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S1 Derivation of the fluxes of cohesin rings

Here we summarize the derivation of eqs. (1) and (4) in the main article. We
treat a stretch of chromatin fiber, which is flanked by two BEs (such as CTCF
proteins in converging orientations). This chromatin region has a loader in the
middle (z = 0) and an unloader at each end (z = ±M). The region has 2M
binding sites, which cohesin monomers and dimers can occupy. For simplicity,
we assume that one ring of a dimer is at the positive half and the other ring is
at the negative half. With this approximation, the number of microstates has
the form

W =

(
M !

Nd!(M −Nd)!

)2
(M −Nd)!

N+!(M −Nd −N+)!

(M −Nd)!

N−!(M −Nd −N−)!
, (S1)

where Nd is the number of dimers, N+ is the number of monomers in the
positive half (z > 0), and N− is the number of monomers in the negative half
(z < 0). We derived eq. (S1) by assuming that the two rings of a dimer move
independently. The factorials N+! and N−! in the denominator ensure that
cohesin monomers cannot penetrate through other cohesin monomers. In the
same vein, the factorial Nd! in the denominator ensures that the rings of cohesin
dimers cannot penetrate through the rings of other cohesin dimers. However,
our mean field theory may not fully capture the fact that the rings of dimers
cannot penetrate through monomers and vice versa. The free energy of the
system thus has the form

F = −kBT logW

≃ MkBT [2ψd logψd + ψ+ logψ+ + ψ− logψ−

+(1− ψd − ψ+) log(1− ψd − ψ+) + (1− ψd − ψ−) log(1− ψd − ψ−)] ,

(S2)

where we used the Stirling’s approximation to derive the last step. ψ+ (=
N+/M) and ψ− (= N−/M) are the densities of monomers in the positive and
negative halves. ψd (= Nd/M) is the density of dimers.
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We generalize eq. (S2) to cases in which the probability ψ+ and ψ− of finding
monomers and the probability ψd of finding dimers are not uniform along the
chromatin fiber in the spirit of ref. [1] (see sec. 2.3). With this treatment, the
free energy of the system has the form

F = kBT

∫ M

−M

dz [ψd(z) logψd(z) + ψm(z) logψm(z)

+(1− ψd(z)− ψm(z)) log(1− ψd(z)− ψm(z))] , (S3)

where ψm(z) is the probability of finding monomers at z. Both ψm(z) and ψd(z)
are even functions because of the symmetry of the system. This equation returns
to eq. (S2) for cases in which the distribution functions, ψm(z) and ψd(z), do
not depend on the position z. The chemical potential of cohesin monomers has
the form

µm(z) =
δF

δψm(z)

= kBT [logψm(z)− log(1− ψd(z)− ψm(z))] . (S4)

The flux Jm of cohesin monomers is thus derived as

Jm = − 1

ζc
ψm(z)

∂

∂z
µm(z)

= −Dc

[
1− ψd(z)

1− ψd(z)− ψm(z)

∂

∂z
ψm(z) +

ψm(z)

1− ψd(z)− ψm(z)

∂

∂z
ψd(z)

]
,

(S5)

where ζc denotes the friction constant of cohesin rings. In the last step we
used the Einstein relationship Dc = kBT/ζc. For cases in which cohesin dimers
are only rarely loaded onto the chromatin fiber (ψd ≪ 1), eq. (S5) has the
approximate form

Jm ≃ −Dc
1

1− ψm(z)

∂

∂z
ψm(z), (S6)

where we omitted higher order terms with respect to ψd(z). Eq. (S6) can be
rewritten in the form

Jm = −Dc
∂

∂z
ψm(z)−

Dc

kBT
ψm(z)

∂

∂z
Πosm(z), (S7)

where Πosm(z) is the osmotic pressure generated by cohesin monomers

Πosm(z) = −kBT log(1− ψm(z)). (S8)

Eq. (S8) returns to the familiar form of the osmotic pressure of an ideal gas for
ψm(z) < 1.
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The chemical potential of cohesin dimers has the form

µd(z) =
δF

δψd(z)

= kBT [logψd(z)− log(1− ψd(z)− ψm(z))] . (S9)

The flux Jd of cohesin dimers is thus given by

Jd = − 1

ζc
ψd(z)

∂

∂z
µd(z)

= −Dc

[
1− ψm(z)

1− ψd(z)− ψm(z)

∂

∂z
ψd(z) +

ψd(z)

1− ψd(z)− ψm(z)

∂

∂z
ψm(z)

]
≃ −Dc

∂

∂z
ψd(z)−

Dc

kBT
ψd(z)

∂

∂z
Πosm(z), (S10)

where we used the fact that cohesin dimers are only rarely loaded onto the
chromatin fiber and omitted higher order terms with respect to ψd(z) to derive
the last form of eq. (S10).

