externally
imposed end-to-end distance, L ) L0 + Vt, for the same set of
parameters shown in Figure 9: N ) 5000, u ) 2, τ ) 0.4, and
φ ) 1.5%. The different curves show the effect of progressively
faster pulling velocities, varying from V ) 1 µm/s to V ) 1
mm/s. We used a shear viscosity η ) 10-2 J s/m3. For the
slowest drift velocity, the friction forces are too small, and the
measured force is indistinguishable from the static restoring
force presented in Figure 9. As we increase the pulling velocity,
however, the friction contribution becomes more important.

F(t) ) - f - ffriction(t) ) ∂F
∂L

+ 3
2

πηVNbead(t) dbead(t)
(27)
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Appendix A. Free Energy of the Necklace
Configuration

We give here a detailed discussion of the contributions
to the total free energy of the necklace configuration,
eq 13.

The intra-string free energy Fs accounts for the
electrostatic repulsion of charged monomers inside the
strings plus their surface tension energy. If dstr de-
creases to a value smaller than êT, we should replace
the surface tension energy by the entropic energy of a
stretched Gaussian coil. Hence

with

The geometrical prefactor for the string electrostatic
energy was obtained by approximating it by a prolate
ellipsoid of major semiaxis a> ) lstr/2 and two identical
minor semiaxes a< ) dstr/2 carrying a charge Q ) eφmstr,
whose electrostatic self-energy is given by46

The intra-bead free energy Fb accounts for the elec-
trostatic repulsion of charged monomers inside the
beads plus their surface tension energy,

The geometrical prefactor for the charged-sphere elec-
trostatic self-energy was obtained using the limit
limxf1ω(x) ) 1.

The inter-bead free energy Fbb takes the electrostatic
repulsion between different beads into account,

where γ ) 0.5772... is the Euler constant and ψ is the
digamma function.47 The above contribution corresponds
to the energy of a linear arrangement of Nbead point
charges eφmbead equidistant lstr + dbead apart.

The inter-bead-string free energy Fbs follows from
the electrostatic repulsion between beads and strings,

The strings are assumed to be cylinders of length lstr
and width dstr carrying a charge eφmstr.

Finally, the inter-string electrostatic repulsion Fss
leads to

The leading term corresponds to the interaction energy
of charged lines with linear density eφmstr/lstr aligned
with the center of the beads and equally spaced dbead
apart along the longitudinal direction. Since the exact
integral is awkward and this term leads only to minor
contributions to the total free energy, we consider just
the leading correction in dstr to the charged-line expres-
sion.

It is convenient to introduce scaled dimensionless
variables,

Table 1. Examples of Polymeric Systems That Self-Assemble into a String of Subunits; the Subunits Are Listed Together
with the Mechanisms That Control Their Optimal Size

polymeric system subunit that unfolds limiting-size mechanism of subunits penalty for lowering size of subunits

polyelectrolyte in poor solvent spherical globule Rayleigh instability surface tension
polyampholyte spherical globule (polydisperse) Rayleigh instability (excess charge) surface tension
polyelectrolyte-macroion complex macroion plus wrapped chain overcharging undercharging
polysoap micelle headgroup interaction, coronal loops surface tension
protein folded domain specific specific

Fs

kBT
) (Nbead - 1)[6lBφ

2mstr
2

5lstr
ω(lstr/dstr) +

lstrdstr

êT
2 ],
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) (Nbead - 1)
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2
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2
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in terms of which, after some algebraic manipulations,
we may rewrite the contributions to the free energy,

with

Appendix B. Free Energy of the Tadpole
Configuration

The total free energy of the tadpole configuration has
three contributions,

accounting for intra-string, intra-bead, and bead-string
interactions, respectively.

The intra-string contribution F s
t for the tadpole

configuration is given by eq A.9, while the intra-bead
free energy F b

t may be obtained by taking Nbead ) 1 in
eq A.10. Finally, the bead-string interaction reads

with

Appendix C. Validity of the Steady-State
Approximation

In section 4 we assumed a quasi-static steady-state
equilibrium for the beads of the necklace configuration.
This approximation is valid if the passage time

is larger than the bead relaxation time trel.29 To estimate
trel, we consider an infinitesimal deformation of an
isolated spherical bead of radius R ) dbead/2 into a
prolate ellipsoid of major semiaxis R> ) R + δR and
two identical minor semiaxes R< ) R - δR/2. This
elongated shape ensures that the volume remains
constant, R3 ) R>R<

2 + O(δR2). The energy (in units of
kBT) of a prolate ellipsoid of eccentricity

carrying φmbead charged monomers is given by

N̂ ) Nτ2, M̂str ) Mstrτ
2, d̂bead )

dbead

êT
, l̂str )

lstr

êT
,

d̂str )
dstr

êT
, D̂ ) D

êT
(A.8)
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ẑ>(k) ) kl̂str + (k - 1
2)d̂bead (A.14)
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The first term corresponds to the electrostatic self-
energy,2,46 while the second term is the surface tension
contribution taking the constraint of fixed volume into
account.2 Performing an expansion about the spherical
shape (ε ) 0) yields

Therefore, keeping only quadratic terms in δR, the
relaxation equation reads

and the ellipsoid relaxes exponentially to the spherical
shape with an inverse relaxation time

For the range of parameters corresponding to Figure
10, the ratio between the passage and the relaxation
times,

is always larger than one, and therefore a quasi-static
approximation is allowed.
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