We derived eq. (S1) by assuming that the two rings of a dimer diffuse
independently. In a similar manner, one can show that for cases in which the
two rings diffuse in registry, eq. (S10) should be replaced by

Jd = −1

2
Dc

∂

∂z
ψd(z)−

Dc

kBT
ψd(z)

∂

∂z
Πosm(z), (S11)

where the factor 1/2 represents the fact that the two rings move together, anal-
ogous to the Flory-Huggins theory [1]. The solution of eq. (S11) changes to

ψd(z) =
Jd
Jm

(
1− α e−2Jm(M−z)/Dc

)
, (S12)

where we used a factor α (= 1 − Jm/k
d
off). The broken curves in fig. 2 in the

main article are predicted by using eq. (S12).

S2 Spontaneous unloading of cohesin rings

We here treat cases in which cohesin rings are unloaded before they reach the
ends of the stretch of chromatin fiber, see fig. 1 in the main article. A cohesin
loader is localized in the middle of the chromatin region. In steady state, the
dynamics of cohesin monomers is represented by the form

− ∂

∂z
Jm(z)− k′moffψm(z) = 0. (S13)

The first term of eq. (S13) represents the accumulation of cohesin monomers
by the gradient of the flux of monomers. The second term of eq. (S13) repre-
sents the spontaneous unloading of monomers and k′moff is the rate constant that
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Figure S1: The probability ψm(z) of finding a cohesin monomer at each binding
site is shown as a function of the position z/M for kmonc/Dc = 0.1 (blue) and 0.3
(black). We used k′moffc/Dc = 2.0 for the calculations. The solid curve is derived
by numerically calculating eq. (S13) and the broken curve is derived by using
an approximate form, eq. (S15).

accounts for this process. ψm(z) is the probability of finding cohesin monomers
at z. The flux Jm(z) of cohesin monomers has the form

Jm(z) = −Dc
∂

∂z
ψm(z)−

Dc

kBT
ψm(z)

∂

∂z
Πosm(z). (S14)

The first term on the right-hand side of eq. (S14) is due to the thermal
diffusion of monomers and the second term is due to the osmotic pressure
Πosm(z) (≡ −kBT log(1−ψm(z))) generated by monomers. The boundary con-
ditions to solve eq. (S13) are i) the flux of monomers is zero at z = M due to
the BEs, Jm(M) = 0, and ii) the flux of monomers is equal to the loading rate
of the monomers, Jm(0) = kmonc(1 − ψm(0)) (kmon is the rate constant that ac-
counts for the binding process and c is the concentration of cohesin rings in the
solution). We numerically solve eq. (S13) by using the Runge-Kutta method,
see fig. S1. This leads to the probability distribution ψm(z) as a function of the
dimensionless parameters kmoncM/Dc and k′moffM

2/Dc.
For cases in which the rescaled binding rate kmoncM/Dc of monomers is rel-

atively small, the solution of eq. (S13) has an approximate form

ψm(z) =
k̃mon tanh

√
k̃′moff

k̃mon +
√
k̃′moff tanh

√
k̃′moff

cosh(
√
k̃′moff(1− z/M))

sinh
√
k̃′moff

, (S15)

where we used the rescaled rate constants k̃mon = kmoncM/Dc and k̃
′m
off = k′moffM

2/Dc,
see the broken curve in fig. S1. Our numerical calculations of eq. (S13) agree
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Figure S2: The probability ψd(z) of finding a cohesin dimer at each bind-
ing site (rescaled by Dck

d
on/(Mkm2

on )) is shown as a function of the position
z for k′doffM

2/Dc = 0.3 (blue) and 0.5 (black). We used kmoncM/Dc = 3.0 and
k′moffM

2/Dc = 1.0 for the calculations.

with the approximate form eq. (S15) for small values of k̃mon (or large values of
k̃′moff).

In the steady state, the dynamics of cohesin dimers is represented by the
form

− ∂

∂z
Jd(z)− k′doffψd(z) = 0 (S16)

The first term on the right-hand side of eq. (S16) represents the accumulation of
dimers due to the gradient of the flux of the dimers. The second term represents
the spontaneous unloading of dimers and k′doff is the rate constant that accounts
for the unloading process. The flux Jd(z) of dimers has the form

Jd(z) = −Dc
∂

∂z
ψd(z)−

Dc

kBT
ψd(z)

∂

∂z
Πosm(z). (S17)

The first term of eq. (S17) is due to the thermal diffusion and the second term is
due to the osmotic pressure of cohesin monomers. We assumed that the cohesin
dimers are only rarely loaded onto the chromatin region, see also sec. S1. The
boundary conditions to solve eq. (S16) are i) the flux of dimers is zero at z =M
due to the BEs, Jd(M) = 0, and ii) the flux of dimers is equal to the loading
rate of the dimers, Jd(0) = kdonc

2(1− ψm(0))
2.

We derive the rescaled probability distribution ψ̃d(z) (≡Mkm2
on ψd(z)/(Dck

d
on))

of dimers as functions of the dimensionless parameters kmoncM/Dc, k
′m
offM

2/Dc,
and k′doffM

2/Dc by numerically solving eqs. (S13) and (S16). Our theory pre-
dicts that the probability distribution function ψd(z) is a monotonically increas-
ing function of the position z for cases in which the unloading rate constant
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Figure S3: The probability ψd(z) of finding a cohesin dimer at each binding
site (rescaled by Dck

d
on/(Mkm2

on )) is shown as a function of the position z for
k′moffM

2/Dc = 0.5 (blue), 1.0 (black), and 2.0 (magenta). We used kmoncM/Dc =
3.0 and k′doffM

2/Dc = 0.3 for the calculations.

k′doffM
2/Dc is relatively small, see fig. S2, and ψd(z) is a monotonically decreas-

ing function of the position z for cases in which the unloading rate constant
k′doffM

2/Dc is relatively large (not shown).
Substituting eq. (S17) into eq. (S16) leads to the form

∂2

∂z̃2
ψ̃d +

1

1− ψm

∂ψm

∂z̃

∂ψ̃d

∂z̃
+

[
M2k′moff
Dc

ψm − M2k′doff
Dc

]
ψ̃d(z) = 0, (S18)

where we used the rescaled coordinate z̃ (≡ z/M) and rescaled probability dis-
tribution function ψ̃d(z) (≡ Mkm2

on ψd(z)/(Dck
d
on)) of dimers. The boundary

condition i) (see below eq. (S17)) leads to the fact that the gradient ∂ψd(z)/∂z
is zero at z = M . Eq. (S18) implies that ψm(M) > k′doff/k

′m
off is the necessary

condition for the probability distribution ψd(z) to be a monotonically increasing
function of the position. Indeed, it is also the sufficient condition. The proba-
bility distribution ψd(z) of dimers is a monotonically decreasing function when
the gradient ∂ψd(z)/∂z is negative at z = 0, see the broken curve in fig. S4.
The probability distribution ψd(z) is a non-monotonic function of the position
z in a parameter region, which is delineated by the two conditions, see fig. S4.

To summarize, the physics does not change with the cases in which
cohesin monomers and dimers are unloaded spontaneously on the
track as long as the detailed balance is broken at the cohesin loading
site z = 0. There are a couple of differences in details: i) there is a
window of parameters at which the distribution function of cohesin
dimers is a non-monotonic function of the position z and ii) the gra-
dient of the distribution function of cohesin monomers and dimers

6



0 1 2 3 4 5
0

0.5

1

1.5

Monotonic decrease

Monotonic increase

k
o

ff
d
M

/D
c

‘

kon
m
cM/Dc

Figure S4: The state diagram of the distribution of cohesin dimers is shown as
a function of the rescaled unloading rate k′doffM

2/Dc of dimers and the rescaled
loading rate kmoncM/Dc of monomers. The probability distribution function
ψd(z) is a monotonically increasing function when the rescaled unloading rate
k′doffM

2/Dc of dimers is smaller than the solid curve and is a monotonically
increasing function when the rescaled unloading rate k′doffM

2/Dc of dimers is
smaller than the broken curve. The probability distribution function ψd(z) is a
non-monotonic function in the region between the broken and solid curves. We
used k′doffM

2/Dc = 0.5 (blue), 1.0 (black), 2.0 (magenta) for the calculations.

with respect to the position z is zero at z = M because BEs (such
as CTCFs with converging orientation) stop the motion of cohesin
monomers and dimers.

S3 Conformational entropy of chromatin

We here take into account the conformational entropy of the chromatin fiber in
an extension of the model presented in the main article. We assume that not
more than one cohesin dimer is loaded on the stretch of chromatin fiber at any
moment. The loaded cohesin dimer produces a loop of length z+ + z− and the
two free arms have length, N+ (= M − z+) and N− (= M − z−), see fig. 1 in
the main article. Here and after, we use the subscripts + and − to represent the
quantities of the free arms at the positive (z > 0) and negative (z < 0) halves,
respectively. These lengths are represented by the number of chain segments.
For simplicity, we assume that the size a of a binding site (defined in the main
article) is equal to the length of a chain segment. We neglect the excluded
volume interactions between chain segments.

With this treatment, the number of configurations of the free arms has the
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forms

W+ = ωN+ (S19)

W− = ωN− , (S20)

where ω is the number of the nearest neighbor sites in a lattice model. The
number of configurations of the loop has the form

Wlp = c

(
la
R

)3

ωz++z− , (S21)

where la is the lattice constant (or Kuhn length) and R (=
√
z+ + z−la) is the

end-to-end distance of a free polymer of length z+ + z−. The factor (la/R)
3

accounts for the fact that the two ends of a loop are at the same position. c is
a constant of the order of unity (which accounts for the fact that the number
of configurations depends on the positions of the end points). With eq. (S19)
- (S21), the free energy contributions of the chromatin fiber conformation has
the form

Fcon = −2MkBT logω +
3

2
kBT log(z+ + z−). (S22)

This leads to the force applied to each ring of cohesin dimer in the form

fcon = − ∂

∂z+
Fcon

= −3

2

kBT

z+ + z−
. (S23)

The conformational entropy of the chromatin fiber thus tends to decrease the
size of chromatin loops by counteracting the osmotic pressure generated by
cohesin monomers. The force fcon is not applied to cohesin monomers and thus
eqs. (1) - (3) in the main article are still effective.

Eqs. (S22) and (S23) are effective for cases in which the loop length z+ +
z− is larger than the order of unity. For cases in which the loop length is
smaller, the bending elastic energy dominates the free energy contributions of
the conformational entropy, see refs. [2] and [3]. The bending elastic energy has
an approximate form

Fela

kBT
≃ π2

z+ + z−
, (S24)

which is derived by assuming that the loop is circular (the numerical factor π2

in eq. (S24) is smaller than a more exact calculation [2, 3] by the factor of
about 0.7) and using the fact that the Kuhn length la is twice the persistence
length. It is important to note that the cohesin dimer starts with a loop of finite
size and thus finite energy. By using eq. (S24), the energy barrier to initiate

a loop is estimated to the order of π2

2 kBT . Because microscopic details of loop
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initiation by a cohesin dimer are unknown, we do not discuss the small loop
regime any further.

With eq. (S23), the flux Jd of a cohesin dimer on the fiber has the form

Jd = −Dc
∂

∂z
ψd(z)−

Dc

kBT
ψd(z)

∂

∂z
Πosm(z)−

3

4
Dc

ψd(z)

z
, (S25)

where we assumed that the two rings of the dimer diffuse randomly and the
positive and negative halves of the chromatin stretch are symmetric, z+ = z− =
z. The boundary conditions to solve eq. (S25) have the forms

Jd = kdonc(1− ψm(0))
2 (S26)

= kdoffψd(M), (S27)

which account for the fact that the binding and unbinding rates of cohesin
dimers are both equal to the flux Jd in the steady state. With these boundary
conditions, the probability ψd(z) has the form

ψd(z) =
Jd
kdoff

( z

M

)−3/4

eJm(z−M)/Dc (1− g(z)) (S28)

with

Jd =
kdonJ

2
m

km2
on

(S29)

g(z) =
Mkdoff
Dc

∫ z/M

1

duu3/4e−JmM(u−1)/Dc . (S30)

The probability distribution ψd(z) corresponds to the average frequency of
contact between the segments at −z and z. Our theory predicts that the prob-
ability distribution ψd(z) shows a divergence at z → 0, see fig. S5. This is
an artefact due to our approximation, which treats the positions z of cohesin
binding sites as a continuous variable. The free energy of producing a small loop
is dominated by the bending elastic energy, see also eq. (S24) and discussion
below. We thus expect that the probability ψd(z) shows a maximum of finite
height at the crossover between the energetic and entropic regime. The confor-
mational entropy does not change the height of the peak at z = M , because it
is determined by the boundary condition, but makes the peak less steep, again
due to the entropic force fcon. These results are effective for cases in which 1)
the statistics of the chain conformation is given by the Gaussian distribution, 2)
the conformational dynamics of the chromatin fiber is faster than the diffusion
of cohesin dimers, and 3) not more than one cohesin dimer is loaded on the
stretch of chromatin fiber.
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